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Longitudinal-acoustic-phonon softening in VS, LaS, and CeSe
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The nonorthogonal tight-binding method of Varma and Weber is used to calculate the phonon
spectra of YS, LaS, and CeSe, which exhibit strong anomalies in the longitudinal-acoustic branch,
especially near the L point, where it crosses the transverse ones. The latter feature is found to arise
from metal-metal interactions, which have their origin in the predominantly metal-derived electronic
energy bands near the I' point at the Fermi energy. With the addition of six Born-von Karman force
constants to model the short-range interactions, excellent agreement is obtained between theory and
experiment in all three compounds.

I. INTRODUCTION

About a decade ago Weber studied the phonon anoma-
lies in the refractory compounds (e.g. , NbC, VN),
which crystallize in the rocksalt structure, by using the
nonorthogonal tight-binding (NTB) method presented a
couple of years earlier by Varma et ol. He successfully
calculated the longitudinal-acoustic (LA), phonon soften-
ings in NbC, and predicted changes in phonon anoma-
lies on going from NbC to NbN (Ref. 2) or VN (Ref. 3),
which were simultaneously confirmed by neutron scatter-
ing experiments. On going from NbC to VN (or NbN),
the anomaly at the L point (0.5, 0.5, 0.5) (expressed in
reciprocal-lattice units), becomes much weaker, and the
softening at wave vector (0.65, 0.0, 0.0) becomes broader
and moves to the X point (1.0, 0.0, 0.0). These changes
could be understood from differences in the underlying
electronic structure of NbC and NbN or VN, which are
mainly due to the addition of one more valence electrons
in the nitrides. At about the same time neutron diffrac-
tion experiments revealed that YS, which also crystal-
lizes in the rocksalt structure, exhibited similar phonon
anomalies, 4 namely, softening of the LA, branches. Later
LaS was found to show the same features as YS, and
more recently the same anomalies have been found in
CeSe. The main difference between the phonon spectra
of NbC and those of these monochalcogenides is that at
the I point, the softening has become so strong that the

LA branch crosses the transverse acoustic (TA) branches.
Further the LA anomaly at wave vector (0.65, 0.0, 0.0) in
NbC has become broader and moved to the X point. As
the underlying electronic structure of these chalcogenides
is similar to that of the refractory compounds we decided
to study the anomalies using the NTB method.

II. METHOD OF CALCULATION

The electronic charge redistribution due to a distortion
of the lattice can be viewed as a two-step process: the
rigid motion of the valence shell with the ion core (neu-
tral pseudoatom in an elemental solid), plus a deforma-
tion of the valence-electron cloud in order to adjust to the
change in the local environment caused by the distortion.
The effect of the first step on the total energy of the crys-
tal can be modeled by a few short-range force constants,
to give a smooth contribution to the dynamical matrix,
D "~, which represents the unrelaxed motion of the ion
cores. The second step involves the polarization of the
valence-electron system, i.e. , virtual transitions between
occupied and empty valence band states induced by the
change in potential due to the distortion. It is this term
which is responsible for the anomalies and, as shown in
detail in Refs. 1 and 7, in the NTB approach its contri-
bution to the dynamical matrix, at wave vector g takes
the form

