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We study the two-dimensional, antiferromagnetic Blume-Capel model on a square lattice by numerical

transfer-matrix and Monte Carlo finite-size scaling methods, in order to investigate whether the line of
tricritical points in this model may be decomposed into lines of critical end points and double critical

points, as predicted by mean-field theory and recent Monte Carlo simulations on a three-dimensional cu-

bic lattice. Conclusive numerical evidence is obtained, indicating that such decomposition does not

occur in this two-dimensional model. The nondecomposition is explained in terms of the large fluctua-

tions in the two-dimensional nearest-neighbor model, and we speculate that the situation may be

different in two-dimensional antiferromagnetic models with weak, ferromagnetic next-nearest-neighbor

interactions.

I. INTRODUCTION

The Blume-Capel model' and its generalization, the
Blume-Emery-Griffiths or S =1 Ising model, which is
equivalent to a three-state lattice-gas model, have been
extensively studied. As discussed in Ref. 5, the strong in-
terest in these models arises partly from the unusually
rich phase-transition behavior they display as their in-
teraction parameters are varied, and partly from their
many possible applications.

One of the most interesting and elusive features of the
mean-field phase diagram for the antiferrornagnetic
Blume-Capel model in an external field is the decomposi-
tion of a line of tricritical points into a line of critical end
points and one of double critical points. A similar

decomposition is predicted by mean-field theory for an-
isotropic magnetic models with ferromagnetic intrasub-
lattice and antiferromagnetic intersublattice interac-
tions. However, a Monte Carlo renormalization-group
study was unable to confirm this prediction unequivocal-
ly, although the effective critical exponents obtained indi-
cated that the decomposition may be taking place in
three dimensions. Other examples are provided by the
Blume-Emery-Griffiths model with repulsive biquadratic
coupling, and an S =

—,
' Ising model in a trimodally dis-

tributed random field. ' (A number of different names
are used in the literature to describe the double critical
point, including "double critical end point" or "bicritical
end point, " and "ordered critical point. "'

) A clear nu-
merical confirmation of this decomposition phenomenon
was obtained by two of us in a recent Monte Carlo simu-

lation of the Blume-Capel model on a three-dimensional
cubic lattice. " In contrast, for the two-dimensional
square lattice the results of our previous Monte Carlo
simulations' are (i) no evidence for the decomposition of
the tricritical points is seen and, (ii) the second-order line
persists around the region of high curvature near the tri-
critical point, whereas the mean-field calculation had the
first-order line extending around the promontory. Analo-
gous results have also been obtained in transfer-matrix
studies of Blume-Emery-Griffiths models on a triangular
lattice. '"

The main purpose of the present paper is to examine,
for the antiferromagnetic Blume-Capel model, whether
these qualitative differences between the two-dimensional
Monte Carlo simulations on the one hand, and the
mean-field approximation and three-dimensional Monte
Carlo simulation on the other, are supported by further
Monte Carlo simulations and numerical transfer-matrix
finite-size scaling (TMFSS) calculations in two dimen-
sions. In order to verify the consistency of the Monte
Carlo and transfer-matrix methods, we use finite-size
scaling extrapolations, both for the Monte Carlo and
transfer-matrix data. Our results reconfirm the non-
decomposition of the tricritical points and the migration
of the location (compared to the mean-field theory pre-
diction) of the tricritical points for the two-dimensional
case. In the course of our discussion we also present glo-
bal phase diagrams, which require a large number of data
points that are economically obtained by the TMFSS
method

The remainder of this paper is organized as follows: In
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phase diagrams were obtained, is discussed in Sec. III,
and the detailed numerical results are presented in Sec.
V. Due to the absence of next-nearest-neighbor interac-
tions, there are no order-order transitions separating the
ordered phases, even at low nonzero temperatures. In
the equivalent lattice-gas model this effect is easily under-
stood as the result of each site on one sublattice being iso-
lated within a "cage" of occupied sites on the other sub-
lattice. The ordered and disordered phases are separated
by a surface of order-disorder transitions at nonzero tern-
peratures. This surface mostly consists of second-order
transitions in the Ising universality class, except for the
portion at low T and D )0, whose intersection with the
T =0 plane is shown as a dashed line in Fig. 1. It is the
detailed topology of this transition surface which is under
study in the present paper, with particular emphasis on

determining whether the first- and second-order surfaces
are joined along a line of tricritical points, or whether
this line is decomposed into a line of critical end points
and one of double critical points, as predicted by mean-
field theory.

