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Lattice dynamics and Raman spectra of isotopically mixed diamond
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We present coherent-potential-approximation (CPA) calculations and first- and second-order Raman

spectra for diamonds with varying concentrations of ' C and ' C. The calculations are based on the

valence-force model of Tubino, Piseri, and Zerbi [J. Chem. Phys. 56, 1022 (1972)]. Contrary to previous

claims, we find that this model does not give a sharp peak in the density of states (DOS) near the Raman

mode. Alternative dispersion curves that do give such a peak are discussed. Raman results are reported

for high-quality, single-crystal synthetic diamonds with isotopic compositions ranging from nearly pure
' C to nearly pure ' C. A measurable deviation in the Raman frequency away from a simple M
("virtual-crystal" ) dependence and an observable broadening of the first- and second-order spectra are

qualitatively consistent with CPA predictions for the effects of isotopic disorder. Quantitative agree-

ment between theory and experiment is achieved only if the reference DOS contains the above-

mentioned peak. This supports the interpretation of the controversial second-order Raman peak in nat-

urally abundant diamond (1.1 at. % "C) at 2667 cm ' as a DOS effect. At all compositions, the effects of
isotopic disorder are relatively weak because of the small mass difference between ' C and ' C. For 1.1
at. % ' C, the maximum broadening predicted in the CPA is less than 1 cm ', nearly two orders of mag-

nitude smaller than a previous estimate. For the lowest-frequency modes most relevant to the thermal

conductivity, the CPA scattering rate reduces to the usual co dependence first derived by Klemens for
phonon-isotope scattering. Using Callaway's theory, we show that this term can easily account for the

recently observed 50% enhancement in room-temperature thermal conductivity upon elimination of ' C
impurities, provided that sufficient normal scattering also occurs.

I. INTRODUCTION

Carbon has two stable isotopes, ' C and ' C, with natu-
ral abundances of 98.9 and 1.1 at. %, respectively. Natu-
ral diamond may thus be viewed as a random A, „8„
crystalline alloy (x =0.011) in which the A =' C and
B=' C constituents differ only in mass. Recently, work-
ers at General Electric' (GE) have succeeded in growing
large, high-quality single-crystal diamonds across the en-
tire range of isotopic compositions from x =0 to 1. The
subsequent discovery that the room-temperature
thermal conductivity of nearly pure ' C diamond
(x =0.0007) is over 50% greater than that of natural dia-
mond has generated much scientific and technological in-
terest. To understand this effect quantitatively, it is first
necessary to understand how the phonon spectrum of di-
amond is affected by variations in isotopic composition.
In a recent paper (hereafter referred to as I), we began to
address this issue with use of a combined theoretical and
experimental approach based on the coherent-potential
approximation (CPA) and Raman spectroscopy. Here
we give a more complete account of this work and discuss
its implications for the thermal-conductivity behavior of
diamond at low ' C concentrations.

Studies of the vibrational and thermal properties of di-
amond have been of great historical importance in solid-
state physics. Implicit in almost all previous studies of

these properties has been the assumption of an ordered
crystal with identical atoms of average mass M ( = 12.011
amu for natural diamond). For most purposes this
"virtual-crystal approximation" (VGA) is entirely ade-
quate. In addition to being an excellent approximation
for natural diamond, the VCA also describes the princi-
pal trend in phonon frequencies as the isotopic composi-
tion is varied: u~M

The VCA does not include, however, any intrinsic
broadening due to isotopic disorder. In a recent attempt
to explain the thermal-conductivity enhancement in near-
ly pure ' C diamond, Bray and Anthony suggested that
this broadening might be as large as 50 cm ' in natural
diamond. This estimate was based on an extremely crude
model which gives only an upper bound on the broaden-
ing. More reliable methods for dealing with this classic
problem of substitutional mass disorder are well known.
The present work is based on the phonon CPA of Tay-
lor. This method is expected to be extremely accurate
for diamond since the scattering due to mass fluctuations
is not very strong (hM/M «1). The CPA formalism is
computationally simple and involves no adjustable pa-
rameters once the VCA density of states (DOS) is
specified. A previous application of this approach to iso-
topically mixed Ge has been described by Fuchs et al. '

The present application to diamond is based on the
valence-force parametrization of Tubino, Piseri, and Zer-
bi" (TPZ).
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To test this approach, we compare our CPA results to
measurements of the first- and second-order Raman spec-
tra of high-quality, single-crystal, GE synthetic diamonds
with varying ' C concentrations. In I we showed that the
frequency of the first-order Raman mode varies non-
linearly with composition and that its width varies
asymmetrically, reaching a maximum at about 70 at. %
' C. We further showed that both of these effects are
qualitatively consistent with CPA calculations for the
TPZ model; quantitatively, however, such calculations
account for only about half of the observed broadening.
This discrepancy was attributed in I to the failure of the
TPZ model to give a peak in the DOS above the Raman
mode. Tubino and Birman' has claimed that the TPZ
model does give such a peak, but our results contradict
this. The present work examines this point in more detail
and concludes that a reliable VCA DOS for diamond
should contain a peak above the Raman mode. CPA re-
sults obtained by artificially adding such a peak to the
VCA DOS give much better agreement with the experi-
mentally observed widths and shapes of the first-order
Raman line. Such calculations are also consistent with
measured second-order Raman spectra, which show a
sharp peak near the top of the spectrum for dilute ' C or
' C concentrations, ' ' but not in more concentrated "al-
loys. " The origin of this second-order Raman peak in di-
arnond has long been controversial. ' ' ' The present
analysis strongly supports its interpretation as a simple
DOS effect. The disorder-induced broadening in the
CPA is sufficient to make this peak effectively unobserv-
able at intermediate compositions.

