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A Green's-function Monte Carlo (GFMC) method is used to compute the staggered magnetization m

in the two-dimensional, spin- —Heisenberg antiferromagnet on L XL square lattices, up to L =12. Un-

like previous GFMC calculations, the present method, which uses the forward-walking algorithm is un-

biased and projects out the exact, rotationally invariant ground state. These calculations provide

confirmation of the existence of long-range antiferromagnetic order in the ground state. A known rela-

tionship between m and the leading finite-size correction, coupled with high-precision ground-state-

energy calculations, is used to reduce the error in extrapolating to the thermodynamic limit. The data

extrapolate to m~=0. 3075+0.0025, only slightly different from the spin-wave-theory result, 0.3034.
Several perfect singlet trial wave functions used to reduce the statistical error are discussed. A possible

explanation as to why exact-diagonalization extrapolations tend to yield low values of m ~ is presented.

I. INTRODUCTION

In response to the discovery of the high-T, supercon-
ducting oxides, the recent Hurry of theoretical work on
the two-dimensional Heisenberg antiferromagnet (HAF)
has shown convincingly that its ground state possesses
long-range order (LRO). ' In this paper I discuss
another method to compute the long-range order param-
eter (the staggered magnetization rn ), via quantum
Monte Carlo simulation. The results provide confir-
mation that the LRO does indeed exist, along with a fair-
ly accurate estimate of the value for m .

The forward-walking method removes some of the
drawbacks present in the previous methods of finite-
temperature path-integral Monte Carlo' ' (PIMC) and
of extrapolated Green's-function Monte Carlo
(GFMC). In the former the calculations are done at
nonzero temperature and so one must take care that T is
low enough (for a given sized system). It is rigorously
known through the Mermin-Wagner theorem that no
LRO exists at any T)0 for the infinite lattice HAF in
two dimensions. Some of the problems that may arise are
discussed by Gross, Sanchez-Velasco, and Siggia. One
has T =0 quite accurately in the GFMC method, howev-
er, there exists a technical problem in that the spin
configurations are not distributed by the ground-state
wave function squared but rather by the ground-state
wave function times a known trial wave function. Thus,
the average of observables (such as spin-spin correlation
functions) are biased unless the trial wave function is
exceedingly close to the exact ground state. The bias is
usually corrected for by extrapolating away to linear or-
der the (presumed small) difference between the exact and
trial wave functions. This procedure is potentially
dangerous since from variational calculations it is known
that one can obtain very low energies from wave func-
tions both with and without LRO. ' The extrapolated
GFMC method also produces nonrotationally invariant
averages in that the LRO order points primarily in the xy

plane, ' while it is known that the exact ground state has
long-range correlations independent of the spin direction.
One can test that the extrapolated predictions do not
change as one "deoptimizes" the trial wave function but
this method is not completely foolproof. The forward-
walking algorithm" used here avoids these difficulties by
the brute force production of spin configurations distri-
buted by the exact, T =0, rotationally invariant singlet
ground state.

The forward-walking calculations were begun in an at-
tempt to provide additional evidence on the existence of
LRO without having the potential pitfalls mentioned in
the previous paragraph. By no means do I imply that the
numerical predictions from the finite-temperature PIMC
or the extrapolated GFMC are incorrect; in fact, my re-
sults agree with those calculations. The point is that
since until recently the very existence of LRO in this sys-
tem was uncertain, ' it seems useful to provide
verification by a more "robust" technique.

A somewhat surprising result that has emerged from
all of the work on the two-dimensional HAF is that the
value of m appears to be very close to the spin-wave-
theory result m swr =0.3034 (the units are those in which

fectly ordered Neelstate has m =—). The cl
agreement was unexpected because spin-wave theory
should be least accurate for the low spin of —,

' and also be-
cause of the "precarious" nature of the LRO in two di-
mensions. ' The value I find for the staggered order is
slightly (= l.5%) above m swr. This result is consistent
with the prediction of Hirseh and Tang' based on the
difference between their sublattice-symmetric spin-wave-
theory and exact results for small lattices with X 26,
and also consistent with the results of long perturbative
series expansions about the Ising limit. '

The paper is organized as follows. In Sec. II the
Green's-function Monte Carlo (or "projection Monte
Carlo" ) algorithm is described including the error reduc-
tion technique of importance sampling. The exact
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method of calculating expectation values of operators via
forward-walking is discussed in detail in Sec. III. Trial
wave functions used to accelerate the convergence are
outlined in Sec. IV, then followed by the presentation and
interpretation of the GFMC results in Sec. V.

