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Anisotropic transport properties of cerium Kondo compounds

1 APRIL 1992-I

S. M. M. Evans, * A. K. Bhattacharjee, and B.Coqblin
I.aboratoire de Physique des Solides, B&timent 510, UniUersite Paris —Sud, 91405 Orsay CEDEX, France

(Received 30 July 1991)

The anisotropy of transport properties, i.e., the electrical resistivity, the thermoelectric power, and the
thermal conductivity, observed experimentally in single crystals of noncubic cerium Kondo compounds,
is studied here theoretically in a model that takes into account both crystal-field and Kondo effects. At
temperatures that are high compared with the Kondo temperature, we use perturbation theory on the
Coqblin-Schrieffer Hamiltonian, and at low temperatures we use the slave-boson technique on the
periodic Anderson Hamiltonian. We study also the effect of disorder and the resulting relation between
the residual resistivity and the coefficient of the resistivity T' law. Detailed comparison with experiment
is finally given and a reasonable agreement is obtained for cerium Kondo compounds, such as CePt2Si2,

CeCu6, or CeA13.

I. INTRODUCTION

Among rare-earth systems, cerium and ytterbium com-
pounds are known to have an anomalous behavior. Ceri-
um Kondo compounds have been extensively studied
from both an experimental and theoretical point of view. '

At sufficiently high temperatures, i.e., for temperatures
larger than the Kondo temperature TI, and the overall
crystal-field splitting, these compounds have a magnetic
susceptibility which follows a Curie-Weiss law with a
magnetic moment corresponding roughly to the Ce +

trivalent ion or to the 4f ' configuration and show a de-
crease of the magnetic resistivity with increasing temper-
ature, generally in log T in a given temperature range. At
very low temperatures compared to T&, cerium Kondo
compounds are characterized by a heavy-fermion behav-
ior giving rise to enormous values of the electronic
specific-heat constant y and the magnetic susceptibility

The strong competition between the Kondo effect it-
self and the Rudermann-Kittel interaction yields at low
temperatures either a magnetic ordering in many com-
pounds such as CeA12, CeB6, CeCu2, or CeInAg2, '
which have a typical y value of order 100 mJ/mole K,
or a complex behavior, weakly or nonmagnetic with
strong short-range magnetic correlations in compounds
such as CeA13, CeRuzSi2, or CeCu6, ' which have a y
value of order 1000 mJ/mole K . On the other hand, the
heavy-fermion compound CeCuzSiz becomes supercon-
ducting below 0.6 K. '

The transport properties, namely the electrical resis-
tivity, " the thermoelectric power, ' and the thermal con-
ductivity' of cerium Kondo alloys and compounds have
been computed for the "high-temperature limit, " i.e., for
temperatures larger than the Kondo temperature Tk,
within third-order perturbation theory on the so-called
"Coqblin-Schrieffer Hamiltonian"' and a good agree-
ment with experiments has been obtained. At low tem-
peratures, the Fermi-liquid behavior p= A T of the resis-
tivity has been also derived by several theoretical ap-
proaches. '

Recently, the anisotropy of the transport properties in

single crystals of cerium Kondo compounds has been
studied both experimentally and theoretically. ' Experi-
mental evidence for anisotropy effects in single crystals
has been found in the three transport properties of
CePt2Si2, ' in the resistivity of CeA13, ' CeCu2Si2,
CeCu6, ' CeRu2Si2, and CeSi, and in the ther-
moelectric power of CeCu6 (Ref. 22) and CeRu2Siz (Ref.
23) single crystals. The resistivity of CeCu2Si2 and CeA13
is smaller along the c direction than perpendicular to it,
in contrast to the case of CePt2Si2 while in the case of or-
thorhombic CeCu6 both resistivity and thermopower
curves are different along the three directions. ' At
very low temperatures, the resistivity of some heavy-
fermion compounds behaves as T . However, there is
not much available data on the anisotropic behavior of
the resistivity in single crystals at very low temperatures.
The resistivity of CePt2Si2 is anisotropic, but there is no
evidence for a T behavior. In the case of a CeA13 sin-

gle crystal, the resistivity behaves as p= AT along the c
axis and perpendicular to it and the ratio A

~~

/A ~ of the
T coefficients is of order 0.4. ' The low-temperature
resistivity of CeCu6 single crystals has been also mea-
sured by several authors; ' ' a p= AT law has been
obtained along the three directions x,y, z, although the
measured values for the A, coefficients are slightly
different according to the different measurements. '
Finally, the residual resistivity po, measured at the lowest
possible temperature, is generally very large and this
large value is connected to the heavy-fermion character;
moreover, the residual resistivity is also anisotropic in
single crystals of cerium compounds such as CeAl„
CeRu2Siz, or CeSi, 86.

The purpose of the present paper is to present a
theoretical model, based on the resonant scattering mech-
anism including crystal-field effects and taking into ac-
count the anisotropy of the conduction-electron relaxa-
tion rate, in order to explain the large anisotropy ob-
served in the electrical resistivity, thermoelectric power,
and thermal conductivity of noncubic cerium Kondo
compounds. Thus, in Sec. II, we will first present very
briefly the calculation of the anisotropic properties within
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the third-order perturbation theory model, valid for tem-
peratures larger than the Kondo temperature Tk and we
will apply it to both cerium and ytterbium Kondo com-
pounds. Then, in Sec. III, we will present in detail the
calculation of the low-temperature transport properties
performed within the slave-boson approach and we will

discuss the effect of impurity scattering. In Sec. IV, we
will study the anisotropy of the residual resistivity po and
its relation with the coefficient A of the T term in the
resistivity for an alloy or an imperfect lattice. Finally, in
Sec. V, we will discuss the application of our model to
cerium (or ytterbium) Kondo compounds. In the present
paper, we limit ourselves to the study of transport prop-
erties and we do not present any calculation of the mag-
netic susceptibility and NMR data in cerium Kondo
compounds, which are already published elsewhere.

II. THE PERTURBATION THEORY MODEL
FOR THE ANISOTROPY

OF TRANSPORT PROPERTIES

I V,f I'
JMM' +

2 EM EM
(2)

There are certainly several origins for the observed an-
isotropy, but we will show that the Hamiltonian (1) yields
a large anisotropy in transport properties. Another cal-
culation using the self-consistent ladder approximation
has been also performed to compute the electrical resis-
tivity and the thermoelectric power.

Our previous calculations" ' of the transport proper-
ties have been always performed for polycrystals and we
have there approximated the relaxation time of a conduc-
tion electron by an isotropic average over the different k

We present here the theoretical calculation of the an-
isotropic transport properties within the effective ex-
change Hamiltonian (the so-called "Coqblin-Schrieffer
Hamiltonian"' in perturbation theory up to third-order
in exchange integrals. We give here only the main as-
sumptions and results, since some partial accounts' ' of
this calculation have been already reported, and more-
over we present also a simple extension to the case of yt-
terbium compounds. This calculation is valid for Kondo
compounds and for temperatures larger than the Kondo
temperature Tk.