For the natural ' C abundance of 1.1 at. 'Fo, the CPA
yields a maximum disorder-induced broadening nearly
two orders of magnitude smaller than that predicted by
Bray and Anthony. It follows that the disorder-
enhanced umklapp-scattering mechanism proposed by
those authors is unlikely to be responsible for the 50% in-
crease in room-temperature thermal conductivity as the
' C concentration is reduced from 1.1 to 0.07 at. /o. At
frequencies below 1000 cm ', the present CPA results at
all compositions are indistinguishable from those of
weak-scattering perturbation theory. Below 200 cm
the CPA relaxation time reduces to the usual co behav-
ior characteristics of Rayleigh scattering with a prefac-
tor identical to that calcu1ated by Klemens for phonon-
isotope scattering. The present results are thus entirely
consistent with the known sects of isotopic disorder on the
thermal conductivity. In view of the limited data
available, ' it is difficult to predict the quantitative
behavior of the thermal conductivity at different compo-
sitions with any degree of confidence. %'e limit ourselves
here to demonstrating that a 50% increase (in thermal
conductivity) upon elimination of the natural abundance
of ' C is indeed possible at room temperature given the
expected reduction in phonon-isotope scattering, provided
that sufhcient normal scattering also occurs. (Note that
such scattering contributes to the thermal resistance only
indirectly by altering the phonon distribution. '

)

Section II of this paper describes the CPA forlnalism
for diamond and the VCA reference spectra. Section III
presents the first- and second-order Raman measure-

ments and related CPA results. Additional CPA predic-
tions and their implications for the composition depen-
dence of the thermal conductivity are discussed in Sec.
IV.

II. THEORY

where N is the number of unit cells in a normalization
volume.

The phonon CPA is a multiple-scattering theory in

which the true disordered system is replaced by a self-
consistent effective medium. ' This medium is charac-
terized by a dimensionless self-energy e(co), which
represents a complex "mass defect" relative to M at fre-

quency co. Self-consistency is imposed by the condition
that the average scattering from a single site in the
effective medium vanish. It is convenient to express this
condition as

x(1 x)(AM) ai —F(co )

1+et) [(1 2x)b,M+Me(c—o))F(co )
(2)

where AM is the 1-amu mass difference between ' C and
' C and F(co ) is the site Green's function:

F(co )=(6NM) 'g G, (q, co )

1

y
gvc~(rt)d 1

M o co [1—e(a~)] —rt
(3)

The second line of Eq. (3) follows from the definition of
the q-space Green's function

1
G)(q, co )=

co [1—e(co)]—(co~ )
(4)

whose negative imaginary part defines the CPA spectral
function. With matrix element effects neglected, this
spectral function is proportional to the Raman- and

A. Coherent-potential-approximation formalism

We assume that for any ' C concentration x, the ' C
and ' C isotopes are randomly distributed on an ideal dia-
mond lattice. Since interatomic interactions are primari-
ly chemical in nature, we further assume that the dia-
mond force constants are independent of isotopic mass.
This latter assumption is much more reliable here than it
is in applications of the phonon CPA to chemically disor-
dered alloys. The final simplification we make is to con-
sider a purely harmonic model and neglect, except where
indicated, the recently observed fractional change in the
lattice constant from ' C to ' C diamond of —1.5X10
A more complete theory of isotopically mixed diamond
would include both anharmonicity and disorder on an
equal footing, but that is not attempted here.

Within the VCA each lattice site is assumed to be oc-
cupied by an identical atom of average mass M=12+x
(in amu). Suppressing the x index, we denote the VCA
phonon frequencies at wave vector q by co, where j is a
branch index, and the VCA DOS (normalized to unity) as

gvc~(co) =(6N) ' g 5(co —co ),
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neutron-scattering cross sections of interest below. In
the absence of disorder, —ImG (q, co ) reduces to a 5
function at co~. To a good approximation, ' the real and
imaginary parts of s(co) shift the spectral peak to a fre-
quency co~ =co~.[1—Res(co )] ' and broaden it to a
full width at half maximum (FWHM) of —co -Ims(co . ).
The shift and broadening are related by the Kramers-
Kronig relation '

2 y~ rllm[E(q)]dg
rc 0 rl co

The normalized one-phonon CPA DOS is given by '
T

00

g (co) = — J gvc~(g)drl Im
7TN 0 co [1—Z(co)] —rl

The CPA self-energy s(co) is formally independent of q.
An implicit q dependence does arise, however, through
Eq. (4). The lack of an explicit q dependence is a conse-
quence of the single-site nature of the CPA. In the limits
of weak scattering (bM/M «1) and/or dilute concen-
trations (both of which are approximately met for the
natural abundance of ' C), the CPA self-energy becomes
exact and the q independence is rigorous. In other re-
gimes the CPA is a highly successful interpolation
scheme and q-dependent corrections should only appear
at relatively high order in the scattering strength.