II. COMPUTATIONAL METHOD

The antiferromagnetic Heisenberg Hamiltonian is

H=JQ S; S
(ij )

=Jg —(S;+SJ +S, S+)+Jg S,'S;.
(ij&

S,S;, S are the components of the vector spin- —,
' opera-

tor at site i. S,—=S; +iSy are the raising and lowering
operators. J is positive. The sum (ij ) is over nearest-
neighbor pairs on a square lattice consisting of N =L
sites. The GFMC algorithm described below may be
trivially extended to anisotropic coupling in the z direc-
tion (J,AJ), ' arbitrary spin, and d-dimensional bipartite
lattices.

By performing the unitary transformation,

bonds on the periodic lattice. Furthermore, the operator
K projects out the ground state ~$0) (in a given total
magnetization sector), that is,

MC —E)
(4)

where ED is the ground-state energy.
The symbol 4 will be used to denote a spin

configuration of the entire system: S=(S&, . . . , Sz).
The positivity of K and of the ground-state wave func-
tion' in the 4 basis allows the construction of a Monte
Carlo algorithm based on the interpretation of E as a
transition probability and of the ground-state wave func-
tion' as the corresponding steady-state distribution.

Importance sampling' is achieved by the following
similarity transformation of the matrix K in the 4 basis:

(3)

where ~lttr) is any trial state with nonzero overlap with
the true ground state. If M in Eq. (3) is taken large
enough all excited states are projected out of l(r. For ex-

ample, the contribution of the first excited state, with en-

ergy E, is negligible if

S, -S,", Sy -Sy, S; S, , (2) K($', S)= l(G(S')K (4', 4)/gG(S),

for all i residing on one of the two sublattices, the sign of
the raising and lowering term in H is reversed. From this
one can show that all matrix elements of the operator
E =C —H in the S' basis are positive, where
C =(J/4)N&, „d with N~,„d=2N= the total number of

I

where K(S', 4')—= (4'~K~1) and the "guiding function"
PG(P)—:(P~lt(G ) is preferably a good approximate solu-

tion to the Schrodinger equation.
Equation (3) rewritten in the 4 basis and multiplication

by gG(S) yields

f(S)=g, (eV)$0($—)=-QK(4', S~)K(S~,S~, ) K(+„+,)QG(+, )Qr(+, ),

where the sum is over all possible IS„.. . , S~). The
ground-state energy is given by

P=+K($,$ ), (9)

QE|„(4)f(1)
:—(E„,(S))/,

(

where

&ziH[@, )
10C

(@fan )

The function E„,(S) is called the "local energy:" it de-

pends on the instantaneous configuration S' and when
averaged with respect of f($) yields the exact ground-
state energy.

The GFMC algorithm may be described as follows. ' A
random "walker*' is defined to be a spin configuration
and weight pair: (g, w ), where w is a positive real
number. One starts with an initial population I 4 )

(a= I, . . . , N, ) of walkers drawn (via, say, the Metrop-
olis algorithm) from the known function QG(g)g&(eV) and
all of the weights are set to unity. One then stochastical-
ly evolves each walker from (S,w ) to (4', w'), where
w' =pw,

and 4' is sampled from the known, normalized transition
probability

P(A" )=K(S',1 )/P .

Note that for the present application K(S',S ) is
nonzero only when 1' =S or when 1' and 4 dilfer by
at most a single interchange of nearest neighbor + and

spins. E is therefore very sparse. Updating all
members of the population will be referred to as advanc-
ing one generation. The steady-state limit of the random
process is a set of walkers distributed by the function

f (4), and so the average of E&,(S) over this set provides
an estimate of the ground-state energy.