The effective exchange Hamiltonian for the 4f '

configuration of cerium is written as" '

y JMM'Ck'M'CkM(CMCM' fiMM'& nM ) )
k, k'

M, M'

+ g VMMCk'MCkM
k, k'

M

in the usual notation: cM is the creation operator for the
eigenfunction of 1 =3, s =

—,', j =
—,
' and of energy EM rela-

tive to the Fermi level and ckM is the corresponding
creation operator for the conduction-electron partial
wave function. The exchange integrals JMM. ( (0) are
given by

directions of the conduction electrons. In the case of a
single crystal, we compute the transport properties along
the principal axes i and we must calculate the relaxation
time ~k for a conduction-electron plane wave of wave
vector k and spin cr, which turns out to be highly aniso-
tropic. The classical formulas for the electrical conduc-
tivity cr =1/p, thermal conductivity E, and thermoelec-
tric power S can then be written, for each direction i, as

can=1/p=e Eo,
(E, )K=—K2-

T Eo
(4)

S=
eT Eo

where the integrals E„(writt en in the following K„' for
each direction i) are defined by

'2
Bsk

(6)
8~

Bfk
ek(r„t+r„()dk .

BEk

ek is the conduction-electron energy and fk the Fermi-
Dirac distribution. The relaxation time ~k is given here
by

kyar

=g I&ha kp&l'
P kp

m, vo, and c are, respectively, the mass of the conduction
electrons, the considered volume and the cerium concen-
tration. We have also'

S„„=2+J„„J„J „( „)(1—5 „5 „)
p'm

g (Ek+E E„)—
P(E E.)—

1 —fk(1 —e

—21J„„l'(v„„+J„„(n„))
Xg ((n„)—(n ) )g(Ek+E E„) . —(10)

In general, the partial wave function lkp) (or the cor-
responding 4f eigenfunction lp, ) in the presence of
crystal-field effects) is a linear combination

lkp&=&~ „lkM&

of the elementary wave functions IkM) with M=+ —,',

as a function of the partial relaxation times vk„where the
partial wave lkp) corresponds to one of the eigenfunc-
tions in presence of the crystalline-field effect.

Thus, according to Refs. 11 and 18, vk„ is given by

mkvoc

7rfi3
(Rkp+Skq) .
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f&l~fkM) f'=4~ 7 4c—rM
f

M )fz
14 3 k

The anisotropy in the transport properties comes from
the angular integration over 0), in (6), which gives
different results for the different directions. In order to

+—,', +—,
' in the case of cerium compounds and with

M =+—,', +—', +—,', +—,
' in the case of ytterbium com-

pounds. Then we insert (11) in expression (7) and the
weight of the partial wave fkM) inside the plane wave

f
ko ) is given by (with cr =+—,')

perform the integration over Ok we write k, k, and k,
as functions of spherical harmonics, and after performing
the integration of the products of spherical harmonics,
we get different results for the three integrals E„,I( „,and
E„'. We then proceed, as usual, for the calculation of the
transport properties and in order to invert the relaxation
times, we use the third-order perturbation approxima-
tion, which yields values R =R& and R =g R in-p kp P P
dependent of k. Detailed calculations can be found else-

Thus, the electrical resistivity p; along the i direction is
given by

Pi
3m, 7Tv pc

R +S( ' —g (a, g„+b;g„+)(R„+I„'')
2 Ak

( )

(13)

The thermoelectric power S, along the i direction is given by

g( ) y ( gzo+bg+)g( )'1

eT R P ' P P
p() 0)

The thermal conductivity K; along the i direction is finally given by

(14)

2~kFA k~
E, = 1—

9m; Uoc R m R(ksT)

3g(2)
(a, g„+b;(„}—R„+

()o)
' " ' " R " n(kz)T)

where

g(n) ~ g(n)
p

P

g(n) j ()

BCk
CkSkpd E,k

and

Ib„=—„, b = —
—,', , b, =0.

a=a= — a= ———2 4
x P 35 & z 35

(16a)

(16b)

(17a)

(17b)

nal or tetragonal crystal structures. The present calcula-
tion has been successfully applied to the anisotropic
transport properties of cerium Kondo compounds, in
particular to the three transport properties of CePt2Si2, '

and to the electrical resistivity and the thermoelectric
power of CeCu6, thus, we will not discuss this point
here. On the other hand, there are presently no available
data on anisotropy effects in ytterbium Kondo com-
pounds, but the present calculation could give an ex-
planation of such possible effects in noncubic ytterbium
based single crystals.

The two coefficients g„and g„+ are characteristic of
the crystal-field effects and they are different in the two
cases of cerium and ytterbium.

For cerium compounds, we have

III. THE SLAVE-BOSON APPROACH
FOR ANISOTROPIC TRANSPORT PROPERTIES

AT LOW TEMPERATURES

g„=g (M+ —,')(M +—', )( —,
' —M)(a~ „+a M „), (18a) A. The conduction electron self-energy

g„'+ =9g f
(M + —,

' )(M + —,
'

) ( M —
—,
'

)(M —
—,
'

) ]
'

M

X {aMpaM+ 2 p+a M }Ma (M+2) p )

and for ytterbium compounds,

g'p =g ( —,'—M)(M+ —,')( —,'—M)(a~„+a M„),
M

g'= —5+ [(M+ —", )(M+-,'}(M—
-,')(M —7)]'"

M

X(a~(a~+z, (+a m( a —(m+z—),). ) .

{18b)

(19a)

We see that the anisotropy disappears in cubic crystals
and that the basal plane anisotropy disappears in hexago-

The anisotropy of the electrical resistivity has been also
observed experimentally at low temperatures with respect
to the Kondo temperature Tk and in a few cases, namely
CeA13 and CeCu6, a p, = A,. T law has been deduced with
different coeScients 3, for the resistivity measured along
the different principal axes i.

The previous perturbation theory treatment does not
work at all below Tk and, in order to describe the anisot-

ropy of the transport properties at low temperatures, we
consider here the slave-boson approach to the periodic
Anderson model including crystal-field effects in noncu-
bic structures. To calculate the resistivity in the limit
T~0, we relate the scattering rate l /~ to the
conduction-electron self-energy, which we compute from
the boson fluctuations around the mean-field solution. '



45 ANISOTROPIC TRANSPORT PROPERTIES OF CERIUM KONDO. . . 7247

+pi A;(nf'+, nb
—1) . (20)

As in the high-temperature limit, in order to derive the
anisotropy, it is important to include the correct k and
spin dependence for the hybridization matrix element.
We calculate here the anisotropic transport properties
first for a pure lattice. However, the residual resistivity,

pp is large in cerium Kondo compounds and we introduce
the effect of disorder to account for it. In a first step, we
introduce an isotropic and temperature-independent
scattering rate resulting from disorder purely on the
conduction-electron sites. These calculations will be
presented in the present section. On the contrary the
problem of the f-electron disorder leading to a relation
between the anisotropy of pp and that of the coeScient of
the T law of the resistivity will be discussed in the next
section.