It will be useful in Sec. IV to consider the weak-
scattering limit explicitly. Equation (2) in this limit
reduces to

Ms(co)=x(l x)(bM) co F—vc~(co ),
where Fvc~(co ) is the VCA site Green's function, ob-
tained by setting s(co) =0 in Eq. (3). Using the fact that

ImFvcA(co )
—'Irgvc~(co)/(2Mco),

B. Virtual-crystal dispersion curves and densities of states

The above formalism was implemented in I using the
TPZ valence-force model. " This model provides an ex-
cellent fit to experimental phonon frequencies for natural
diamond, which have been determined by inelastic neu-
tron scattering. ' The TPZ parametrization consists of
six valence-force parameters, including a fifth-neighbor,
coplanar angle-angle interaction first introduced by
McMurry et al. We have found it convenient to trans-
form these parameters to a Born —von Karman descrip-
tion using the results of Tubino and Piseri. The dynam-
ical matrix is then as specified by Herman. The result-
ing dispersion curves for a VCA description of natural di-
amond are shown in Fig. 1. The Rarnan mode corre-
sponds to the zone-center optic phonon, whose frequency
we denote as coLro(I ). The upper portion of the figure
shows an enlargement of the dispersion curves in the vi-
cinity of this mode. Note especially the slight increase in
the LO branch along the I -X direction which produces a
maximum phonon frequency 2.2 cm ' higher than
coLTo(I ). This characteristic feature of the TPZ model'
is difficult to verify experimentally because of the poor
resolution of neutron scattering at high frequencies. In
the other principal directions, the TPZ model predicts a
monotonic decrease in the frequencies of the LO and TO
branches away from I . All of the curves in Fig. 1, in-
cluding the fine structure near co„ro(I ), are in excellent
agreement with previously published results. "'

Figure 2 shows the VCA DOS calculated for the TPZ
model using the tetrahedron method and a mesh of over
5000 q points in the irreducible Brillouin zone. The inset
again shows an enlargement of the region near the Ra-
man mode. Figure 2 is in reasonable agreement with the

we obtain the perturbative "golden-rule" expression for
the FWHM broadening:

2
AM—colm'(co)= —x(1—x) co gvc~(co) .
M

1330

1200
E

LO

The full CPA equations (2) and (3) are easily solved nu-
merically by an iterative process beginning with the VCA
DOS. To speed up convergence, we take co to be com-
plex, perform the calculations o8' the real axis, and
analytically continue back to the real axis using the
method of Hass, Velicky, and Ehrenreich. Explicit
VCA dispersion relations are not required, and the VCA
DOS needs to be specified only at one composition. The
VCA scaling law cu ~M ' implies that

g (co)=R ' g (R ' co) (9)

O

800

400

X K

R gi2(g)dg
F(co )=

M o Rco [1—
Y.(co)]—g'

(10)

where R =(1+x/12) and g,2(co) is the DOS for pure ' C
diamond. We make use of this result in Eq. (3) and evalu-
ate the site Green's function at any composition as

FICx. l. Virtual-crystal dispersion curves for naturally abun-
dant diamond (1.1 at. % ' C) calculated from TPZ parameters.
Branches along I -X identified as to longitudinal (L) vs trans-
verse (T), acoustic (A) vs optic (0) character. Top shows en-
largement in vicinity of Raman mode.
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set in Fig. 2, and the M 1 curve goes to zero at cotro(I').
Both the M2 and M3 curves, however, exhibit peaks a
few cm ' above coLro(I ). The positions of these peaks

correspond to subsidiary maxima along principal direc-
tions in Fig. 3 that are not the absolute maxima of the
spectra.

It thus appears that the existence of a peak near the
top of the one-phonon DOS in diamond requires that the
LO branch increase along at least tao principal direc-
tions, not just one. This possibility was first suggested by
Uchinokura, Sekine, and Matsuura' and is consistent
with the recent tight-binding calculations of Wang Chan,
and Ho. ' An attractive consequence of this proposal is
that it accounts naturally for the few cm ' shift of the
observed second-order Raman peak' ' above twice
coLTo(I ); this shift was not accounted for in the results of
Tubino and Birman. ' Further evidence that the true
dispersion curves for diamond are closer to those of mod-
els M2 or M3 than M1 or "TPZ" will be presented in
Sec. III of this paper. We have already mentioned that it
would be difficult to verify this behavior directly by neu-

tron scattering because of the fine resolution required.
First-principles calculations for diamond do indicate a
slight increase in the LO-phonon frequency along I -X,
but similar calculations for other directions have yet to
be performed.