k&pep I
ks =k+q

fk, p fk, /4

gk', p';k, p h(ek p ek p )
ek ~

—eg p

where the superscript (2) indicates that we have only gone to second order in the relevant perturbation, i.e. , the
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valence part of the one-electron term in the Hamiltonian, which is linear in the displacements. K, ~ are sublattice
indices (e.g. , Y or S), n, n' are Cartesian indices, p, (((' valence band indices, ek „ is the energy of the pth valence band
at k, fk & is the corresponding Fermi function, and gk~. k, „, the electron-ion form factor or electron-phonon matrix
element. We also include a cutoff factor or switch function, h(e), which is 1 for ~e~ ( 1.2 eV and vanishes otherwise,
whose effect is discussed in the next section. Neglecting h(e) for the moment, Eq. (1) has a simple interpretation.
The first factor on the right-hand side of Eq. (1) is the matrix element associated with the destruction of the phonon
of wave vector q and creation of an electron-hole pair, under momentum conservation. The second factor is just the
(k, p;k, p ) contribution to the bare electronic susceptibility or polarizability of the valence electrons, g(((q), which
represents the propagation of this electron-hole pair. The electronic excitation then collapses and under momentum
conservation recreating the phonon, as described by the third factor. By including this term in the full dynamical
matrix we dress the bare phonons, represented by Df '"'l, so as to allow for the effects due to the polarization of the
valence-electron system by the phonon. In the NTB method the electron-phonon matrix elements have the form

gk, p;k', p' ) ~~rn; ,k~(7r, m, s', m';k' Ue, r 7r, rn, r', rn';k r', r) r' rn';k', P' (2)

where m, m' are orbital indices, and A„.k „ the (m, aj
coef%cient of the pth eigenvector at k. The three matrices

are given by

Ck

~I', m, p'I, mI;kI

—ik R,„,I„I
V aPitem t'X'mI —C V a Sly;m, l"e'm ')

t —lI

with c = (ek & + ek & )/2. H(s„, , ( „,S(„„,( „„, are
the transfer and overlap integrals between the (m, (c) or-
bital in the 1th unit cell and the {m', K') orbital in the l'th
unit cell, and R~„ II„I —R~„—R~I„I, where the vectors on
the right-hand side define the equilibrium positions of the
atoms. In Eqs. (2) and (3) the electron-phonon matrix el-

ements have been written in terms of one-electron proper-
ties, i.e. , the orbital coefficients of the equilibrium Bloch
waves and the equilibrium, nonorthogonal tight-binding
integrals and their derivatives. Neglecting crystal-field
terms and using the Slater-Koster two-center representa-
tion for the integrals, we can write

where U represents either a transfer or overlap integral,
and q, p, r the direction cosines from /r to t'K'. This form
means that V; contains the full radial dependence of V,
while f represents the angular part. This enables us to
write the gradients in Eq. (3) as the sum of angular and
radial derivatives. The former involve two-center inte-
grals and trigonometric functions, and the latter can be
expressed as sums of derivatives of two-center integrals.
The derivatives of the two-center integrals are obtained
by fitting the two-center integrals obtained from self-
consistent calculations at compressed and expanded lat-

I I

tice constants to the form U;
' (R) = V, c' exp(o' R),

so the logarithmic derivative with respect to R gives the
inverse decay length, o, . Except for the neglect of a possi-
ble q dependence of the gradients, this method of obtain-
ing them fully accounts for screening and the variation
in the exchange-correlation energy with the distortion,
so the electron-phonon matrix elements in Eq. (1) are

8 DOS L K X

FIG. 1. YS energy bands along three high-symmetry di-

rections and the density of states (leftmost panel). Energies
in eV, density of states for both spins per unit cell per eV,
the Fermi energy is at 0.0 eV. The S 38 band is at —15 eV.

fully screened. As we have mentioned, D ~ can be for-
mally written as ggog, where g is the screened electron-
ion form factor. The overscreening with respect to the
random phase approximation (RPA), which has the form

ggogo, where go is now the bare electron-ion form factor,
is exactly compensated by a term involving the second
derivative of the Hartree potential, which combined with
the Coulomb interaction between the ion cores yields
the dominant contribution to the short-ranged force con-
stants mentioned at the beginning of this section.