Let us present now the calculation of the conduction-
electron self-energy performed within the slave-boson ap-
proach. The periodic Anderson model including crystal-
field effects in the limit U~ 00 and for a large spin-orbit
coupling, can be rewritten, using the slave-boson ap-
proach, in the usual form

H=ge„c„' c„+QE„fP;„
k, o

+ g [V„(k)e 'ci', f;„b; +H. c. ]
k,i, o,p

field*' approximation, we replace r; and A, , by their aver-
age values and the properties calculated are equivalent to
those found using an effective hybridization Hamiltonian
in which both the hybridization and the f-level energy
are renormalized:

H=g ekcq ci, +g efj'P;„
k, cr

+ g [V„(k}e 'ci', f,„+H c. ]
k, l) o') p

+giA, (r —1), (23)

where V& (k} is still given by (21}as a function of V=r V
and ef„=E&+iAr, .and i Rare, the mean-field parame-
ters, which are determined by minimizing the free-
energy Th. is gives r =1—nf, where nf is the mean
number of 4f electrons per site. The efFective hybridiza-
tion becomes small in the Kondo limit (nf ~1}.There
are three renormalized 4f energies efo, ef, , and ef2, efo is
small in the Kondo limit and, for large crystal fields,
gives the energy scale or "Kondo temperature" for the
system.

It is convenient to define linear combinations of f„and
f„where p and p,

' form the doublet with energy ef„,
which hybridize with conduction electrons of a given
spin:

The 4f electrons are taken to have a degeneracy
X =2j +1, which is then split by the crystal field to give
three doublets with energies Ep Ej =Ep+5] and
E2=Ep+62 in noncubic cerium Kondo compounds.
The p values denote the eigenstates of the crystal field,
and in general they are linear combinations of the M
states, with M =+—,', +—'„+—', in the case of cerium, as ex-

plained in the preceding section. For the conduction
band, we use the ~ko ) representation for plane waves of
wave vector k and spin cr. Thus, the hybridization ma-
trix element is of the form

1
2 2 i/2 pafp afp(V„+ V„. )

H =Xetetaeta + X efnfinafina
k, a r, n, o.

+ g [Vh„(k}e 'cz f,„+H.c. ]
k,i, cr, n

+i+A, (r —1), (25)

where n =0, 1,2 runs over the three f electron doublets.
We can now write the Hamiltonian (23) as

V„(k}=V(kcr ~kp) . (21)

~kp) is given by (ll) as a function of ~kM ) and we can
write

(ka~kM) =&2m(7 —4oM)/7YM3 (k), (22)

where Y3 (k} is the spherical harmonic for i =3 and m
values and the term in (22) before the spherical harmonic
is the Clebsch-Gordan coeScient for spin-orbit coupled
states with j=

—,
' and I =3. The constraint nf'+nb =1 is

enforced on each site by the Lagrange multipliers i A,;,
where nf is the total number of f electrons on site i and
nl', the number of slave bosons on site i.

Following Rasul and Desgranges, ' we can write the
partition function in terms of functional integrals. Per-

i8,-forming a local gau~e transformation, b; =r;e ' and

changing f;„ to f;„e ' have the effect of shifting 1,, to
A, +0, , thus promoting A, from the state of a Lagrange
multiplier to that of a boson field. In the usual "mean-

where

H;„,= g [5r,.(r)vh„(k)ci', f,„e '+H. c. ]
i, k, n, o

+i g 5A,;(r)nf'„(r) .
i, n, o.

(26)

The terms in 5A.; are important as they ensure the con-
straint is enforced at each level of the approximation, as
has been shown to leading order in 1/1V. The interaction
determines the boson propagators

h„(k) =(~ v„.(k)i'+
I v„.(k) I')'"iv .

To go beyond the mean-field limit, we need to include
fluctuations in the boson field. Fluctuations in the ampli-
tude 5r; couple to the hybridization and fluctuations in
the phase velocity M, cause the f-level energy to fiuctu-
ate. We obtain an interaction term of the form
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Dzz = (5A(q, co),M( —q, —co) ),
D2„=(5A(q, co), 5r( —q, —co) ),
D„„=(5r(q,co),5r( —q, —co)) .

(27)

Following Millis and Lee, ' we assume that the resis-
tivity arises from the scattering of the conduction elec-
trons off the Bose fluctuations. We equate the scattering
rate 1/~ to twice the conduction-electron lifetime 2
ImX'. In general, this is not the correct procedure and

I

we need to consider the retarded two-particle Green
function. However, the fact that the f electrons are
dispersionless means that the model is not Galilean in-
variant and we expect the calculation of the conduction-
electron lifetime to give essentially the correct result. To
calculate ImX', we use the standard functional-integral
technique. The diagrammatic representation to first or-
der in the boson fluctuations is shown in Fig. 1, where we
see that there are three types of diagrams. By a simple
extension of the results obtained previously, we obtain

G' (k, co)=G' (k, co)+g[Gf'(k, co)] g Gf (q, v)D22(k+q, co+u)
n q, v

+2G'(k, ro)g Vh„(k)Gf'(k, co)g Gf (q, u)D2„(k+q, co+u)
n q, v

+2[G'(k, ro)] g V h„(k)g Gf (q, u)D„„(k+q,co+v),
q, v

(28)

(29)

where Gf and G' are the Green functions for the f and conduction (c) electrons, respectively, and Gf' is the mixed
propagator (f„;ck' ). These are all calculated using the mean-field Hamiltonian (25). G' is the c-electron Green
function including corrections coming from the fluctuation terms. The following relation is easily shown:

Vh„(k)
Gf'(k, ro)= G' (k, co),

CO Efn

and we can then identify

V h„(k) VVh„(k)
X'(k, co)= g 2 g Gf (q, u)D&z(k+q, ro+v)+2 g Gf (q, v )D&„(k+q,co+v)

n =0, 1,2 ' fn ' q, v
CO Efn q, v

+ V h„(k)g Gf (q, v )D„„(k+q,co+u}
q, v

(30)

V h„(k) V2

2 p(EF)
(co —Ef„}

lim
ct)~0

Taking the imaginary part, we obtain an expression involving both Fermi and Bose distribution functions corre-
sponding to the Green functions and Boson propagators involved in (30). We then take the limit T, co~0 and obtain
the (m +n T ) dependence of the self-energy, which is characteristic of the Fermi-liquid behavior. The ~k~ dependence
of the self-energy is small, because of the Fermi functions involved in the integrals, and we can replace

~
k

~ by kF; how-

ever, the angular dependence of the self-energy on k remains important through the functions h„(k) of the spherical
harmonics Y3 (k). The imaginary part of the self-energy is, therefore, given, in the limit T, co~0, by

ImD&z(kF, ro) VVh„(k) V2 ImD&„(kF, co)
ImX'(co) = +2 p(EF ) lim

n =0, 1,2
CO N Ef„sf„ra~0 CO

+ V h„(k)p(EF )

~fn

ImD„„(kF,co)
lim ( ~2+ ~2T2 ) (31)