In the implementation of the above method one finds

the weights w quickly get out of hand. Each weight has
a tendency to grow or decline exponentially with time,
and so after a certain number of generations only a few
walkers possess most of the total weight. One wastes
computational e6'ort on the remaining walkers, and so
some sort of reconfiguration should be done. ' ' What I
have done is to split a walker into two copies (each with
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fa(S)= g exp( bS Sf )—,
(ij )

(12)

weight ur /2) whenever ia exceeds 2. Walkers are com-
bined when their weights get below —,'. ' This form of
reconfiguration leads to a fluctuating number of random
walkers (branching). There is a chance, therefore, that ei-
ther all of the walkers will die off or the number will
exceed the maximum value one desires to keep in com-
puter memory. This drawback may be removed by
means of a second reconfiguration. One scheme is to use
at the nth generation the kernel

K'"'=g (n)E

rather than E. The factor g(n) drives the population to
the desired base level. This latter reconfiguration intro-
duces a (usually small) bias to all estimated quantities be-
cause the factor g (n) is correlated with the recent history
of the walk. The bias may be systematically removed by
taking larger base populations or by dividing out a
suKciently large number k of factors (i.e.,
g(n) . . g(n —k) for a measurement at generation n)
from all estimates. In my calculations I have found
there is often a small, but statistically significant, bias for
Xp p

as large as 6000. The bias increases with the system
size L, evidently because of the reduced effective number
of walkers resulting from longer autocorrelation times.
The Appendix contains additional details.

The efficiency of the algorithm can be greatly improved
by using better guiding functions. From Eqs. (7) and (8)
it is evident that the closer tPG is to the exact ground state
the smaller will be the fluctuations in the local energy.
From Eqs. (5) and (9) it can be seen that no branching
occurs in the limit gG ~go.

I have taken the guiding function of the form

from finite lattice sums. The slow decay of u,. (-1/r;J. )

leads to long-range order in the xy plane. The function

gi R is not rotationally invariant, however. Unfortunate-
ly, the extra computational cost (a factor of lil) from using

i'„R as a guiding function does not appear to be otfset by
the gain in efficiency due to diminished branching and
shorter projection times.

III. FORWARD WALKING

The quantity we are interested in computing is the
staggered magnetization given by

m'=+& y, ~(M')'~q, &, (14)

(15)

or in the language of the GFMC random walk,

QW(SM)K(S~, SM, ) K(4'2, $, )0(Si)f($, )

The quantity e, is + 1 if the site i is on one sublattice and
is —1 if i is on the other sublattice. For the classical
Neel state m is —,. For rotationally invariant states,
such as the true ground state, one may use

=+3&$0~(M, ) ~go&, which is computationally con-
venient because M, is diagonal in the random walk basis.

For operators like M, that do not commute with H
something must be done to project the trial state in f (4)
into $0 [Eq. (6)]. This may be achieved by the forward-
walking algorithm, "based on the equation

& 1l,lol@, & & y, l~ "Olq, &

(16a)
&AA&

that is, a nearest-neighbor Gutzwiller wave function.
The variational parameter b is chosen to give the lowest
expectation value of energy &gG H~gG &. Positive b in-
duces antiferromagnetic correlations in the z components
of spin. Given the simple form for gG it is possible to
sample the (importance sampled) kernel K(S', 4') exactly
by rejection. This is fortuante because it cuts down on
unnecessary branching induced by including a factor
such as PG(S') IQG(eV) as an additional weight in P. The
form in Eq. (12) also allows a straight-forward bookkeep-
ing scheme that enables the sampling of P(S') and the
updating of P to be independent of the system size 1V.

Thus, the time to evolve a given number of walkers
through a fixed number of generations is independent of
~25

Much better wave functions than Eq. (12) exist. The
wave function in Eq. (12) does not yield a particularly low
variational energy, is not rotationally invariant, and
possesses no long-range order. The best wave functions
involve long-range spin correlations. ' ' For example,
the one due to Manousakis is given by

giR= g exp( u;JS Sf ), —
]+i(j+N

where the quantities u; may be obtained numerically

(16b)

where I have assumed (r) is an operator diagonal in the eV

basis and have set 8(eV)—:&4 6~$&. W(S) is a factor
that accounts for projecting the trial wave function, rath-
er than the guiding wave function, into the ground state.
The factor is

gr(&)
PG(+)