Ideally, the energy bands of the system under con-
sideration and the corresponding set of two-center in-
tegrals should be obtainable from one and the same
self-consistent band-structure calculation. Using the op-
timized linear combination of atomic orbitals (LCAO)
code developed by one of us, we observed that ma-
trix elements out to third nearest-neighbor-like and un-

like atoms had to be included in order to obtain well-

converged eigenvalues. The large number of parameters
involved makes a direct implementation of the Varma-
Weber formalism impractical ~ Therefore we obtained the
two-center integrals from a fit of the bands to an NTB
minimal basis set (d orbitals on the metal and s and p
orbitals on the nonmetal), where only nearest-neighbor
chalcogen-chalcogen, metal-metal and chalcogen-metal
interactions were kept. This means that in particular
that the cerium 4f electron in CeSe is considered as be-
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TABLE I. The NTB parameters and their logarithmic derivatives for (A) YS, (B) LaS, and (C) CeSe. The rows are (i)
the transfer integrals, (ii) the overlap integrals, (iii) the logarithmic derivative of the transfer integrals, (iv) the logarithmic
derivative of the overlap integrals. Transfer integrals are given in eV. We were not able to obtain reasonable values for some
of the logarithmic derivatives, so they were set equal to zero. The weighted rms errors of the fits are (A) 0.14 eV, (B) 0.13 eV,
and (C) 0.11 eV, and the maximum errors (at the I. point) are (A) 0.39 eV, (B) 0.35 eV, and (C) 0.40 eV.

(i)
(i")
(iii)
(iv)

(i)
(H)
(iii)
(iv)

(i)
(U)
(iii)
(iv)

SSO'

—0.50
0.03
0.00
0.00

—0.47
0.03
0.00
0.00

—0.64
0.03
0.00
0.00

0.17
—0.01
—1.33
—1.05

0.16
—0.02
—0.76
—0.78

0.17
—0.01
—1.00
0.00

0.44
0.01

—0.53
—0.09

0.34
0.02

—0.79
0.00

0.43
0.01

—0.39
—0.28

—0.15
0.01
0.00
0.00

—0.15
0.01

—1.00
0.00

—0.16
0.01
0.00
0.00

d dO'

(A)
—0.71
0.11

—0.71
—0.30

(B)
—0.64
0.13

—0.62
—0.37

(C)
—0.73
0.11

—0.47
—0.40

d der

0.50
—0.02
—0.78
—0.36

0.54
—0.05
—0.67
—0.40

0.52
—0.02
—0.63
—0.41

ddb

—0.07
0.00

—0.86
0.00

—0.06
0.03

—0.82
0.00

—0.07
0.00

—0.70
0.00

—1.93
0.20

—0.50
—0.29

—1.74
0.21

—0.37
—0.19

—1.94
0.20

—0.35
—0.23

—1.16
0.16

—0.40
—0.25

—1.03
0.10

—0.53
—0.32

—1.14
0.18

—0.39
—0.29

2.03
—0.15
—0.51
—0.30

1.91
—0.16
—0.40
—0.30

2.06
—0.11
—0.43
—0.42

ing part of the core, an assumption justified by the ab-
sence of f peaks in the 3d core-level x-ray photoemis-
sion spectrum. ii The LCAO band-structure calculations
were nonrelativistic for YS (a = 5.49 A.) and semirela-
tivistic (all relativistic eff'ects included, except spin-orbit
coupling) for LaS (a = 5.86 A) and CeSe (a = 5.99
A.), and the von Barth —Hedin form for the local-density
approximation to the exchange-correlation potential was
used. In Fig. 1 we show the energy bands of YS in three
symmetry directions, and the density of states in the left-
most panel. They agree reasonably well with older self-
consistent calculations. We give the resulting NTB pa-
rameters for the three compounds in Table I.