1

2
'

ImD2„(kF, co)

ImD„„(kF, co )
lim
co~0 CO

V 1 —nf

Efo 2V

V 1 —nf

&fp 2V

(32)

p(EF) is the bare conduction-electron density of states
evaluated at the Fermi energy. In principle we need to
know the full band structure to calculate the boson prop-
agators and these will depend on direction of k. This is
complicated and instead we approximate here the boson
propagators by the values calculated by an isotropic f
level with a degeneracy of 2; this gives

ImD„&(kF, co)

where corrections are O(Efolb, „Efo/b, 2) or, in other
words, the neglected terms are in Tk/6, or T&/62. We
see that, for contributions to the self-energy coming from

nf ~1, the contribution from diagrams involving Dz„
and D„„are a factor (1 —nf) smaller than those involving

D&& and so can be neglected in the limit nf ~1. When
we look at the terms from the higher-energy doublets
(n = 1 and 2), we see that the contributions from D„„and
D&„are of the order (1 nf )Ef„/ufo and (1 —nf )E—f lEfo
times that from D&&, respectively. With nf close to one
and the crystal fields not too large, these terms can be
neglected also.

In the opposite limit with 5,=62=0 and a degeneracy
of the 4f level equal to 1V =6, we obtain a simple factor:
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and

+ /

B, = d dx 4

g h„(k; )p(EF )
n =O ~fn

(38)

We have used here the fact that

1 1

~2+ 2T2 12T2
(39)

FIG. 1. Diagrammatic representation of the three types of
diagrams involved in Eq. (28). The figure is drawn here for each
n value. The full line ( ~ ) represents the Green
function Gf (k, co), the broken line ( ———~———)
G' (k, co), and the mixed line ( —+ ———

) G„'f (k, co).

which can be shown by usual integration in the complex
plane after expanding the Fermi function according to its
imaginary poles.

Thus, the resistivity p, =1/e; along the i axis is given
by

lim
co~0

ImD~„(kF, co)
(33)

12T p(EF }
Pi PU Cg

I

(40)

We note that we could also have obtained the same re-
sult in the following way: We start from the "spin-N"
model in which the conduction electrons are taken as
having the same total angular momentum as the 4f elec-
trons and V is taken as constant, then we calculate the
scattering rate I/ik„within a particular spin channel,
and finally we use the analogy with the one impurity
problem expressed by the relation (7) between the total
scattering rate 1/~z and the partial ones 1/rk„

B. The low-temperature transport properties

where the constant value p U is given by

m; VOC
2

eh'k (E )
(41)

p= pup(EF) T g36 2 2

C
n ~fn

(42)

We note that if we average over direction the denomina-
tor of (38), and set h„(k)=(h„(k)), the resistivity is
given by

4

=21mX'(ez),
+ko.

(34)

We will now derive theoretically the transport proper-
ties at low temperatures (T «T, ), for both the case of a
pure lattice and the case of an additional constant impur-
ity scattering rate. The three transport coeScients are
given by the expressions (3), (4), and (5), respectively.
The relaxation time rz, involved in the formula (6), is
equal to

which can be rewritten

p pUTX

where

2 (EF)V
nfn

&fn

(43)

where the imaginary part of the self-energy is given by
(31).

The electrical conductivity o.
, along the principal axis i

can, therefore, be written as

ehkF
cr;= g fk;

pB; voc

8
(35)

21mX'(Eq}

ekkF CB;

v0c 12T
(36)

with the same notations as in the previous section.
k;=k,. /~k~ and we write k, =x, k =(1—x )cos P, and

k~ =(1—x )sin P, with x =cos8.
Thus, inserting (31) into (35) yields

2

2
pv T

p
f

(44)

while for A~~ we obtain nfo 1, n»=nf2=0, C=2,
and

9pv
p (45)

denotes the average occupation of the nth doublet. Each
doublet gives a contribution to the resistivity of the form
T scaled by the inverse of the appropriate energy scale
squared. The factors in nf„reAect the fact that, if the
doublet is unoccupied, there is no scattering. In the limit
6~0 we obtain nfn =

—,', cf„=sf, C =6, and

where

ImD zz( kF, co )—= lim
C 63~0

(37}

We now look at the anisotropy. We consider first the
simplest case where the crystal-field states are pure M
states. Here the dependence on P drops out and
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[h~~gp(x)] = &(1 2x +5x )

[h+3i2(x) ] =—,'(1+ 14x —15x ),
[h+,zz(x)] = —", (1—2x +x ) .

(46)

p, is now equal to p, which remains true when we
generalize to the case where the crystal-field levels are
given by ~+ —,') and linear combinations of ~+—,

' ) and

~+ —,
' ). These crystal-field levels are relevant in crystals

of hexagonal and tetragonal symmetry.
For large crystal fields we may be tempted to include

only the ground state in this expression. In this case we
find that while the values of B; are finite for a ground
state +—,', B, diverges as logx for a ground state +—,', and

B, and B diverge as x and logx, respectively, for a
ground state +—,'. It is therefore seen to be important to
include all the levels. Nonetheless, as 5 becomes large,
the anisotropy can become very large especially when the
ground state is +—,'. Two factors tend to reduce this.
First we note that, even when the ground state is nomi-
nally ~+ —,

' ), adding in a small admixture of +—,
' ) will do

a lot to suppress the tendency to divergence. Adding in
an admixture of ~+ —,

' ) as for orthorhombic crystals will

suppress all tendency to divergence.
The other factor that will tend to reduce the anisotropy

is the presence of impurity scattering. In general we can
write 7 7p '+ 7, ', where 7p is due to impurity
scattering and 7, due to electron-electron scattering. In
this section we assume that 7p arises purely from disor-
der on the c-electron sites. ' In this case, 7p is isotropic
and temperature independent. For small enough temper-
atures, we can always exPand 7 -7p —27@ ImX, . Sub-
stituting into the equation for o.;, we now have

results for the ratio A~/A~~ of the A coefficients deter-
mined along the x or y directions (A~) and along the z
direction A

(i) For a +—,
' ground state, A ~/A

~~

=0.53.
(ii) For a +—,'ground state, A~/A

~~

=0.85.
(iii) For a +—,

' ground state, A ~ /A
~~

=3. These results
will be used in Sec. V when comparing our results to ex-
periment.

Let us now consider the other transport properties, i.e.,
the thermoelectric power S, the thermal conductivity E,
and the Lorenz number L. K and S are, respectively,
given by expressions (4) and (5), while L is given by

K K)
I( p

(48)

eS; 2C;=2(12—
m )T B;

where

(49)

as a function of the integrals K„given by (6) and of the
Sommerfeld value

2k 2

Lp= B =2 45X10-8 Wn K-2
3e

The lowest-order contribution to the thermoelectric
power S comes from the odd part of 7 coming from the
factors I/(co —eI„) in X'. In the case of a pure lattice, S
is easily seen to be linear in T, while in the case where im-
purity scattering is important, S is in T . In both cases,
L is constant.