III. TRANSFER-MATRIX FINITE-SIZE
SCALING CALCULATIONS

In the usual fashion, ' infinitely long, strip-shaped
systems of finite width M were partitioned into transverse
layers parallel to one of the primitive lattice vectors. The
full 3 X3 transfer matrix, which is symmetric, was
block diagonalized utilizing invariance under one-step
translations in the transverse direction. The symmetric
and antisymmetric blocks, T (834X 834 for M =8) and
T (831 X 831 for M =8), are the only two blocks whose
symmetries correspond to the ordered phases. They are
both symmetric under matrix transposition, and were nu-
merically diagonalized with the EISPACK routine Rs on a
Cyber 205 supercomputer at Florida State University.
The eigenvalues, A, and A, ", are numbered by the sub-
script a in order of decreasing norm. The overall dom-
inant eigenvalue, A,„is known to be positive and nonde-
generate by the Perron-Frobenius theorem.

Second-order phase transitions were located by the
linear divergence with M of the overall dominant length
scale, g&"=(in~kf/At" ~) ', according to the Nightingale
finite-size scaling criterion. ' This length is micro-
scopic in the disordered phase and diverges exponentially
with M in all the ordered phases. The overall second
largest length (the persistence length) is
gf=( 1n~kf/A2~) '. It remains small and independent of
M in both the ordered and in the disordered phases, but
peaks narrowly near the phase transitions. The tricritical
line was located by the linear divergence of gf with M.
This scaling method for determining tricritical points inS=—,

' Ising models has been discussed in Refs. 21 —27,
and in Ref. 5, 13, and 14 it was successfully applied to a
three-state lattice-gas model on a triangular lattice. In
those regions of the (D,H, T) space where g'f diverges fas-
ter than linearly with M, the first-order transitions were
accurately located by the equality of the matrix elements
with the eigenvectors corresponding to the two largest ei-
genvalues of Ts of the operator corresponding to ( s,. ) .

This criterion corresponds to the exchange of stability
characteristic of a first-order transition. ' ' '

Finite-size scaling estimates for the critical exponent v
were obtained by a generalization to two fields of the
differentiation-free algorithm presented in Ref. 28. The
exponent g was obtained from the scaling relation
g~=M/[mg, "(M)], which requires conformal invari-
ance.

Due to nonsingular contributions and corrections to
scaling, the critical temperatures TM obtained by using
the Nightingale criterion with two strip widths, M and
M, do not equal the exact infinite system T„,but rather
converge toward it according to a power law

TM=T +CM

where the exponent co depends on the subdominant criti-
cal exponents. Since m is not known, we here esti-
mate T„ from a three-point power-law fit by numerically
solving the equation

' 1n(6/8)
T6T4 TM

(3)
T8 T~T6 T

for T„.Analogous extrapolations can be performed for
other quantities, such as the critical exponents, but for
the small system sizes used here the resulting estimates
are not always accurate, mainly due to wrap-around
effects for M'=2.

IV. MONTE CARLO SIMULATION
AND FINITE-SIZE SCALING

where i runs over the lattice sites and 6; = + 1 (5; = —1)
for sites on the even (odd) sublattice, respectively. Its ex-
pectation value was estimated from Eq. (4) with
O(c)=~M, (c)~. We also calculated the staggered mag-
netic susceptibility,

The systems studied were L XL square lattices with
even L and periodic boundary conditions, containing
N =L spins. The spin configurations were updated ac-
cording to a highly vectorized two-sublattice checker-
board Metropolis algorithm, visiting each lattice site
sequentially once to complete one Monte Carlo step per
spin (MCS). The simulations were performed on the
Cyber 205 and ETA 10 supercomputers at Florida State
University. In each simulation run an initial 2000—5000
MCS were allowed for thermal equilibration, depending
on the phase point under study. The expectation value of
the physical quantity 0 was estimated by

S
&o)=—g o(c), (4)S,

where S is the total number of MCS in the run, following
equilibration, and the index c is incrernented once per
MCS.

The relevant low-temperature antiferromagnetic order
parameter is the staggered magnetization,
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(6)

(TL —T„)/T„-L (7)

with v=1. As in Ref. 12, TL was located by the max-
imum of y„and the infinite-lattice transition temperature
T was estimated by fitting TL to

which is proportional to the variance in the order param-
eter. (We use units in which Boltzmann's constant is set
to unity. ) To obtain reliable error estimates in the Monte
Carlo simulation, we used the binning method, described,
for example, in Ref. 38.