III. RESULTS

The calculation of D was performed using an
adapted version of the tetrahedron method, which en-
abled us to only consider virtual electron-hole excitations
of less than a certain energy. By putting g = 1 in Eq. (1)
we can calculate the bare susceptibility, yo(q). In NbC
Gupta and Freeman, i4 and for YS Gupta, i5 found that
the intraband part of yo(q) had peaks near the position of
the anomalies, reflecting nesting of portions of the Fermi
surface. However, calculations on Nb-Mo alloys have
shown that yo(q) usually only plays a secondary role in

determining the q dependence of D; much more signif-
icant is the q dependence of the electron-phonon matrix
elements. For instance, it can be seen from Eqs. (1)—(3),
that the intraband contribution to D~ ~(q) vanishes as
q ~ 0, while the intraband part of yo(q) —+ N(Ef), the
electronic density of states at the Fermi level. We found
that only in the I'I. direction is go(q) at all important in

determining the g dependence of D~, a point we return
to later. In Fig. 2 the dashed line is yo(q) for CeSe in

the I'X direction. For CeSe the total intraband bare sus-
ceptibility at qL, ——(0.5, 0.5, 0.5) is 2.1 eV, i.e. , more
than twice the intraband part of go(0), which is a much
larger increase than usually found.

We now consider the effects of h(e), see Eq. (1). The
other two curves in Fig. 2 show ~D(, c, (q), i..e. , the

D contribution to the LA branch. The top solid line in-
cludes all excitations within the three bands which cross
the Fermi level, while for the bottom solid line we only
considered the virtual excitations of less than 1.2 eV.
The two curves are essentially related by a shift, and
on including more interband transitions, i.e. , out of the
nonmetal p complex into the metal d complex, the shift
becomes larger but the form of D hardly changes. As
the full dynamical matrix, D(q), is the sum of D~ "'~(q)
and D( )(q), we can avoid the subtraction of large num-
bers in setting up D(q) by keeping the size of the q ~ 0
limit of D ~ as small as possible. Therefore we have
taken h(e) = 0 for ~e~ ) 1.2 eV. [This choice for the cut-
off is based on a balance between the number of allowed

FIG. 2. The I'X direction in CeSe, dashed line: Xo(q) for
CeSe; solid lines: D~z ~ c, (q) (see tex—t for details).
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(a b b~
b a 6

(b b aJ
(4)

where a and b result from sununing D( ")(q) and
D (q). The resulting three acoustic frequencies are
proportional to ga+ 2b (LA) and a doubly degener-
ate ga —b (TA). Normally b is positive, so the LA fre-
quency is larger than the TA frequencies. However, for
the chalcogenides D( )(q), as we have explained above,
becomes sufficiently negative as q —+ qL, , for b to change
sign, leading to the observed crossing of the TA branches
by the LA branch.

On the other hand the other two anomalies have es-
sentially the same origin as in NbC. The anomalies near
the X point in YS, and (0.65, 0.0, 0.0) in NbC, are both
driven by the increase in p character of the electron bands
near the X point, which leads to enhanced couplings
due to V'pdcr interactions at the wave vectors of the
anomalies, see Ref. 7. In contrast to the I point, near
the X point the character of the electronic bands and
their dispersion is similar in both NbC and the chalco-
genides. Finally, even though in YS we overestimate the
strength of the LA anomaly in the I'I&X direction, near

q = (0.6, 0.6, 0.0) we do find the same trend as experi-
ment; i.e. , the anomaly becomes weaker on going from
YS to LaS to CeSe.

!V.SUMMARY

In summary, we have found that the NTB method of
Varma and Weber gives a good description of the soften-
ing of the LA branches in YS, LaS, and CeSe. By con-
sidering only low-energy electronic excitations we concen-
trate on calculating the anomalous part of the dynamical
matrix, which arises from the valence electrons' response
to the phonon distortion, while the normal smooth part
is modeled by six short-range springs. While the I'X
and I'KX anomalies are basically the same as in the re-
fractory compounds, the L-point anomaly in the chalco-
genides is found to be stronger because of changes in
the electronic structure near the zone center, which en-
hances D( )(q), for q ql. . In this case both the bare
susceptibility and the electron-phonon matrix elements
are important in determining the strength of the valence-
electron response to the phonon, and thus the degree of
softening.
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