In the case of a pure lattice, the thermoelectric power
S; along the principal axis i is given by

p( =po+pv T p(EF)
6~
C

Xf f dxdPk, g
'4

h„(k)2, (47)

C, = f f dPdx k;(xP)
gh„(V /E/„)

n

g h„(V /e/„)

where pp is the constant residual resistivity arising from
impurity scattering 7p . In the limit 6~0 we obtain

277 pU
2 2

p po+ 9

We have used here the fact that

2 ~2=1-
C2+ ~2T2

(50)

(51)

while for large b if we replace h„(k) by its average, we
obtain

It is easily seen that the anisotropy of S vanishes in the
two limits 6=0 and h~ oo and we obtain the result

P Pp+2~ PU
Cfp

2 2(12—m. ) TS= (52)

When we include the anisotropy we now find integrals
we can do analytically and we obtain different results for
the anisotropy of A. In particular all tendency for diver-
gence is completely suppressed and the anisotropy is
smaller. For example, we can compute numerically the
coefficients A, in the simple case of pure M states with
large crystal-field splittings. The integration is quite ob-
vious in this case, since A,. is proportional to the angular
integration of k, h„(k) . Thus, we obtain the following

where T& =of or cfp, respectively. For finite values of 4,
S is anisotropic. The anisotropy of the linear T term is,
however, small.

If we now include impurity scattering we obtain

p4
2~3T r~(EF ) f f dx —d P k; gh„

n ~fn
(53)

The anisotropy of the term in T is approximately the
same as that for the T term in the resistivity [Eq. (47)].
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vr TKO

3 Lo
(54)

For a pure lattice, this diverges as 1/T and has the
same anisotropy as 1/p;. The addition of impurities

suppresses the divergence and instead E goes to 0 linearly
with T, but there is no longer any anisotropy in this case.

In contrast L/Lo is isotropic for all 6 with the value
36/m. —3 when electron scattering dominates and 1 when

impurity scattering is important. We can consider also
the thermal conductivity, which is given by (4) and can be
written as

1 V h„G'(k, co)= +g 2
Gf (co) .

CO Et „(~—
E&)

(56)

From this, the conduction-electron self-energy is easily
found to be

&'(~)=g V'h„'Gf (co),

The effective f doublet energy, Ef„, for the impurity is

taken as equal to that for the lattice. The conduction-
electron Green function G'(k, co) is given in terms of
Gf (co) by

IU. ANISOTROPY OF THE RESIDUAL
RESISTIUITY AND ITS RELATION
WITH THE T -LA%' COEFFICIENT

giving

ImX'=g V h„
(co —sf„) +I (57)

In this section, we reexamine the problem of the resid-
ual resistivity po and of its anisotropy. Experimentally,

po has been found to be large and anisotropic in some
single-crystal cerium Kondo compounds. Moreover, it
has been noted, in a few cases, that there appears to be a
relation between po and the coefficient A of the T law of
the low-temperature resistivity. For example, in CeA13
single crystals, both po and A are anisotropic, with

poi= 9.9 pQ cm, poli
= 14.5 pQ crn, and A i = 13.3

pQcm/K, Aii =4.6 pQcm/K . The same type of rela
tion yielding an increase of A with decreasing po values
has been also observed in CeRu2Si2 single crystals, but
the situation is more controversial in CeCu6 single crys-
tals. ' ' However, it has been pointed out that the re-
lation between an increase of A and a decrease of po in an
approximately linear fashion can be interpreted as a
temperature-dependent impurity contribution. These
properties strongly suggest that disorder on the f sites is
also playing a role and a possible interpretation is that po
arises from Kondo hole scattering. It is, therefore, of
interest to consider an alloy system in which a fraction
(1—c) of Ce ions are removed. We start by considering
the zero-temperature resistivity obtained from Kondo im-

purity scattering and go on to consider the alloy system
using a simple formula. We use this to calculate the an-
isotropy of po and to consider the effect this has on both
the magnitude and anisotropy of A.

The calculation of po for a Kondo impurity is particu-
larly simple as it arises from the mean-field solution. We
use the same Hamiltonian as before in (20) but now the
sum over i is restricted to a single site. Using the slave-
boson method we obtain for the mean-field f-impurity
Green function

If we average over direction and replace h„(k) by
( h„(k) ) we can evaluate p at T =0 to give

3 I
PO PU ~n~f+I (58)

with pU given by (41).
Taking now the anisotropy into account we find

po; =PU/(F80; ), where

k,.

yh r/(E +r) (59)

In general the anisotropy is in the same sense as for A
calculated for the pure lattice but the presence of the
terms in I, which are independent of n, tends to give a2

much smaller anisotropy for given crystal fields.
To 1ook at the tenn in T we need to include the term

in the self-energy corning from the boson fluctuations. If
we do this we obtain a term in (co +n T ) very similar to
that found for the lattice. Using this it is easily seen that
p decreases at ( T/Tk ) .

What we are really interested in here is the alloy sys-
tem where we assume a concentration c of Ce ions. To
treat this case we follow the procedure of Cox and
Qrewe' based on the average-T-matrix approximation.
The method starts from the self-energy for an impurity,
then explicitly subtracts off the elastic scattering when we
go over to the periodic case. It is assumed that the
conduction-electron self-energy for the lattice is related
to the impurity f-electron Green function in the follow-
ing way:

(60)

Gf (co)=
CO Ef„ l I

where I =(1 nf)p(E~—)V m. .

(55)
We shall take the T- and co-dependent contribution to the
self-energy as being the same for the impurity and the lat-
tice. Then, using (55) together with (31) we obtain

(co +mT)p(E~) V /(CE.f„)ImX'=g V h„
(cu —Ef„) +[(~ +sr T )p(E~)V /(Csf„)]

(61)
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This differs from (31) by the term in (co +mT ) appearing in the denominator. We note that this can be obtained by
self consistently taking account of the f-electron self-energy in calculating Gf', i.e., we replace Gf' by
V h„/(co —Ef„—Xf ).

We can now extend to the alloy. Following again Cox and Grewe, ' we assume that the conduction-electron self-
energy is proportional to the number of Ce ions and that the cancellation of the elastic-scattering term is incomplete.
We then have

r:=cy V'h„'[[Gf.(~)]-'+icl I
-', (62)

where c is the concentration of Ce ions. This gives

(1—c)I +(co +rr T )p(EF) V /(Cef„)ImX' =c
(co —ef„) +[(1—c)I +(co +sr T )p(EF) V /(CEf„)]

(63)

If we average over direction, then at T =0 we obtain

=3 p2
p „= pUc (1——c)g

Ef„+(1—c) I
(64)

p„; =pUc(1 c)/(~B—„,),
where

(65)

z~ k,
B„,= d dx

gh„I /[ef„+(I —c) I ]

We note that we get approximately the Nordheim factor
of c(1—c), though the c dependence of the denominator
prevents this from being followed exactly.