Although models M2 and M3 are useful for illustrative
purposes, neither of these models should be viewed as an
"improved" parametrization for diamond. The qualita-
tive changes near coL+Q(I ) in these models are accom-
panied by much more disruptive changes at lower fre-
quencies where the unmodified "TPZ" model is known to
be accurate. In principle, a new overall fit might allow
one to maintain the "TPZ" dispersion curves at low fre-
quencies while simultaneously "correcting" the behavior
near ~LTQ(I ). Since the CPA does not require explicit
dispersion curves, we have not attempted such a fit and
instead simply modify the VCA DOS directly. We do
this by adding to the "TPZ" DOS the artificial correction
shown in Fig. 5(a). The motivation for this particular
form of correction wi11 become more apparent from the

0ppp4 I ~ ~ ~ ~ I ~ ~ ~ ~ I

1200 1250 1300 1350

Frequency (cm ~)

FIG. 5. (a) Correction added to "TPZ" density of states for
pure "C diamond to introduce a peak above the Raman mode.
(b) Resulting reference density of states for the adjusted "TPZ"
model.

discussion of the second-order Raman spectrum in Sec.
IIIB. The correction vanishes below 1200 cm ', as does
its integral over frequency (which is required to maintain
normalization). The high-frequency portion of the result-
ing ' C reference DOS [g,2 in Eq. (10)) is shown in Fig.
5(b); we will refer to calculations based on this reference
as the adjusted "TPZ" model.

III. COMPARISON TO RAMAN DATA

A. First-order spectra

Natural diamond exhibits a single first-order Raman
peak at cotro(I )=1332.5 cm '. We know of only two
reports prior to our own work of Raman measurements
on single-crystal diamonds with other isotopic composi-
tions. Collins et al. cite an unpubHshed measurement
by Sato of a Raman frequency of 1282 cm ' for a 99-
at. % ' C diamond. Chrenko has presented more exten-
sive data across the entire composition range. Our own
measurements, which were discussed briefly in I, agree
well with both of these studies. Additional Raman data
on isotopically mixed polycrystalline diamond films ' wi11

not be considered here because of the numerous extrinsic
factors (e.g., stress, impurities) that can obscure the in-

trinsic composition dependence in such films.
The synthetic diamonds we examined were grown at

GE by a technique that has been described elsewhere. '
Raman spectra were measured on five crystals with ' C
concentrations x of 0.0007, 0.011, 0.344, 0.657, and
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0.9899. These same crystals had been characterized pre-
viously by x-ray diffraction and found to be of exception-
al crystal quality; their Bragg-peak widths are compara-
ble to those of good semiconductor crystals. The Raman
measurements were made at room temperature using the

0
5145-A excitation line of an argon-ion laser, a 1-m f /8
spectrometer, and a photomultiplier detector. The sam-
ples were mounted in a near-normal backseat tering
geometry with the axis of the objective lens normal to a
(100) crystal face. The system was calibrated against a
Hg vapor line and found to have an instrumental
linewidth (FWHM) of 1.8 cm '. Only unpolarized spec-
tra were recorded.

The measured frequencies and widths of the first-order
Raman lines are plotted in Fig. 6 along with the data of
Chrenko. Both sets of data indicate that the Raman
frequency varies nonlinearly with ' C concentration. The
deviation from linearity is approximately 5 cm ' near the
middle of the composition range. This is much larger
than the experimental uncertainties [about the size of the
data points in Fig. 6(a)] and should certainly be con-
sidered if the Raman frequency is to be used as a measure
of isotopic composition. The linear Raman variation as-
sumed in Ref. 41, for example, suggests that the x values
determined in that work may be in error by as much as
0.1.

Also shown in Fig. 6(a) are the VCA prediction (dotted
curve) and CPA results for both the pure (dashed curve)

1340

E
O

1320
O
C

1300

C
0
E
o 1280

and adjusted (solid curve) "TPZ" models. All of the cal-
culated frequencies include a small ad hoc correction to
account for the observed lattice contraction from ' C to
' C diamond. The "bowing" of the Raman frequency is
well reproduced by both CPA curves, but not by the
VCA. (The VCA curve does in fact bow slightly, but in
the wrong direction. ) We conclude that the bowing is a
direct consequence of the scattering of phonons due to
isotopic disorder. Since the Raman mode lies near the
top of the spectrum, it is repelled upward by disorder-
induced mixing with lower-lying modes. A similar non-
linear concentration dependence is observed in many oth-
er properties of disordered alloys (e.g., band gaps in semi-
conductors ).

