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A perturbation-theory formulation of the zero-temperature elastic constants is used to verify symme-
try relations for a (monolayer) triangluar lattice. A generalization of the Cauchy relation between the
two elastic constants of the triangular lattice with central-pair-potential interactions is given for the
quantum solid. The first-order quantum corrections are rederived in this formalism, and previous calcu-

lations are reanalyzed.

I. INTRODUCTION

The two-dimensional triangular lattice has an isotropic
elasticity theory,! in which the speeds of long-wavelength
transverse and longitudinal sound waves are independent
of the wave-vector direction. In the special case? of a sys-
tem governed by classical mechanics and with central-
pair-potential interactions, there is a single independent
elastic constant which relates the shear and bulk moduli.
Here a perturbation theory>* for the energy of distor-
tions from the quantum ground state of the triangular
lattice is used to explore relations among the elastic con-
stants.

Macroscopic considerations!? on the harmonic defor-
mation energy of a triangular lattice show that it can be
expressed in terms of two parameters: the Lamé elastic
constants which generate the bulk and shear moduli. If
the undeformed lattice is under a static stress,> the
spreading pressure contributes to the effective elastic con-
stants governing the speeds of sound. A static triangular
lattice with pair potentials satisfies the conditions for a
Cauchy solid,"? in which the two Lamé constants are
equal. Indeed, in classical mechanics, it is quite straight-
forward to verify the isotropy condition and Cauchy rela-
tion from expressions which give the elastic constants as
averages of interaction terms.

The purpose of this paper is to develop expressions* for
the zero-temperature elastic constants in terms of
quantum-mechanical expectation values and thereby
confirm or generalize relations which hold for the classi-
cal lattice. Previously,6 the shear elastic modulus was de-
rived from the energy shift associated with a specific de-
formation, and the way in which various relations were
fulfilled or failed was not clear. The work® included Har-
tree and Jastrow variational approximations and a semi-
classical approximation with strain derivatives of the
normal-mode frequencies.” Here the perturbation formu-
lation of Feynman® and McLellan* is used to express the
elastic constants in terms of the interactions and lattice
sums, so that the way in which symmetry properties lead
to relations among the elastic constants becomes clear.
These results are used for a reevaluation of the semiclassi-
cal coefficients and for a reanalysis of the Jastrow varia-
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tional calculations. ®

The organization of this paper is as follows: Section II
contains the formulation of the elastic constants and sym-
metry arguments. Section III contains results of model
calculations. Section IV contains concluding remarks.

II. PERTURBATION THEORY
OF THE ELASTIC CONSTANTS

A. Definitions

The deformation tensor®>® u,; for a displacement of x
to x',
x=T+0)x, 2.1)
is used to define the Lagrangian strain tensor
7=LE+uT+18T0) ; (2.2)

the isothermal elastic constants C;;;; are coefficients in
the quadratic form for the deformation free energy in
terms of 7. With a Voigt notation for the pairs of in-
dices,
1=xx, 2=yy, (2.3)

the elastic constants discussed here are C;, C,,, C},, and
C33 .
Macroscopic symmetries of the triangular lattice give

Ch=Cy, (2.4)
(2.5)

3=xy=yx ,

C;1=C,,+2C;; (isotropy) .

The Lamé constants of isotropic elasticity theory are'-?

)\.=C12, [.L=C33 s (2.6)
and a Cauchy solid is defined to have
p—A=0 (Cauchy) . (2.7)

The bulk modulus for the triangular lattice is, in terms
of the elastic constants,

B=(C,,+Cp+2Cy,)/4

=C,+C;; (isotropy) ; (2.8)
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it can also be obtained from density derivatives of the
ground-state energy. When Eq. (2.7) holds, there is the
remarkable situation that information about nontriangu-
lar, sheared, lattices is obtained from the bulk modulus
for triangular lattices.

The shear modulus Cj; enters in the deformation ener-
gy for

TW(Cyy)=(RF+9R)5 . (2.9)

Calculations for a rectangular deformation at constant
6
area,

WCy;)=[3y—(1/1+8)xX]5 , (2.10a)
give an elastic modulus
C33 %(C” +C22)—(C12/2) ) (210b)

which is equal to C;; for the isotropic lattice. Calcula-
tions of the shear modulus using the deformation tensor
of Eq. (2.10a) thus implicitly assumed that the lattice is
isotropic. ®

In Sec. IIC expressions for the elastic constants in
terms of pair potentials and lattice sums are used to veri-
fy Egs. (2.4) and (2.5) and to give the quantum generaliza-
tion of Eq. (2.7).