Equation (16) may be interpreted as follows. For each
walker sampled from f ( S) evaluate and store 8(S), let
the random walk proceed, and keep track of the lineage
of each walker, and then take the weighted average of the
6's with respect to how much each walker and its succes-
sors contribute to the population M generations after the
measurement [and reweight with W(S) also]. One sees
that if a walker and its successors all die off before gen-
eration M is reached then their measurement 6(S) is ex-
cluded from the estimate. This fact reveals the primary
drawback of the forward-walking algorithm, namely,
since the population is held approximately constant,
there will be some amount of time after which all
members of the population have sprung from a single
predecessor. Thus, all of the measurements of 0, save
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FIG. 1. Staggered magnetization (long-range order parame-
ter) as a function of generation time in the forward-walking pro-
jection. The value at zero generations is the "mixed" (erg~) es-

timate, while the asymptote at long time is the true singlet
ground-state expectation value. For the 8X 8 lattice results for
both the nearest-neighbor Gutzwiller and Neel singlet projec-
tion functions i(jr are shown. "Neel" "L = ~" indicate the
values for the classical Neel state and the infinite Heisenberg an-

tiferromagnet, respectively.

P= f dQ f da(1 —cosa)exp( —iaQ S„,), (19)

where S„,=g;S;. The integrals may be readily worked
out and the result is

l(Ns(&)= t'+IPINeel) =( —1) ' '4(m(g)) . (20)

the closing of the gap and so goes as L .
I have also used the long-range wave function 1(jLR of

Manousakis [Eq. (13)]. Unfortunately, it proved to be
only slightly better than the nearest-neighbor Gutzwiller
function. This must be due to the fact that although l(LR
has LRO, it lies primarily in the xy plane. Presumably
the quantity (PLRIE (M ) Igo) would converge much
faster than the z component alone, however, it would be
quite difficult to implement this in a forward walk be-
cause the xy piece of the observable is not diagonal in the
S' basis. Perhaps an algorithm in which occasional steps
are made with the observable rather than E could be im-
plemented, however, such a method was not attempted
in this work.

The final wave function used was a perfect singlet Neel
state. Let INeel) denote either of the two Neel states in
the S' basis. A perfect singlet (i.e., rotationally invariant)
version of this state may be obtained by "spherically
averaging:"

li(tNs) =PINeel), (18)

"NS" denotes Neel singlet. The projection operator P is
given by an equal amplitude summation over all possible
rotations:

one, are lost from consideration, which leads to large sta-
tistical (and often systematic) errors. It is therefore cru-
cial to use a good guiding wave function gG to minimize

branching (and hence the rate at which families may die
off) and to choose a good projecting wave function l(z. to
minimize the number of iterations M required to reach
the ground state. The system size dependence of the sta-
tistical error is discussed in the Appendix. In a single
simulation one may investigate a range of projection
times M, spread the "origin of the forward walk" (where
the measurements are made) over the entire run, and in-

vestigate a variety of projection trial functions lfjr. In
these ways correlated sampling is taken advantage of.
The program and algorithm were extensively checked
against the known m =0.525858 result for the L =4
case. The convergence of the forward-walking projection
for L =6 and 8 and two different projection wave func-
tions PT is shown in Fig. l.

IV. CHOICES OF gr

In this work three different trial wave functions have
been explored as projection functions. The first is simply
the nearest-neighbor Gutzwiller function [Eq. (12)]. As it
possesses no LRO, the mixed estimate of (M,t) vanishes
in the thermodynamic limit. This fact, coupled with the
knowledge that the relative gap in the energy spectrum
vanishes as 1 /L, implies longer forward-walking projec-
tion times are requred for larger lattices. For the lattice
sizes examined here the projection time is dominated by

The factor in front is simply the Marshall sign, that is,
the phase introduced by the unitary transformation of
Eq. (2). m(S) is the number of up spins on one of the
sublattices. ill(m) is given by

n!I!
iIi(m) =

(n +m +1)!
with n =(X/2) —m.