Finite-size scaling has been reviewed in general
terms elsewhere, ' ' as well as with particular emphasis
on Monte Carlo simulations, ' and will merely be ap-
plied here. The antiferromagnetic Blume-Capel model on
a two dimensional lattice is expected to be in the univer-
sality class of the two-dimensional Ising model, with
critical exponents p= —,', y= —,', and v= l. s 46 Thus, if
T and Tl represent the transition temperatures for the
bulk (L ~ ~ ) and finite lattice, respectively, we ex-
pect, ' as L~~,

sponds to the value chosen for the Monte Carlo simula-
tions in Ref. 12. For this value of D, the temperature at
which the first- and second-order transition surfaces
come together is sufficiently high to allow convergence of
our Monte Carlo and transfer-matrix algorithms. The
value D/l Jl =1.94 represents a nearby plane in the phase
diagram, in which no first-order transitions occur. These
results are included in Fig. 3, together with additional
Monte Carlo data for L =32 and 40. The locations of the
second-order transition points were determined in the
Monte Carlo simulation by the maxima of the staggered
magnetic susceptibility. The first-order line was deter-
mined using a mixed start technique in which the upper
half of the lattice was initialized to the T =0
configuration expected on one side of the first-order
boundary, i.e., (+ —), and the lower half plane initialized
to the configuration expected on the other side of the
first-order boundary, (00). By monitoring the

I

I

I I I I

I

I I I I

0.8

T +CL (8)

using the linear least-squares method.

V. RESULTS
0.4

The global (D, H, T) phase diagram, based on transfer-
matrix calculations with M'/M=4/6, is shown in Figs.
2(a) and 2(b). Although these results contain non-
negligible finite-size effects in certain regions of the phase
diagram, they present a qualitatively and semiquantita-
tively correct picture which, for the two-dimensional
model, is superior to that obtainable by mean-field calcu-
lations. More precise assessments of the finite-size effects
are given below. Figure 2(a) shows a view of the surface
of phase transitions for H~O and 1.94~D &2.02. It
consists of two "tunnels" of second-order transitions.
The one parallel to the direction H =D represents the
transition to the ordered phase (+0), whereas the one
parallel to the negative D axis represents the transition to
the ordered phase (+ —). At low temperatures the latter
phase is separated from the disordered phase (00) by a
surface of first-order transitions, which is joined to the
surface of second-order transitions as discussed at the end
of Sec. II. In Fig. 2(b) is shown a magnified portion of
the phase diagram, where the surfaces of second-order
and first-order transitions merge near the point
H/lJl=D/lJl =2, T=O. On this scale the first- and
second-order surfaces are seen to join smoothly along a
line of tricritical points which is almost straight and
shows no signs of decomposition. These results agree
with those of our Monte Carlo simulations, and provide
further evidence that no decomposition of the tricritical
line occurs, in contrast to the mean-field results and the
three-dimensional case. ""

To settle fully the issue of whether or not the tricritical
line decomposes in two dimensions, we have also per-
formed transfer-matrix calculations with M'/M=6/8 at
D/lJl=1. 94 and 1.98. The choice D/lJl=1. 98 corre-

0.2

0.0
0 1 2

, , I. . . , I. . . , I. . .
3 4 5

FIG. 3. Sections of the phase diagram for D/ Jl =1.94 and
1.98. For D/lJl=1. 94, Monte Carlo results are included for
L =32 with 12000 MCS (+ with error bars). For the second-
order line at D/l Jl =1.98, Monte Carlo results are included for
L =40 with 50000 to 150000 MCS (+);L =40 with 8000 MCS
(o); L =40 with 1500 MCS (0); and for the first-order line
L =32 mixed start algorithm ( X ). Error bars are shown only
for representative points at D/lJl=1. 98. The TMFSS results
for the second-order transitions were obtained with
M'/M=4/6, except in the interval 1.7~H/lJl ~2.3, where
M'/M=6/8 was used (solid lines). (The results obtained with
M'/M =4/6 are shown throughout as dotted lines to indicate
the size of the finite-size effects. ) The line of first-order transi-
tions at D/lJl =1.98 (dashed line, partly hidden behind the
Monte Carlo points X) was obtained with M =6, as described
in Sec. III. The dot-dashed line is the projection onto the H, T
plane of the tricritical line obtained with M'/M=4/6. The
agreement between the Monte Carlo and transfer-matrix results
is excellent, neither method showing any evidence for decompo-
sition of the tricritical point, and both agreeing within errors on
the location of the tricritical point. The apparent disagreement
in the region 1.7 ~ H/l Jl ~ 3 is due to finite-size effects and can
be virtually eliminated by finite-size scaling extrapolations, as
discussed in the text and shown in Fig. 4.
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configuration of the lattice after each update sweep, we

were able to determine which of the two configurations

the lattice tended toward, and thus on which side of the
first-order line the system was located. By iterating this

procedure, the Monte Carlo results for the first-order line

shown in Fig. 3 were obtained. The consistency between

the transfer-matrix and Monte Carlo results is indeed

satisfying and confirms the correctness of the nonpertur-

bative results, vis a vis the mean-field calculation. In par-

ticular, the results of the two approaches practically
overlap in the regions of the first-order phase transition
and close to the tricritical point, as well as for H/l J l

)3.
The differences that remain in the region where the tran-
sition line is strongly curved are due to finite-size effects
and can be eliminated within statistical errors, using
finite-size scaling as discussed below.