The measured Raman linewidths [Fig. 6(b)] are larger
near the center of the composition range than near the
end points. The variation is not symmetric in x and
1 —x, and the maximum width occurs at approximately
70 at. % ' C. The CPA curves represent intrinsic contri-
butions to the Raman linewidth due to the disorder-
induced broadening of the zone-center optic mode. The
observed widths contain additional contributions due to
instrumental resolution (1.8 cm ' for our data) and
anharmonic decay. ' ' The anharmonic broadening of
the Raman line has been calculated for diamond to be
on the order of 1 cm ' at 300 K. Contributions other
than disorder thus account well for the observed widths
near x =0 and 1. Assuming that such contributions are
reasonably constant across the entire composition range,
we see that both CPA calculations account very well for
the qualitative trend in the data, including the peak near
x =0.7. The pure "TPZ" model underestimates the mag-
nitude of the variation, however, by about a factor of 2.
The adjusted "TPZ" model of Fig. 5 overcomes this
deficiency and yields quantitative as well as qualitative
agreement.

The larger broadening in the adjusted "TPZ" model re-
sults from the larger DOS available for scattering at the
shifted position of the Raman mode. The calculated
shifts in Fig. 6(a) are much less sensitive to the existence

8.0
I - (b)

40000

M
20000

. C,'

34.4%

4.0

0.0
0.0 0.2 0.4 0.6 0.8 1.0

L

O

30000—
M
C

c 15000

5.7% C

C Concentration

FIG. 6. Isotopic composition dependence of the (a) diamond
Raman frequency and (b) linewidth (FWHM). CPA results for
pure and adjusted "TPZ" models and VCA results in (a) shown
as dashed, solid, and dotted lines, respectively. Experimental
data as indicated. Chrenko's data are taken from Ref. 40.

0 I

1280 1300 1320 1340

Roman Shift (cm ~)

FIG. 7. First-order Raman spectra for a 34.4 at. % "C (top)
and a 65.7 at. % ' C (bottom) synthetic diamond.
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of a peak in the VCA DOS since the real part of s(co) is
determined by scattering over an extended frequency
range [cf. Eq. (5)]. Figure 6 thus provides strong support
for the assumption that the true VCA DOS for diamond
should contain a peak above coLTo(I ). Even more ap-

parent is the fact that the observed broadening of the Ra-
man line is completely inconsistent with the Raman mode
being the highest-frequency phonon in diamond (e.g., as
in model M 1 in Fig. 3). The calculated CPA broadening
in that case would be &&1 cm ' across the entire compo-
sition range since the shifted Raman mode would lie in a
region where the VCA DOS is zero. This is the situation
that occurs in Ge; the width of the Ge Raman line is
unaFected by isotopic enrichment' (from the natural
abundances of 22 at. % Ge, 28 at. % Ge, 8 at. % Ge,
35 at. % Ge, and 7 at. % Ge to nearly pure Ge), in
strong contrast to the behavior in Fig. 6(b).

Still further evidence for the existence of a peak near
the top of the diamond DOS is provided by the shapes of
the Raman lines. Figure 7 shows the measured spectra
for the 34.4-at. % and 65.7-at. % ' C crystals. The ob-
served lines are almost completely symmetric and have a
nearly Lorentzian shape. Figure 8 shows the correspond-
ing CPA zone-center spectral functions for the (a) pure
and (b) adjusted "TPZ" models. The pure "TPZ" model
gives a highly asymmetric line shape because of the rapid
faHoff of the DOS on the high-frequency side of the Ra-
man mode. The more symmetric line shapes for the ad-
justed *'TPZ" model are much closer to those observed.

The above considerations may explain, in part, why the
widely used spatial correlation model has been unsuc-
cessful in describing the shift and broadening of the first-
order Raman 1ine in microcrystalline diamond. This
model assumes that the dispersion curves in the vicinity
of the Raman mode are well known, which we have seen
is not at all the case in diamond.

Frequency (cm—~)

FIG. 8. CPA spectral functions for the LTO (I ) modes cal-

culated in the (a) pure and (b) adjusted "TPZ" models for
x =0.344 and 0.657.

B. Second-order spectra

Second-order Raman spectra for the same five synthet-
ic diamonds considered above are shown in Fig. 9. The
second-order spectra were measured with a slightly lower
resolution ( -4 cm ') than the first-order spectra because
of the much lower count rate. The present results for 1.1
at. % ' C agree well with previous measurements for nat-
ural diamond. ' ' The spectra for 0.07 and 99 at. % ' C
also look similar, if one ignores the shifts that occur as a
result of differences in M. More significant differences
are observed for the more heavily mixed crystals; the 34.4
and 65.7 at. % ' C results are noticeably broader and do
not appear to exhibit the sharp peak near the high-
frequency cutoff. It is this peak at the top of the second-
order spectrum (2667 cm ' for 1.1 at. % ' C) that we al-
ready mentioned has been the subject of intense contro-
versy. Chrenko also examined the second-order spectra
of his samples and claims that he was able to see this
peak at all compositions except 68 at. % ' C. His mea-
surements may have been of somewhat higher resolution
than ours, but it is clear that even in his 89 at. '% ' C
spectrum (which is the only raw data presented), some
broadening of this peak has occurred.