The anisotropy can also be included. We now obtain

term in p~; is proportional to c and is certainly smaller
here than the term in pU, so that it can be neglected when
we look at the anisotropy of the T term. The anisotropy
of A is, therefore, in the same sense as for the pure lattice
but with a somewhat different, usually smaller, magni-
tude.

We note Anally that the result for the decrease in A is
very similar to that found in the phenomenological model
proposed by Fetisov and Khomskii. We would also ex-
pect the results for the anisotropy to be the same in this
model.

V. RESULTS AND DISCUSSION

A. Theoretical results

T'
P=PA+(2pU~' —

pA 3
) z(Csf )

(67)

where, for b, =O, Ef is the f level energy and -C =6 and,
for large 6, c& is the energy of the ground-state doublet
and C =2. We see that we do indeed obtain a factor A

which decreases linearly with increasing p~.
We can also use our result to reconsider the anisotropy

of A. Expanding in T and ~ we find

k, gh„/Ef„
2'

P P~ +PU 3CT P(EF)' ', f, f de«
B,' » (gh„z/Efz„)z

(68)

(66)

This differs from Bo, for a single impurity by the fac-
tors (1 —c) in the denominator. For c close to 1, the an-

isotropy is greater than that for a single impurity. It is
similar to that for the pure lattice, though it still tends to
be smaller as the terms for the higher-lying doublets fall
off only as 1/6 rather than 1/5 . The inclusion of a
certain amount of disorder on the noncerium sites will

tend to reduce the anisotropy.
We can now calculate the T term. We look first at the

case where we average over direction and take the limit
c —1. We obtain the following result:

Thus, we have presented here a full theoretical descrip-
tion for the anisotropy of transport properties, by treat-
ing successively the high-temperature regime (T))Tz)
and the low-temperature one without or with impurity
scattering. In particular, we have found a linear relation
between the increase in the value of A, the coefficient of
the T term, and the decrease of the residual resistivity

po
Theoretical plots of the transport properties have been

previously derived for the high-temperature domain and
a good agreement has been obtained for the cases of
tetragonal CePtzSiz (Refs. 18 and 38) and orthorhombic
CeCu6 (Ref. 26) single crystals; in the case of CePtzSiz, we

have taken a ratio m, /m of the effective masses typical-

ly of order 1.5 in order to have a reasonable fit to the ex-
perimental curves. ' ' Up to now, there are no available
data on ytterbium Kondo compounds showing an anisot-

ropy, which could be accounted for by the theoretical re-
sults presented in Sec. II.

Let us discuss now the theoretical results obtained at
low temperatures for the case of hexagonal or tetragonal
symmetry. As an example, we take here 62=24& and we

calculate the ratio A~/A~~ versus the ratio ~, /T& for
different crystal-field schemes. Thus we show the results
for a pure lattice with no impurity scattering in Fig. 2

and for an imperfect lattice when a finite amount of im-

purity scattering is included in Fig. 3. The broken line is

for crystal field levels:

where we have dropped the term in p~,-T because this Io &
= I+-,' &, I

l &
= I+—,

'
&, I2 &

= I+—', & . (69)
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5-
A,/A

ii

4-

a =12 TABLE I. Experimental values of the parameters for the
crystal-field levels of several compounds: The coefficients a and
b refer to the crystal-field scheme given by (70); Tk, 5l, an
(expressed in are eth Kondo temperature and the two
crystal-field splittings, respectively.

Compound

CeCuzSi~
CeRu~Si,
CeA13
CeSii 86

0.83
0.96
0.24
0.45

0.56
0.28
0.97
0.89

Tk

10
19
3

20

14
12
20
17

36
53
30
14

0 6 8
~1/ Tk

FIG. 2. Plot vs k wib /T with 52=25l for the theoretical
values o,

II
cof A /A computed for a pure lattice and for different

crystal-field scheme given by (69), while the full lines correspon
to those given by (70) with different values of a .

H A & A with the anisotropy quickly reaching aere J

constant va ue o Jl f A /A =0.67 in the case of a pure lat-
nd A /A =0.53 in the case of an imperfect one.tice an

The other curves of the two figures have been erive
for a crystal-field scheme:

I0& =~I+-', )+bl+-', &,

(70)

a =12

A,/A„

with different values of a. In Fig. 2, or 5&r 5 not too small,

A~ & A
II

and, as 5, becomes large, the anisotropy can be
very large especially when there is an appreciable com-
ponent of I+—', ) in the ground state. On the other hand,
wlien impuri yh

' 't scattering is taken into account, the an-
isotropy is in general much smaller and the ratio

state is I+—') or close to it, we predict here ~) A~~,

while, when the ground state is I+—,') or I+—', ) wit an
important impuri y

't scattering the present theoretical
ithA &A .model yields a reversed sense of anisotropy with

The limiting values of Aj /A~~ for very large b, values
have been already computed in Sec. III 8 by use of ex-
pression (47).

stud-Only a few cerium Kondo compounds have been stu-
ied in single crystals, but generally their crystal-field ev-
els are known. Tetragonal CePt2Siz has crystal-field ev-
els given by (69) with b, =80 K and 62=230 K. The
other compounds, CeCu2Si~, CeRu~ i2, CeAl, , and
CeSi have crystal-field levels given (70) and Table I
gives the corresponding a and b coefficients, as w

1]86 a e
well as an

estimate of Tk, 5&, and 52. Finally, orthorhombic CeCu6
has two excited doublets lying at 87 and 210 K above the

round state and all the corresponding wave functionsgroun sta e an a
+—' +—' +—'waveare linear combinations of the t ree

functions. 41,42

B. Comparison with experiment

p.75

p.25

I I I I

6 8
&,/T„

FIG. 3. Plot vs 6, /Tk with 62=2hl for theoretical values of
A~/A computed for an imperfect lattice with a constant iso-
t '

impurity scattering and for differe y
II

co
nt cr stal-fieldropic

stal-fieldschemes: the broken line corresponds to the crys a - e
scheme given by (69), while the full hnes correspond to those

2given by (70) with different values of a .

We discuss here our numerical results in t e 'gli ht of
t 1 d t We note that the comparison with ex-

of alleriment is complicated by several features. First o a,
there is not much available data in single crystals, espe-
cially at very low temperatures. Furthermore, at very
high temperatures, i.e., for temperatures much larger
h th overall splitting, the experimental resistivity can

still have an important anisotropy, as, for examp e, in e
case of CePtzSiz, while the mechanism for the anisotropy
in our model is not expected to be very efFective at very
hi h temperatures, as shown in Sec. II or previously in
Ref. 18. This suggests that there are other mechanisms
for the anisotropy which could arise from the anisotropy
of the Fermi surface and also from the anisotropy o t e
mixing parame errameter which has been considered by Zhang
and Levy. Thus, in order to improve the description o
the anisotropic transport properties, we use pse the henome-
nological assumption of taking the efFective electron

to be difFerent in the three directionsmasses m„, m, I, o e
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TABLE II. Experimental values for the anisotropy of the

resistivity measured perpendicular to the c axis (l) and parallel
to it (~~): po is the residual resistivity, A is the coefficient of the
T' law observed at low temperatures; (i) corresponds to the
low-temperature ( T ( Tk ) and (ii) to the high-temperature
values. Blanks indicate that the data are not available.