Due to corrections to scaling, the transfer-matrix data
are expected to approach the infinite-system limit as a
power law with an exponent which is a function of the
subdominant critical exponents, as discussed in Sec.
III. The extrapolated transfer-matrix results are
shown in Fig. 4 (which represents a close-up of Fig. 3 in
the interval 1.7~H/l Jl ~2.3) together with the finite-
size results for M'/M=2/4, 4/6, and 6/8. The finite-
size effects are substantial in the regions where the criti-
cal surface is strongly curved, but the extrapolations nev-
ertheless converge to estimates that agree closely with the
extrapolated Monte Carlo results, as discussed below.
Near the first-order region the finite-size effects are small,
and the extrapolated second-order line joins the first-
order line smoothly without any discernible discontinuity
in slope. We take this as further evidence that the line
along which the first- and second-order transition sur-
faces meet is, indeed, a line of undecomposed tricritical
points.

The finite-size Monte Carlo estimates for the critical
temperatures TL are those temperatures for which the
staggered susceptibility has its maximum. These esti-
mates converge towards the infinite-system limit as L
as expected from Eq. (7) with v=1. The extrapolated
Monte Carlo results shown in Fig. 4 were obtained from
simulations for L =20, 26, 34, 48, and 100, except for
D/l Jl=1.94 and H/l Jl=2.00, for which a simulation
with L =200 was also included. The lengths of the simu-
lations varied from S =50000 to 200000 MCS, depend-
ing on the correlation time (in MCS) of the simulation at
the particular point in parameter space. In each instance
the simulated data points were consistent with the linear
behavior in 1/L, in agreement with Eq. (8). The extrapo-
lated results of the Monte Carlo simulations are summa-
rized in Table I, together with the power-law extrapolat-
ed TMFSS results at the corresponding phase points.
The extrapolated results from the two methods agree to
within the statistical uncertainty in the Monte Carlo re-
sults.

As seen in Figs. 3 and 4, there is no tricritical point for
D/l Jl = 1.94, but the critical temperature goes through a
minimum near H/l Jl =2. This is the region of the phase
diagram where the finite-size effects are largest, both for
the Monte Carlo and transfer-matrix results. At
D/l Jl =1.98 the general shape of the phase diagram is
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0.0 I
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I
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I I I I I
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FIG. 4. Sections of the phase diagram for D/l Jl =1.94 and
1.98, representing a close-up of Fig. 3 in the region
1.7~H/lJl ~2.3. The data points without error bars (Q for
D/l Jl = 1.94 and X for 1.98) correspond (from lower to higher
T} to TMFSS calculations with M'/M=2/4, 4/6, and 6/8.
The solid lines are guides to the eye through the three-point
power-law extrapolations to M = ~, which are also marked C'

and X, respectively. The data points with error bars are L
extrapolations of Monte Carlo data for L XL systems with

L ~ 100 for D /l Jl = 1.94 and L ~ 200 for D /l Jl = 1.98. As seen

in Fig. 2(a) there is no tricritical point for D/lJl=1. 94. At
D/lJl =1.98 there is a tricritical point, whose position is indi-

cated by the "cross hairs. "The first-order 1ine and projected tri-
critical line are represented by dashed and dot-dashed lines as in

Fig. 3. See detailed discussion in the text.

the same as at D/l Jl = 1.94, but there is a tricritical point
at H~/IJl= 1 800+0 005, T, /lJl =0.214+0.001, as es-
timated from the transfer-matrix calculation with
M'/M =6/8. This result is in agreement with the tricrit-
ical point found from Monte Carlo simulations in Ref.
12, using finite-size scaling of the order parameter,
H, / Jl =1.77+0.04, T, / Jl =0.22+0.01. For H (H,
the transition is first-order. We believe this depression in
the critical temperatures near the tricritical line is caused

1.94
1.94
1.94
1.98
1.98
1.98
1.98
1.98
1.98

H/lJl

1.8
2.0
2.2
1.9
1.95
2.05
2.20

2.24+0.02
2.25

T„/IJI (Mc)