Clearly 1(Ns is a very simple wave function since it does
not depend at a11 on how the m up spins are arranged on
the sublattice. Variationally, neither the energy nor LRO
expectation values are changed (to order I /N) from the
state I Neel ). Nevertheless, it is a perfect singlet and has
some useful properties. The lowest-lying excited states of
the Hamiltonian [Eq. (1)] are states with nonzero total
spin angular momentum (i.e., triplet and higher). Since

PNs is rigorously orthogonal to those states the forward-
walking projection time is shorter. The improvement is
seen in Fig. l. In fact, a factor of L is gained in conver-
gence time since only the spin-wave-like excited states
[with (Ei Ec )/X -c /L w—here c is the spin-wave veloc-

ity] need to be projected out. The triplet and higher total
spin states have (E, E&&)/N- I/L . —As mentioned
above, the error in the forward-walking method increases
dramatically with increased projection time since more
"families" have died off. Unfortunately, the gain in
efficiency from the use of QNs was no more than a factor
of 2 over that from !(jG. The poor performance is prob-
ably due to the fact that l(Ns, while a perfect singlet, is a
relatively poor wave function, and so there is much fluc-
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tuation of the weights in Eq. (17). It is worthwhile to
note that since QNs has too much LRO and PG has too
little, one has a useful check of the algorithm in that they
converge to the same values, as Fig. 1 demonstrates for
L =8.

It would be useful both computationally and theoreti-
cally to develop more accurate singlet functions PT. It is
straightforward to apply the singlet projection operator P
to Manousakis' long-range wave function g„R, however I
have not found a way to evaluate ( SiPigLR) in a number
of operations less than the size of the Hilbert space
(-2 ). It is, however, possible to evaluate (S~RVB)
in 0(N ) operations where iRVB) is the nearest-
neighbor resonating valence bond state and is a singlet. '

The evaluation of (SiRVB) is equivalent to a dimer
counting problem that may be performed via a Pfafian
technique (in other words, it is equivalent to evaluating
the determinant of an N X N matrix that depends on I).
The forward-walking measurements may be spaced at in-
tervals -N generations (or more) and so the computation
of (S~RVB) may not be too costly. This possibility is
presently being explored. Finally, it would be interesting
to explore whether the long-ranged RVB wave functions
may be implemented. These functions have been shown
to yield the most accurate variational representation of
the ground state to date. '

V. ANALYSIS OF RESULTS

The staggered magnetization from the forward-walking
calculations are presented in Table I. I note that the
value for the 4X 6 lattice is in agreement with the recent-
ly corrected diagonalization result of Dagotto and
Moreo. The 4X6 result in Table I is close to the aver-
age of the 4X4 and 6X6 values, which is quite reason-
able. ' What now remains is to extrapolate the data in
Table I to the thermodynamic limit.

By mapping the long-wavelength properties of quan-
tum antiferromag nets onto the nonlinear o. model
(presumably correct when long-range order does exist),
Neuberger and Ziman have derived a result for the
leading finite-size correction of the staggered magnetiza-
tion,

EL(S) Eo 1.438c 1 S(S+1)
L3 2y L4

Neuberger and Ziman's result is @=I/cy. In Eq. (22) S
denotes the total spin of the system, and reflects the well-
known fact that the absolute ground state is a perfect
singlet. c is the spin-wave velocity and y is the uniform
(or perpendicular) susceptibility.

By performing GFMC calculations of the energy for
various L and S I have extracted c and y and find that
~=9.20+0.26. The details of the computation will be
published elsewhere. The calculation of the energy does
not involve forward walking and so in general the statis-
ticla error is smaller than for (mL ) . The use of the con-
straint from Eq. (21) reduces the statistical error in the
extrapolation L ~ ~ by at least a factor of 10 because it
provides information about very large systems. The in-
tercept of the fit, m ~, is thus not as free to fluctuate as it
would without the constraint. A least-squares fit of (mLt )

to the form A +B/L+C/L along with the constraint
yields m =0.3075+0.0025. The fit is plotted in Fig. 2
along with the modified spin-wave results and exact re-
sults for small lattices. The value I have found is con-
sistent with the recent series expansion results of Singh
and Huse (0.303+0.007) and of Zheng, Oitmaa, and Ha-
mer (0.307+0.001).