B. Perturbation theory
for the zero-temperature elastic constants

McLellan* formulated the elasticity theory of a quan-
tum solid in terms of a Schrodinger perturbation theory
with respect to the undeformed lattice. For a Hamiltoni-
an which is a sum of kinetic and scalar potential energies,

2p2+¢> P, (2.11)
the perturbatlon operator is
w({r})=Hy({(T+Wr})—Hy({r}) . (2.12)

Expressions for the elastic constants are obtained by col-
lecting the contributions of first- and second-order per-
turbation theory which are quadratic in the Lagrange
strain tensor. Here ¢ is assumed to be a sum of central
pair potentials ¢(r;;) for N atoms in an undeformed area
A. The resolvent operator entering in the second-order
perturbation theory is denoted

where P, is a projection operator for the ground state (of
energy E,) of the original Hamiltonian H,.
Following McLellan,* define a virial operator Vi by
? 2PjaPigt 2V Tijayp »
j i#j

Vap=— (2.14)

where the function 1 is related to the pair potential ¢ by
P¥(x)=¢(V'x ), the prime denotes the derivative, @ and B
denote Cartesian components, and the i,j sums run over
the N atoms of the monatomic lattice. The stress tensor
S, p is given by the ground-state expectation value of the
virial operator
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Sap=Vaplo, (2.15)

and the virial equation of state for the spreading pressure
is

TA=—V  +V,)0/2. (2.16)
The elastic constants are
Ch=— [4<K Yot 3 (Wx )+, x)o] ,
i#j
(2.17)
2 rn
12=_A— [Z<¢ 13y13>0+< y>0} ’
i#j
(2.18)
Cur [(K)0+2(¢”xuy,j) oV RV, ) ]
i#j
(2.19)
and
CSS 2 4'<K)O_|'_ 2 <'r,j” xl_/ _ylj) )
i#+j
+{(V,, — Vi R(V,,—V,,) Yo (2.20)

In Eq. (2.17) the notation (K ), denotes the ground-state

expectation value of the x component of the total kinetic

energy K. An expression for C,, is obtained from Eq.

(2.17) by replacing x components by y components.

McLellan’s expressions* for the finite-temperature elastic

constants contain fluctuation terms similar to those
present in the classical statistical-mechanical theory.’

The bulk modulus is, from the first form of Eq. (2.8),
1 ’
B=—27 4(K)o+i§,j<¢ r,f} Yo

(Ve TV, )RV + V)0 (2.21)
Both the spreading pressure and bulk modulus can be cal-
culated also from density derivatives of the ground-state
energy.

C. Symmetry relations

The triangular lattice has sixfold rotation symmetry.
Consequently, there are several relations among the
ground-state expectation values in the expressions for the
stress tensor and elastic constants in Sec. II B.

The stress tensor [Eq. (2.15)] is then diagonal and is re-
lated to the spreading pressure by

Sa.B=

The second-order perturbation terms in Egs.
(2.17)-(2.21) are related using the Wigner-Eckart
Theorem, for matrix elements between states of specified
total angular momentum and various space-axis projec-

— 78,5 - (2.22)
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tions. Thus the isotropy relations Egs. (2.4) and (2.5) are
verified from the explicit expressions for the elastic con-
stants, and the equivalence between C;; and Cj; is
shown.

However, the second-order terms do not cancel in the
generalization of the Cauchy relation

p=A=Cy—Cy,
= 2K+ (W RV, )= ViRV, o), (223)

because they involve intermediate states of different an-
gular momenta. The second-order terms reflect changes
in the ground-state wave function; that they do not arise
in the stress tensor is associated with the Hellman-
Feynman theorem for first derivatives of the ground-state
energy with respect to external parameters. In classical
statistical mechanics, the fluctuation terms’ in the
elastic-constant theory also lead to a nonzero value of
pu—A for the central-pair-potential model at finite tem-
peratures.

III. MODEL CALCULATIONS

The considerations by which the isotropy relations are
derived from the Wigner-Eckart theorem, while the
second-order terms do not cancel from the generalized
Cauchy relation [Eq. (2.23)], are somewhat subtle. There-
fore, in Sec. III A, results are presented for the first quan-
tum corrections to the elastic constants, which show a
nonvanishing remainder already in the leading order of
quantum effects. Second, the perturbation expressions
for the elastic constants consist of diagonal ground-state
expectation values, which are readily calculated with
variational trial functions, and more complex second-
order terms. A reanalysis of the semiclassical and Jas-
trow results® is presented in Secs. IIIA and IIIB,
separating the first- and second-order terms. The results
of this section are for the Lennard-Jones (12,6) pair po-
tential

d(r)=4ae[(a /r)?—(0/r)®]
=€[(ro/r)?—(ry/r)°] (3.1)

and de Boer parameter
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A*=h/(cVme) . (3.2)

Physical quantities are given in reduced form, with ener-
gies scaled by € and elastic constants and spreading pres-
sure scaled by /0%

The quantum hard-disk solid represents a singular case
for the formulation of Sec. II. Values for the (pressure re-
normalized) Lamé constants of the hard-disk solid were
obtained by Leung and Chester.® Converting to the Lamé
constants of this work shows that the interaction terms
make a contribution to the right-hand side of Eq. (2.23),
which is ~(—)50% of the kinetic-energy term for the
densities they treated.