A full calculation of the second-order Raman spectrum
is beyond the scope of this work. Such a calculation re-
quires the consideration of all possible two-phonon exci-
tations in which the net wave vector is zero
[co, (q)+co~( —q)]. The frequencies of the two phonons

0.07

O

C)
L

U

N
C

C

2000 2200 2400 2600 2800

Raman Shift (cm )

FIG. 9. Second-order Raman spectra for synthetic diamond
with the indicated compositions.
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may be the same (an overtone, i =j) or different (a com-
bination, i Aj ). Relative intensities may be strongly
affected by selection rules and other matrix-element
effects. ' ' Solin and Ramdas' extensively analyzed the
second-order Raman spectrum of diamond and assigned
much of the fine structure to particular overtones and
combinations of phonons at high-symmetry points. They
left open, however, the interpretation of the 2667-cm
peak because this did not arise naturally from any of the
dispersion curves available at that time.

For our purposes it suSces to consider the overtone
DOS alone as a crude approximation to the second-order
Raman spectrum. Figure 10 shows the calculated CPA
DOS's for the adjusted "TPZ" model for the same com-
positions as in Fig. 9; the solid curves are Lorentz
broadened by 1.5 cm ' to simulate the experimental reso-
lution. Comparison of the resulting overtone DOS (ob-
tained by doubling the frequency scale in Fig. 10) for
x =0.011 to the corresponding experimental spectrum in
Fig. 9 shows reasonable agreement both for the most
prominent peak near 2460 cm ' and for the 2667-cm
peak. This comparison helps to justify the particular
form of DOS peak added in Fig. 5. CPA results for other
compositions reproduce very well the observed trends in
the second-order spectra, including both the broadening

IV. ADDITIONAL CPA RESULTS
AND THERMAL CONDUCTIVITY

A more complete set of CPA predictions for isotopical-
ly mixed diamond is given in Fig. 11. Recall that the cal-
culated shifts and broadenings of phonon modes are re-
lated by Eq. (5). The qualitative similarities between the
CPA results at different compositions are a consequence
of the sma11 AM/M values in diamond. In the weak-
scattering limit [Eq. (8)j, the frequency dependence of the
broadening closely follows that of the VCA DOS. Below
1000 cm the full CPA results for diamond are indistin-
guishable from those calculated in this limit across the
entire composition range.

At higher frequencies significant deviations from
weak-scattering behavior do occur. The dashed curves in
Fig. 11 show the calculated weak-scattering broadenings
for x =0.25 and 0.75. Relative to these curves, the full
CPA predicts a larger (smaller) broadening at the very
top of the spectrum for x =0.75 (x =0.25) and a smaller
(larger) broadening at slightly lower frequencies ( =1150
cm '). These differences reflect the fact that the magni-
tude of the scattering in a more strongly scattering alloy
is enhanced in those portions of the spectrum where the
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FIG. 10. CPA densities of states (based on the adjusted
"TPZ" model) for the indicated concentrations of "C. Solid
curves are Lorentz broadened by 1.5 cm ' to provide more
meaningful comparison to Fig. 9. Dashed curve for x =0.011 is

broadened by 50 cm

FIG. 11. CPA frequency shifts (left) and FWHM broaden-

ings (right) calculated for the indicated concentrations of ' C in

the adjusted "TPZ" model. Dashed curves on right for x =0.25
and 0.75 obtained from the weak-scattering expression [Eq. (8)].

of the main peak and the disappearance of the high-
frequency peak for x =0.344 and 0.657. This latter effect
is a consequence of the increased "effective" scattering
strength in the vicinity of a sharp structure. Together
with the evidence presented in Sec. III A, the present re-
sults make a strong case for both the reasonableness of
the CPA description of disorder effects and for the inter-
pretation of the sharp peak at the top of the second-order
spectrum as a simple DOS effect.
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FIG. 12. CPA spectral functions for the TA(1.) mode at the

indicated concentrations of ' C.

minority-species contribution is largest. For x (0.5 the
enhancement occurs below the main DOS peak because
the minority ' C species is heavier than the majority
species. Conversely, for x & 0.5 the enhancement occurs
above this peak because the minority ' C species is lighter
than the majority species. It is precisely this enhance-
ment of minority scattering that is responsible for the
asymmetric composition dependence of the Raman
linewidths in Fig. 6(b}. Since the Raman mode lies near
the top of the spectrum, it is more sensitive to isotopic
disorder for x & 0.5. Weak-scattering perturbation
theory, by contrast, incorrectly predicts a nearly sym-
metric composition dependence.

The relatively small magnitude of the disorder effects
in Fig. 11 is in sharp contrast to the Bray and Anthony
estimate of a 50-cm ' broadening at large wave vectors
for all 0.011 x 0.989. Such a large broadening would

certainly have been seen in the second-order Raman spec-
tra of Fig. 9; to emphasize this point, the dashed curve in

Fig. 10 for x =0.011 has been broadened by this
amount. The Bray-Anthony estimate is based on the
difFerence between phonon frequencies in the pure ' C
and pure ' C limits. It is well known that such Lifshitz-
like limits ' provide only a weak upper bound on the ac-
tual broadening that occurs in a disordered alloy. The
present CPA results yield a maximum broadening of less
than 15 cm ' for x =0.5 and of less than 0.6 cm ' for
x =0.011. (Note the change in scale for x =0.011 in Fig.
11.} The CPA also gives a much more realistic composi-
tion dependence [dominated by the x (1—x) factor in Eq.
(2)] than that assumed by Bray and Anthony.