The modified spin-wave theory (MSWT) of Arovas and
Auerbach, ' Takahashi, and Hirsch and Tang' is the

I I I I I I I I I I I I I I I I I I I I

0.5 —L~~ Extrapolation of mt

of) various lattice sums and is a function of the aspect ra-
tio. For L XL lattices the result is a=0.6208. ~ is re-
lated to the finite-size dependence of the ground-state and
higher spin excitation energies via,

(mL ) =(m ) I+I~—+a +a (lnL )

L2 (21) 0.4

where m is the L ~~ limit of the finite system ground-
state value mi. a is determined from (the large L limit

TABLE I. Results of the forward-walking Green's function
Monte Carlo staggered magnetization m for the spin- —',
square-lattice Heisenberg antiferromagnet.

I .I I I I I I I I I I I I I I I I I I I0 A
~ LA

0.00 0.05 0.10 0.15 0.80 0.25
1 L

Lattice

4X6
6x6
8X8

10X10
12X12

m

0.4841+0.0008
0.4581+0.0002
0.420+0.001
0.397+0.003
0.378+0.014

FIG. 2. Extrapolation of the staggered magnetization mt to
the thermodynamic limit. Circles are exact diagonalization re-
sults for small lattices. The dotted curve is the result of the
modified spin-wave theory. The solid curve is the least-squares
quadratic fit to the Green's-function Monte Carlo results of this
paper. In these units the classical Neel state has m
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usual second-order spin-wave calculation except that a
coupling of the k=O magnons to a staggered field is
used to restore known symmetries of the problem, in par-
ticular, (M, ) =0. What results is a remarkably accurate
theory forPnite lattices and is, in fact, exact for systems
up to N =8 sites. As N~ ~ the MSWT reproduces the
standard second-order spin-wave results. For lattices
sizes in the range 16 & N & 30 Hirsch and Tang observed
that the MSWT yielded values of m about 1% lower
than the exact diagonalization results. The value I find
for L =6 (N =36) also deviates from the MSWT value by
about the same amount. Hirsch and Tang speculated'
that the small difference would persist in the thermo-
dynamic limit. The value of m for L = ~ that I have
derived is consistent with their prediction.

Fitting the known L =4 value and the data in Table I
to the form A +8/L + C/L leads to a poor fit (y —15).
This result suggests the significance of higher-order
terms, at least for L ~4. Fitting the data with an addi-
tional term D/L allows one to compute a rough esti-
mate of the magnitude of the higher-order corrections.
Roughly, the result is D =0.2. Thus, the D/L term is
evidently quite significant for L =2 and so brings into
question the validity (at least as far as quantitative predic-
tions are concerned) of extrapolations that set D =0
and include data with L =2—4.

I have obtained quite accurate values for the
6X6 lattice: mt=0. 4581(2), Eo= —0.678872(8), and

E, = —0.670878(10), where the number in parentheses
denotes the error in the last digit(s). Eo and E, are the
ground-state energies per site in the singlet and triplet
sectors, respectively. The 6X6 lattice may be exactly di-
agonalized soon by other workers and so these values
should provide useful checks. With an accurate 6X6 re-
sult in hand one may examine how it may affect the ex-
trapolation of the exact diagonalization values to N = ~.
The extrapolation of the exact diagonalization data (with
4 N 30) to N = ~ tends to give a value of the stag-
gered magnetization that is too low: m =0.25+0.03.
I have found that the inclusion of Lin's N=32 value
and my own N =36 (L =6) GFMC result does not im-

prove the situation much at all. I believe the reason the
exact diagonalization data lead to a small value for m is
that the nons uare lattices (that is, NWL XL) tend to
have larger m than do the perfect square lattices. By
this I mean the values for the nonsquare lattices (especial-
ly for 10&N ~ 20) lie mostly above the "smooth curve"
passing through the L XL values. The tendency is
displ~aed in Fig. 3. Considering (m ) as a function of
1/&N (the standard extrapolation technique ), one sees
that the large values for the nonsquare lattices add nega-
tive curvature to the fit, which thereby lowers the N = ~
intercept. Using on1y the perfect square lattices
(L =2,4, 6) and fitting to 3 +8/L +C/L yields
m =0.297, which is in much better agreement with the
GFMC and the series expansion techniques. However,
given the conclusion of the previous paragraph that the
D/L term is significant, the good agreement is probably
fortuitous. Nevertheless, the trend is clear. It is possi-
ble that the lattice-shape-dependent 1/L coefficient Ia in