Compound

CePt2Si2
CeCu2Siz
CeRu2Siz
CeAlz
CeSi) 86

Poi/Po~~

1.0
—4

0.7
-0.6

A~/A
()

-07
2.5

0.25

3.0
-0.39

0.5
1.0

—1.6
3.0

&1

x,y, z. Although this is clearly oversimplified, we have
previously obtained a good fit to the transport properties
of CePt2Si2 by taking a ratio m, /m of order 1.5. ' ' On
the contrary, the fit of the exerimental data can be ob-
tained in CeCu6 by taking an isotropic effective mass
m =m =m, . Finally, there is the problem of account-
ing for impurity scattering at low temperatures. The re-
sults we find depend sensitively on the assumptions made
and the origin of po is not well established. For the ther-
mopower, there is not much experimental data and what
data there is does not distinguish between a clear T or T'
behavior at very low temperatures. Furthermore, the
competition between positive and negative peaks ob-
served experimentally cannot be accounted for within our
model, as shown in the example of CePt2Si2. ' Similarly
there is not much data for the thermal conductivity.

Let us consider now in detail the available resistivity
data in cerium Kondo compounds. Tables II and III
summarize, therefore, some experimental and theoretical
results on the resistivity in single crystals. Table II gives
the experimental anisotropy of the residual resistivity po,
of the coefficient A of the low-temperature T law and of
the resistivity at low (T ( Tk) and high (T & Tk) tempera-
tures. Table III gives the theoretically deduced values of
pot/po~~ calculated on the assumption that the anisotropy
is due to Kondo hole scattering and of & ~/A

~~

calculated
for a pure lattice, then for a lattice plus isotropic impuri-
ty scattering, and finally for a lattice plus Kondo-like
scattering.

We explain now these calculations in the different
specific examples. We look first at tetragonal CePtzSi2,
which has crystal-field levels given by (69) and b, , = 1.6TI,
and 52=4.6Tk, if we take the large value TI, =50 K ex-

perimentally deduced for the Kondo temperature. ' The
experimental anisotropy p~~~/p~ is roughly 4 at low tern-

peratures and 2 at high temperatures. Our theoretical
low-temperature anisotropy is equal to 1.5 —1.8, depend-
ing on our assumption for the impurity scattering. Using
the value of m~~/m~ of order 1.5 estimated from the
high-temperature fit of the transport properties' ' gives
a theoretical anisotropy of 3—4 at low temperatures, in

good agreement with experiment. Thus, our model ex-

plains the increase of the anisotropy p~~/p~ by a factor of
2 as one goes from high to low temperatures. There is
not, however, any clear evidence for a T behavior.

We look then at CeA1&. The resistivity has an anisotro-

TABLE III. Theoretical values for the anisotropy of the
resistivity at low temperatures, perpendicular to the c axis (l)
and parallel to it (~~): poJ/p(j~~ is calculated on the assumption
that the anisotropy is due to Kondo hole scattering. Three
values are given for A~/3

~~

calculated for (i) a pure lattice, (ii)
an imperfect lattice with an isotropic impurity scattering, and
(iii) an imperfect lattice with Kondo-like scattering.

Compound pop/po~~ A i /3 ii"'

CePt2Si~
CeCuzSiz
CeRu2Si2
CeAl&

CeS11 86

0.66
3.8
5.8
1.58
1.99

0.65
8.17

17.10
2.6
3.67

0.54
1.83
2.61
0.90
1.04

0.64
4.8

12.86
1.81
2.31

py p~~/p~ of order —,
' at high temperatures, above roughly

10 K. At lower temperatures, p~~/p~ increases with de-
creasing temperature and becomes larger than 1 below
0.6 K; finally, the ratio of the residual resistivity po is

po~~/po&=1. 46. Below 0.35 K, the resistivity follows an
anisotropic T law with a ratio A~~/A~=0. 35. The value
of the coefficient A decreases linearly with increasing po.
At first sight, the experimental value for

A ~~/A~ appears
to be consistent with our result for the pure lattice. How-
ever, it would then be diffi. cult to account for the anisot-
ropy at very high temperatures and the large values of po.
Instead we renormalize our results by the high-
temperature anisotropy as we have done for CePtzSi2. '

Here, we take a ratio m
~~

/m j of order 1/&3, although it
is difficult to justify taking a ratio much smaller than 1 in
CeA1~ and much larger in CePtzSiz. The value
A

~~

/A ~
=0.37 is then found when isotropic impurity

scattering is included. This is very close to the experi-
mental value of 0.35. We still need to account for the an-
isotropy of po and for the fact that A decreases with in-

creasing po. This may seem to imply that po arises from
Kondo hole scattering. This, however, would give a large
anisotropy for po in the opposite sense to that observed
and would give a value A~~/A~=0. 18, which is too small.
The situation could be improved by assuming po arises
from a mixture of isotropic and Kondo hole scattering.

We consider next CeCu2Siz. Here both po and the
high-temperature limit are isotropic, implying a spherical
Fermi surface. For most of the samples

p~~ &p~ with an

anisotropy up to roughly 2. ' This is consistent with
our result including isotropic impurity scattering.

The electrical resistivity of single-crystal tetragonal
CeRu2Si2 compound has been recently measured. ' The
measured anisotropy poJ/po~~ of the residual resistivity is

of order 2, while the anisotropy A~/A
~~

of the T -law

coefficient is smaller and close to 1. Our theoretical
model predicts a very large anisotropy with p~&&p~~,

which in fact is not observed. The anisotropy of po is in

the correct sense for Kondo hole scattering, but the an-

isotropy for A is in the opposite sense. Thus, we cannot
explain the anisotropy of CeRuzSi2 and similarly, we can-

not account for the anisotropy observed in CeSi, 86.

Finally, we consider CeCu6, which has an orthorhom-
bic structure. Here the resistivity and the thermoelectric
power are different along all three directions. The resis-
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TABLE IV. Different sets of experimental data for CeCu6 showing the relative anisotropy along the three directions, according to
Refs. 21, 22, and 25: pp is the residual resistivity at T=O, A is the coefficient of the T term, B the coefficient of the T term, and the
last columns correspond to the resistivity anisotropy at high temperatures.

Reference

21
22
25

pox poy

0.61
0.53

poz

0.73
0.59

A„ A

0.52

0.29

A,

1.49

0.54

B„ By

0.37 0.47

p Py

1

0.8
0.8

tivity has been measured in CeCu6 single crystals by three
different authors ' ' and we report the main experi-
mental results in Table IV, i.e., the anisotropies of the re-
sidual resistivity po, of the T term, of the T term follow-

ing the T term, and finally of the high-temperature resis-
tivity. The thermoelectric power has also been measured
in CeCu6 single crystals and presents an isotropic and al-
most linear behavior at low temperatures, followed by
three positive peaks around 50 K and by three different
decreases at high temperatures.