In principle, the present CPA results for any phonon
mode may be directly tested by inelastic neutron scatter-
ing. Since the predicted deviations from VCA behavior
are small, however, it is unclear whether this technique
has sufficient resolution to observe such effects. As exam-
ples of what to expect in such experiments, we plot in
Figs. 12 and 13 the relevant CPA spectral functions for
two different zone-boundary states at three diferent com-
positions. The transverse-acoustic mode at L in Fig. 12
remains very sharp (FTHM(1 cm ') at all composi-
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FIG. 13. Same as Fig. 12, but for the LOA(X) mode.

where v is the average phonon velocity (assuming no
dispersion) and Vo is the volume per atom (5.7X10
cm here). This expression has the usual co dependence
of classical Rayleigh scattering. For x =0.011, the
"TPZ" model considered in this paper yields
v =1.3X10 cm/sec; the resulting prefactor in Eq. (11)
has the numerical value A =0.019 sec 'cm . The fre-
quency dependence of the scattering rate in this case is

tions. The doubly degenerate longitudinal mode at X in

Fig. 13 lies in a much stronger-scattering region, but still
has a width of less than 8 cm ' for x =0.5. The effects
of anharmonic broadening on these modes may again be
estimated from Ref. 46.

We now consider whether the CPA can account for the
observed strong dependence of the thermal conductivity
of diamond on isotopic composition. An important
caveat to keep in mind in this discussion is that it is still
unclear experimentally whether the observed enhance-
ment in room-temperature thermal conductivity for
x &0.011 is purely an intrinsic efFect or whether extrinsic
factors also play a role. The x-ray measurements of
Holloway et al. rule out the possibility of gross
structural differences between x =0.011 and lower-x GE
synthetic diamonds, but more subtle differences (e.g., in
impurity concentrations) may be present.

The small disorder efFects predicted by the CPA for
x =0.011 have a negligible effect on both the specific heat
and velocities of low-frequency phonons. The insensitivi-
ty of the specific heat to small concentrations of ' C has
been confirmed experimentally by Morelli et al. It fol-
lows from these considerations that the strong depen-
dence of the thermal conductivity on isotopic composi-
tion must be due to changes in phonon-scattering rates.

The possible importance of phonon scattering by iso-
topes was first suggested by Pomeranchuk. Using per-
turbation theory, Klemens showed that the scattering
rate due to a concentration x of point defects differing
only in mass is

x(1—x)VO'(e) =
3

co
477v M
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1011
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plotted as a dashed curve in Fig. 14. For comparison, the
solid curve shows the CPA scattering rate for x =0.011,
determined from the FWHM broadening. The good
agreement below 200 cm ' implies that Eq. (11) is
reasonable up to room temperature. The stronger CPA
scattering rate at higher frequencies is due to the disper-
sion of the TA branches in Fig. 3. Throughout the en-
tire range of Fig. 14, the CPA rate is we11 described by
the weak-scattering expression [Eq. (8)]. Below 200
cm ', gvc~(co) may be replaced by the Debye DOS (Ref.
8) Voco /(2n v ), which makes Eq. (8) formally
equivalent to Eq. (11).

The CPA is thus entirely consistent with the standard
theory of phonon-isotope scattering. Recently, Bray
and Anthony suggested that, in addition to this direct
effect, isotopic disorder might also have an indirect effect
on other scattering processes that affect the thermal con-
ductivity. In particular, they argued that the broadening
of the phonon-dispersion curves near the zone boundaries
might significantly enhance umklapp scattering. The
magnitude of this enhancement depends exponentially on
the broadening. For the 50-cm ' broadening for
x =0.011 assumed in Ref. 9, this mechanism predicts a
63%%uo reduction in the room-temperature thermal resis-
tance due to umklapp scattering upon elimination of the
' C impurities. The much smaller CPA broadening, how-
ever, predicts less than a 1% reduction. We conclude
that the indirect effects of isotopic disorder are negligible
in the CPA and that the origin of the observed thermal
conductivity enhancement must lie in Eq. (11).

In practice, a quantitative test of this hypothesis is
highly nontrivial. The problem lies in the uncertainties
associated with other scattering mechanisms: in particu-
lar, with phonon-phonon scattering, which is classified as
either unklapp ( U) or normal (N), depending on whether
a reciprocal lattice vector is or is not involved. ' In
principle, the absolute scattering rates for these processes
can be calculated from a knowledge of the full anharmon-
ic potential of diamond. While some progress has been

K=K)+K2 (12)

where

~, =GT f r, J~(g)dg, (13)

GT f (r, /r~ )J„(g)dg
K2= (14)

f0

8 is the Debye temperature, g =Ace/( k T),
G =k /(2m. Ufi ), and J~=( e~(e~ 1);—r~ and r„are
the relaxation times for N processes and resistive scatter-
ing, respective1y, and ~&

'
= wz '+~& ' is the total scatter-

ing rate.
Most previous work on diamond has neglected normal

scattering completely (r~~ ~ ), in which case
K2~0. This approximation is clearly inadequate as the
' C concentration is reduced since at some point the
normal-scattering rate must exceed the isotope-scattering
rate given by Eq. (11).