0.448+0.004
0.437+0.005
0.460+0.006
0. 189+0.010
0.207+0.010
0.253+0.010

0.35

T /IJI (TM)

0.448
0.434
0.448
0.188
0.197
0.260
0.347
0.365*
0.370

TABLE I. Finite-size scaling extrapolations of the critical
temperature from Monte Carlo (MC) and transfer-matrix I,'TM)
calculations. The extrapolation methods are discussed in Sec.
IV for the MC case, and in Sec. III for the TM case. The TM
point marked + was obtained by interpolation between two ad-
jacent points to match the value of H obtained by the corre-
sponding constant-temperature MC simulation. The TM results
have finite-size uncertainties in the last digit.
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by the large fluctuations near the "missing" order-order
transition, which is suppressed by the cage e6'ect dis-
cussed in Sec. II. In all cases we find that the transition
temperatures obtained from the Monte Carlo data de-
crease with increasing system size, whereas the transfer-
matrix results increase in such a way that the transition
temperature predicted by the Monte Carlo calculation al-
ways is larger than the value obtained by the transfer ma-
trix, and such that good agreement is obtained between
the extrapolated critical temperatures.

Finite-size estimates for the critical exponents v and g
were obtained as described in Sec. III and extrapolated
according to Eq. (3}. In the regions where the second-
order transition surface is strongly curved and the finite-
size effects are large, these three-point extrapolations did
not converge very reliably. However, where the finite-
size effects are smaller, the extrapolations converged well.
For instance, at D/~ J~ =1.98 and H/~J~ =2.30 we ob-
tained v„=0.996 and q„=0.249, in excellent agreement
with the exact two-dimensional Ising critical values, v=1
and g =

—,'. Likewise, at the tricritical point for
D/~ J~ =1.98 the extrapolated values were v„=0.536 and
g„=0.148, also in very good agreement with the two-
dimensional Ising tricritical values, v, =

—,
' and

A similar behavior for P was found in the

Monte Carlo simulations of Ref. 12, which apply finite-
size scaling to the order parameter M, (c). At
T/I Jl =0.23 and H/I Jl =0.20, P=0. 13+0.02, equal
within statistical errors to the exact two-dimensional Is-
ing critical value, p= —,'. Closer to the first-order surface,
at T/~J~ =0.22 and H/~J~ =1.77, P decreases dramati-
cally to 0.03 0.01, in agreement within statistical errors
with the tricritical value p, =

—,
' . The fact that near

the lines where the first- and second-order surfaces join
together we obtain exponents very close to the values ex-
pected for a tricritical point in a two-dimensional Ising
model, we regard as further evidence that these lines are,
indeed, lines of simple, two-dimensional Ising tricritical
points.

VI. DISCUSSION

The purpose of this study has been to investigate the
validity of the results of earlier Monte Carlo simula-
tions, ' which indicated that the decomposition of the tri-
critical line in the nearest-neighbor antiferromagnetic
Blume-Capel model, which is predicted by mean-field
theory and has been observed by Monte Carlo simula-
tions" in three dimensions, does not occur in two dimen-

sions. By finite-size scaling analysis of results from nu-
merical transfer-matrix calculations and Monte Carlo
simulations, we have established that the surfaces of first-
and second-order phase transitions in the two-
dimensional model join smoothly, without any sign of a
discontinuous change in slope, which would have been in-
dicative of decomposition. This result is illustrated clear-
ly in Fig. 4. At a particular point on the line where the
first- and second-order surfaces join, we have also ob-
tained estimates for the exponents v and g from the
transfer-matrix results, and p from the Monte Carlo re-
sults, which all are in close agreement with their known
tricritical values for the two-dimensional Ising model.
We consider that the smooth joining of the first- and
second-order surfaces, together with the tricritical ex-
ponent values obtained, constitutes conclusive numerical
evidence that the decomposition of the tricritical line
does not take place in two dimensions, in contrast to the
situation in mean-field theory and in three dimensions.
This qualitative difference between mean-field theory and
the behavior in three dimensions on the one hand, and
the behavior in two dimensions on the other, is a conse-
quence of the large fluctuations in the two-dimensional
model, which destroy the first-order finite-temperature
order-order phase transition associated with the decom-
position. For the two-dimensional model with nearest-
neighbor interactions these fluctuations are particularly
strong, due to the cage effect discussed in Sec. II. An in-
teresting question, which we leave for further study, is
therefore whether the inclusion of weak, ferromagnetic
next-nearest-neighbor interactions could reduce the fluc-
tuations suSciently to allow the decomposition to occur,
even in two dimensions.
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