In order to fit the anisotropy of the transport proper-
ties of CeCu6, we use the wave functions of the doublets,
which are given by

~q ) =+a ~+, )+b„~+, )+c„~+,), (7&)

where n =0 corresponds to the ground state and n =1
and 2 to the two excited states. The results are, however,
very sensitive to the values and signs of the coefficients

a„, b„, and c„. Two possible wave functions have been

suggested, both calculated from a high-temperature fit to
the magnetic susceptibility g. ' We have already used
the wave function given in Ref. 41, as well as the two
splittings 6, =87 K and 5&=210 K and an isotropic
effective mass m =m =m, =1.5 atomic units, in order
to derive theoretical curves for both the electrical resis-
tivity and the thermopower, as previously shown in Ref.
26. We have obtained a reasonable agreement with ex-
periment in CeCu6, in particular the three positive peaks
of the thermpppwer occurring arpund 50 K.

Let us now compare our model to the low-temperature
experimental results on the resistivity. Table V yields the
coefficients a„, b„, c„ofthe two wave functions of Refs.
41 and 42. However, the high-temperature fit of y used
to derive them breaks down as T~0 and calculations us-

ing the slave-boson technique at T =0 show that neither
wave function gives the observed experimental anisotropy
in y which is given by y:y:y, —1:0.5:3, i.e.,
g„/y =0.5 and y, /y =3. We propose a third wave
function, with the same numerical factors as in Ref. 42

but with a change of sign. The crystal-field splitting is
sufficiently large, so only the ground state is important in
the low-temperature regime and moreover the wave func-
tion corresponding to the ground state contains a sizable
amount of +—,

' states in CeCu6. It results that the anisot-

ropy of the residual resistivity calculated on the assump-
tion that the anisotropy is due to Kondo hole scattering,
the anisotropy of the T -coefficient A for a pure lattice,
and finally the anisotropy of A for an imperfect lattice
with Kondo-like scattering are approximately equal to
each other. This point has been already observed in
Table III for CePt2Si2, which has a +—,

' ground state and
a large crystal-field splitting and not for the other cerium
compounds, which do not contain any +—,

' contribution
to the ground-state wave function. On the other hand,
Table V gives the theoretical anisotropy of the low-
temperature T law of the resistivity, first for a pure lat-
tice and then for an imperfect lattice with an isotropic
impurity scattering, as well as the theoretical anisotropy
of the magnetic susceptibility at very low temperatures.
Using the two wave functions of Refs. 41 and 42, we do
not get the correct order for p, but with our modified
wave function we get the correct order for po, for the
coefficient A of the T term and for the coefficient 8 of
the T term, ' which presents the same anisotropy as
the coefficient A. Taking into account the slight high-
temperature anisotropy improves the results. It would
appear, then, that with the proposed wave function we
can identify the scattering at very low temperatures as
being Kondo-impurity-like and can then account for the
terms quadratic and linear in temperature. The correla-
tion between A and po are consistent with this view.

We can also determine theoretically the anisotropy of
the thermoelectric power S and the thermal conductivity
E. We have computed the low-temperature anisotropy of
the thermoelectric power in the case of a pure lattice or
in the case of an isotropic impurity scattering and Table
VI yields the results for the cerium Kondo compounds
that we have previously discussed. We see that, for a

TABLE V. Theoretical values for the coefficients of the T law of the low-temperature resistivity along the three directions for
CeCu6, in the case of (i) a pure lattice and (ii) an imperfect lattice with an isotropic impurity scattering. The values of ap bp and cp
correspond to the coefficients of the wave function (71) for Refs. 41 and 42 and our proposed wave function, as explained in text. The
calculated T=0 magnetic susceptibility is also shown in the last columns.

Reference

41
42

Ours

ap

—0.85
—0.73
+0.73

bo

+0.37
—0.60
—0.60

Cp

+0.38
+0.31
+0.31

A (l)
X

A(l)
y

1.5
0.8
0.5

A(l)
2

0.6
0.7
0.7

A (ll) A
(")

0.9
1.2
0.97

A (ii)
z

0.5
0.9
0.7

Xy

0.4
5.0
0.5

27.0
36.0
3.0
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TABLE VI. Theoretical values for the anisotropy of the ther-
moelectric power at low temperatures, perpendicular to the c
axis (S~) and parallel to it (S~~), calculated for different corn-
pounds in the case of (i) a pure lattice and (ii) an imperfect lat-
tice with an isotropic impurity scattering.

Compound

CePt2Si2
CeCu2Si,
CeRu2Si2
CeA13
CeSil 86

S~ /S(("

1.001
1.09
1.15
1.01
1.10

0.53
1.83
2.61
0.90
1.04

pure lattice, the anisotropy of the linear term in T is very
small, the largest value being S~/S~~ =1.15 for CeRu2Siz.
The anisotropy in the more realistic case when impurity
scattering is included is much larger and the values are
very close to those obtained for 3~/3

~~

in Table III with
the same assumptions. For the thermal conductivity, the
anisotropy at T =0 when impurity scattering is included
is just given by the anisotropy of po. In both cases, com-
parison with experiment is di%cult, because there are not
many available experimental data and moreover there is
not a unique behavior at low temperatures. The thermo-
power has been measured in CePt2Si2, ' CeCu6, and
CeRu2Siz (Ref. 23) single crystals, but there is no clear
evidence for a T or T behavior as T~O and, even for a
given compound, the behavior is not the same along the
different directions. As previously explained in Refs. 18
and 28, our model can account for the experimental ten-
dencies but cannot explain in detail the competition be-
tween positive and negative peaks at high temperatures.
Finally, the only available experiment on the thermal
conductivity K is in CePt2Si2, ' where E appears to be
linear in T at low temperatures, but we cannot really
draw conclusions on this problem.

C. Concluding remarks

Thus, the anisotropy of the transport properties has
been accounted for by a model involving primarily
crystal-field effects in noncubic cerium Kondo com-
pounds. This has also previously been done for magnetic
properties. ' Our theoretical results agree with some
experimental data available in compounds such as
CePtzSiz or CeCu6. In particular, taking into account the
disorder first on non-rare-earth sites and then as due to
the 4f electrons themselves improves in a few cases the
agreement with experiment. However, we have not been
able to go too far in the quantitative comparison with ex-
periment for at least the two following reasons:

(i) First of all, there is not much available experimental
data in single-crystal cerium Kondo compounds and
moreover the real influence of the disorder is not clearly
established.

(ii) Our theoretical model is simplified, essentially be-
cause we consider free conduction electrons with phe-
nomenological effective masses along the principal axes.
The assumption of a spherical Fermi surface yields a
small anisotropy for the electrical resistivity at high tem-
peratures, which disagrees with some of the experimental
data. Our model suffers also from the simplifying as-
sumptions used to describe the disorder.

Thus, the consideration of a more realistic picture for
the band structure and disorder will certainly improve
the agreement with experiment, but our theoretical mod-
el is certainly the first to account for the anisotropy of
transport properties in several cerium Kondo com-
pounds.
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