The other limiting case, in which normal scattering
dominates, is more interesting to consider. In this case,

&g, Ty « &g, and K K2. The thermal resistance
8'=1/K is then additive, and the contribution of any
particular resistive process j is given by

made in calculating this potential, ' ' the implications of
such work for the scattering rates of interest here have
yet to be addressed. Most previous "theories" of thermal
conductivity ' have been based on phenomenological
relaxation times whose predictive power is highly ques-
tionable. Complicating matters further is the fact that N
and U processes do not contribute in the same way to the
thermal conductivity. Only U processes increase the
thermal resistance directly; N processes may still be im-
portant, however, because of their ability to scatter low-
frequency phonons to higher frequencies where other
resistive-scattering processes may be more effective.

The most successful method for including N processes
as well as resistive scattering is that of Callaway. For a
Debye model, which is sufhcient here, the thermal con-
ductivity in this approach reduces to a sum of two terms:

10

10
GT f J4(g)d g

2 (15)

10

10

10
200 400 600

Frequency (crn ~)

SOO

FIG. 14. Inverse relaxation time for naturally abundant dia-
mond calculated in the CPA (solid curve) and from Eq. (11)
(dashed curve}; A =0.019 sec ' cm .

Substitution of Eq. (11) in Eq. (15) gives exactly the same
result as that obtained by Ziman using a variational
method. For x =0.011 and 8=2165 K (consistent
with our choice of U =1.3X10 cm/sec), the predicted
value of Kj 1/Wj for isotoPe scattering at 300 K is 37
Wcm ' K '. Since the experimental value of K for natu-
ral diamond ' at 300 K is roughly 22 Wcm 'K ', this
implies that the room-temperature thermal conductivity
in the absence of isotope scattering is 54 W cm ' K ' (a

150%%uo enhancement). Equation (15), of course, represents
only an upper bound on the thermal resistance since any
reduction in normal scattering would tend to make



45 LATTICE DYNAMICS AND RAMAN SPECTRA OF. . . 7181

resistive-scattering processes less effective. Neverthe-

less, this exercise shows that, for suf5ciently strong nor-
mal scattering, the thermal resistance due to isotopes can
easily account for a significant fraction of the total
room-temperature thermal resistance in diamond. '

Further progress using the Callaway theory requires
the consideration of explicit forms of the relaxation times
due to other scattering mechanisms. For illustrative
purposes we choose here a normal-scattering rate
hatt'=0. 011(T and a resistive-scattering rate

hatt'=10 +0.41x(1 x)g —T +0.9( T e

(both in sec '). The three terms in r~ ' describe bound-

ary scattering (for a crystal roughly 1 mm on a side),
isotope scattering [from Eq. (11)], and umklapp scatter-
ing, respectively. The particular forms chosen here for
X and U processes have no rigorous justification, but they
do provide a reasonable description of the thermal con-
ductivity of naturally abundant diamond over a broad
temperature range. The solid curve in Fig. 15(a) was
obtained by substituting these expressions into Eqs.
(12)—(14) for x =0.011. For comparison, the dashed
curve shows the corresponding results obtained with nor-
mal scattering neglected. The purpose of this comparison
is to emphasize that normal scattering can have a pro-
found effect on the results everywhere except at the very
lowest temperatures where boundary scattering dom-
inates. Since it is conceivable that equally good fits to a
given data set may be obtained with different functional
forms and even different scattering mechanisms, the
predictive power of this phenomenological approach is
clearly limited.

Nevertheless, it is interesting to consider the results in
Fig. 15(b) for different isotopic cotnpositions based on the
above scattering rates. Consistent with the available
data, we see a rapid falloff in the thermal conductivity at
300 K for very small concentrations of ' C and a less rap-
id reduction at higher x. These calculations are intended
simply as a plausibility argument that the observed com-
position dependence of the room-temperature thermal
conductivity in diamond can, in fact, be explained using
existing theory. Data on the composition dependence
at lower temperatures, near the thermal-conductivity
peak, will be much more revealing. As seen in Fig. 15(b),

10
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FIG. 15. Thermal conductivities calculated from Callaway's

theory [Eqs. (12)—(14)] with relaxation rates given in text. (a)
shows the importance of normal (N) scattering processes in this
model for naturally abundant diamond. {b) gives results includ-

ing N scattering for the ' C concentrations indicated.

the maximum thermal conductivity in pure ' C diamond
at liquid-nitrogen temperatures may well exceed 1000 W
cm ' K ', as suggested by others.
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