Eq. (22)] derived by Neuberger and Ziman would al-

0.5

0.4

0.3

mt

0.8

0.1
+- mt=0. 255

Q Q
I I

0.0
I I I I I I I I I l I I I I I I I I

0.1 0.8 0.3 0.4 0.5
L

FIG. 3. Extrapolation of (m I' to the thermodynamic limit

using small lattices only. I =6 is the present GFMC result,
while the smaller system sizes are from exact diagonalization.
The dotted curve is a quadratic fit to all of these system sizes,
while the solid curve is a fit to the perfect square lattices
(L =2,4, 6) only. The former extrapolates to m =0.255 and the
latter to m =0.297. The intercept from the larger lattice
GFMC simulations is m =0.3085 (see Fig. 2j.
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leviate the problems encountered in using the nonsquare
lattices. However, since the 0 (1/L ) contribution is fair-
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In summary, I have reported unbiased GFMC stag-
gered magnetization data for the square-lattice spin- —,

'

Heisenberg antiferromagnet on lattices ranging from
L =6 to 12. The extrapolation of these data to L = ~ in-

dicates that there is long-range antiferromagnetic order
in the ground state, thereby confirming the conclusions of
previous numerical treatments. GFMC estimations of
the spin-wave velocity and uniform susceptibility have
been used to constrain the finite-size fit and lead to an ac-
curate value for the staggered magnetization, with
m =0.3075+0.0025. This value is slightly above the
second-order spin-wave theory value of mswT =0.3034.
Although it may be quite diScult to compute, it would
be interesting to see whether the prediction of third-order
spin-wave theory moves closer to the "exact" numerical
results or moves away indicating, perhaps, that the spin-
wave series is actually asymptotic.

Note added in proof After this work was .completed, I
received work prior to publication by H. J. Schulz and T.
A. L. Ziman in whch they have diagonalized exactly the
6X6 lattice Their results for Eo, E&„and m are in

agreement with the values presented in this paper.
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APPENDIX

In this appendix I present a heuristic argument on how
the statistical error cr (for a fixed amount of computing
time) of the staggered magnetization m should depend
on system size in the forward-walking algorithm.

Suppose a simulation of an L XL lattice is performed
for N,„generations with a base population of N, walk-
ers. As mentioend in Sec. II, the computer time required
to do this is independent of L. (If this were not the case,
say by the use of a complicated gG or PT, a factor to take
account of the extra cost must be included in o .) If
each walker at each generation were statistically indepen-
dent from all others then o would be o „/(NN sN ,p).p
o„ is the mean-square deviation with a factor 1/N ex-
tracted. The factor 1/N is from the self averaging that
usually occurs for intensive thermodynamic quantities
such as m t. Due to the gap structure in the spectrum for
finite systems, there should be an autocorrelation time
r-1/gap-L . r is also the time required to project the
trial state into the ground state via forward walking. Be-

cause of the autocorrelation only -Ns, „/r of the genera-
tions are "independent. " At least for the system studied
here, and quite possibly generally, it has been shown
that the number of distinct families (a family is the set of
walkers descended from the same predecessor) is very
nearly inversely proportional to the generation time. So
during a fluctuation lasting of length ~ a walker passes
the fluctuation on to its successors. Hence the number of
independent walkers at any given time is really -N o /~
(since the family basically "shares" the fluctuation). Fi-
nally, the forward walk suffers from diminished statistics
due to the death of families (in addition to that described
in the previous sentence) and an additional factor of r
must be included in o . Thus,

2 1 3 10

NN N
r -L /Nse~ Npop

gen pop

or o. -L . For a quantity that does not suffer from
the forward-walk error enhancement (such as the energy)
the error scales as L, due to the removal of one factor of
~. These forms fit the observed errors for L =4—12 very
well. The rapid decrease of the number of independent
observations N;„d with increasing system size suggests
that great care should be exercised in the interpretation
of simulation results, as they may quickly become mean-
ingless (i.e., biased) when N;„d is not sufficiently large.
The forward-walking algorithm yields good results for
the HAF, and so it seems likely that it should be even
more efficient for problems with a "larger" gap, for exam-
ple, anisotropic systems. Work along these lines is
presently underway.
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