A. First-order quantum corrections
to ground-state properties

The first-order quantum corrections, linear in A*, are
calculated precisely, using quadratic expansions in
normal-mode amplitudes for the operators in the formal-
ism of Sec. II B. The first- and second-order perturbation
terms both contribute to the first quantum correction.
Table I contains results for the coefficient of A* in the
spreading pressure, kinetic energy, and bulk and shear

moduli. In addition, the coefficients of A* in the
remainder
A*=p*—A*—(2(K ),0%/ A€) (3.3)

and in the diagonal potential term of the bulk modulus

t=(0%/2¢4 )( S ¢"r;}> (3.4)
i#j 0
are shown.

The range of lattice constants L in Table I corresponds
to values encountered for monolayer solids of the inert-
gas series from xenon to neon. Much of Table I
represents a reevaluation of the coefficients which were
obtained previously® from strain derivatives’ of the
normal-mode frequencies. The two calculations agree
precisely, and the spreading-pressure and bulk-modulus
coefficients are in good agreement with the results of
finite-difference approximations to density derivatives of
the zero-point energy.

There are terms zeroth order in A* in the spreading-
pressure and elastic constants, available from lattice

TABLE 1. First-order quantum corrections for the triangular lattice.?

L/r,® * (2(K)o/4)* B* CcH A* B}
0.98 10.7 22.7 46.0 28.2 8.0 74.8
1.00 9.0 17.9 37.5 23.6 7.9 64.7
1.02 7.6 14.0 30.2 19.8 8.1 56.8
1.04 6.6 10.8 23.2 16.6 8.7 50.9

“Calculations for the Lennard-Jones (12,6) pair potential truncated at distances larger than four lattice
constants. Sums over wave vectors in a running-wave expansion of the perturbation-theory terms are
done with a set of 45 special points (Ref. 6). Scalings B and A* are defined in Sec. III of the text. En-
tries are the scaled coefficients of the term first order in A*.

®Nearest-neighbor distance (lattice constant) of the triangular lattice, scaled by the pair-potential

minimum [Eq. (3.1)].
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TABLE II. Jastrow variational calculations for the elastic moduli of monolayer helium solids. *°

p* * C3 ) pr—a* 2p*{K)/Ne B}
*He 0.51 0.59 2.36 0.43 1.94 1.23 9.01
0.53 0.72 2.87 1.43 1.44 1.44 10.51
0.55 0.91 3.53 2.66 0.87 1.58 15.51
0.57 1.18 4.34 4.15 0.19 1.77 15.11
0.59 1.51 5.25 5.90 —0.65 1.98 18.33
‘He 0.51 1.05 3.31 0.64 2.67 1.57 11.42
0.53 1.23 3.90 1.68 2.22 1.78 13.08
0.55 1.48 4.74 2.95 1.79 2.01 15.28
0.57 1.80 5.77 4.52 1.26 2.25 18.11
0.59 2.20 6.98 6.43 0.55 2.51 21.65

?deBoer—Michels—Lennard-Jones (12,6) pair potential for helium; results taken from Ref. 6.

®Scaled density, spreading pressure, elastic constants, and kinetic-energy density, as in Sec. III of the

text.

sums. However, for this (classical) limit, the remainder
A* and kinetic energy are zero. The spreading-pressure
term is included because it enters in the effective elastic
constants for the speeds of sound in the solid.

B. Jastrow calculations for helium

A reanalysis of the results of Jastrow calculations® for
the elastic constants of triangular lattices of helium is
presented in Table II. The scaled number density is
defined by p*=pa?, and the range of densities there cor-
responds to much of the range’ for the adsorbed solids of
helium isotopes on the basal-plane surface of graphite.
The results are for the de Boer—Michels—Lennard-Jones
potential (¢=10.22 K and 0 =2.556 A) with A* equal to
2.67 and 3.08 for “He and *He, respectively. Note the
contrasting trends with density of the remainder u* —A*
in the Cauchy relation and of the kinetic-energy density.
As in Table I, the first-order perturbation term B} is
much larger than the net value B*, showing the presence
of a substantial (negative) second-order term.

IV. CONCLUDING REMARKS

The perturbation-theory expressions for the elastic
constants in terms of sums of interactions have the sym-
metries among the elastic constants of the triangular lat-
tice, which are inferred from macroscopic considerations.

The remainder u—A in the quantum generalization of
the Cauchy relation for the static triangular lattice with
pair potentials involves more than the expectation value
of the kinetic energy. Indeed, in variational calculations®
of the elastic constants, there were contributions from
terms in the trial function which allowed for a change
from triangular-lattice symmetry.

What are nominally first- and second-order perturba-
tion contributions in the formal theory give comparable
contributions to the quantum elastic constants.
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