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Femtosecond time-resolved study of the generation and propagation of phonon polaritons in LiNbo,
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Using intense femtosecond pulses, we have generated phonon polaritons in the ferroelectric crystal
LiNbO, . Phonon-polariton pulses consisting of =8 oscillations of the electric field were generated.
They were detected in a time-resolved way by diffraction of a probe pulse from the standing wave formed

by these phonon polaritons. We determined their dispersion for frequencies up to 130 cm . The pulse
width of the phonon polaritons was =3 ps. In addition, we have studied their propagation in the crys-
tal, by diffracting a probe pulse from one of the traveling phonon polaritons. We demonstrate that in

this case, the diffracted signal is sensitive to the phase of the phonon polariton. Analytical calculations
show that this can be explained in terms of the interference between the electric fields of the
nondiffracted probe beam and the first-order diffracted probe beam.

I. INTRODUCTION

In noncentrosymmetric crystals such as LiNb03, Ba-
Ti03, and LiTa03, there are transverse optical (TO) -pho-
non branches that are infrared active and Raman active.
TO phonons typically absorb light at particular frequen-
cies in an interval ranging from 10 to 1000 cm . When-
ever electromagnetic waves of approximately the same
frequency and wave number as a TO phonon propagate
through such a crystal, they will couple with these
mechanical vibrations to form a new mixed excitation: a
phonon polariton. ' In the frequency region co and
wave-vector region q where the coupling is strongest, a
phonon polariton has both photon character and phonon
character. The dispersion co (q) then strongly deviates
from both the dispersion of the uncoupled TO phonon
and the uncoupled electromagnetic wave.

Phonon polaritons can be used to study the dielectric
properties of the crystal in which they were generated.
They can also be used for the generation of far-infrared
light. There are several nonlinear optical processes in
crystals that can be used to generate far-infrared light.
One of them is g' ' difference-frequency generation where
a beam at frequency co& is mixed with a beam at co2 and
their difference frequency co, —co& is generated. When the
frequency of the far-infrared light lies in the neighbor-
hood of a TO-phonon frequency, the y' ' of the medium
becomes important too. Another, similar, method is to
use difference-frequency generation within the bandwidth
of an ultrashort laser pulse. Stimulated Raman scatter-
ing was used to generate tunable nanosecond far-infrared
light in LiNb03, and also to generate phonon polaritons
in NH4Cl (Ref. 5) using picosecond pulses. In the latter

experiment, their propagation was studied by scattering a
probe pulse from the propagating phonon polariton.
Nearly forward Rarnan scattering is the technique mostly
used to study the dispersion of phonon polaritons in crys-
tals such as LiNb03, LiTa03, ' and BaTi03."'

In the last decade, lasers providing femtosecond pulses
have proven to be a valuable tool in experiments designed

to generate far-infrared pulses. One of these techniques is
optical rectification. Optical rectification is a second-
order nonlinear optical process where a dc polarization
proportional to the envelope of an ultrashort laser pulse
is generated. It was demonstrated that, with this method,
ultrashort electrical pulses consisting of approximately
one oscillation of the electric field could be generated in

LiTa03. ' ' It was shown that the technique could be
used to coherently excite phonon polaritons in LiTa03."
In fact, if far-infrared light is generated with a frequency
close to the TO-phonon frequency, the light propagates
as a phonon polariton. The generation of these ultrashort
electrical pulses using femtosecond pulses can be viewed
as the p' equivalent of impulsive stimulated Rarnan
scattering. ' ' With impulsive stimulated Raman
scattering, femtosecond pulses are used to coherently ex-
cite a molecular vibration' or a sound wave. ' This is,
for example, done by creating a spatially periodic
standing-wave grating in a medium with two overlapping
ultrashort pump pulses. If the pump pulses are shorter
than one period of oscillation of the Rarnan-active vibra-
tion, they coherently excite the vibration. From the grat-
ing, a delayed probe pulse is diffracted and the diffraction
efficiency is measured as a function of the delay between
the pump pair and the probe. The vibration can be
detected in a time-resolved way, because the pulses are
shorter than one period of oscillation of the excited vibra-
tion.

Phonon polaritons can propagate with a group veloci-

ty, dto/dk. The propagation of phonon polaritons is in-

teresting because it potentially allows the study of the
damping as a function of distance. This was demonstrat-
ed by Gale, Vallee, and Flytzanis in a crystal of NH4Cl.
They used Raman scattering with picosecond pulses to
scatter light from a traveling polariton at =1300 crn
and determined the dephasing as a function of distance.
Clearly, their pulses were much longer then one period of
oscillation of the polariton. Auston and Nuss studied
propagation of phonon polaritons in a crystal of LiTa03
by measuring the wave form of the electric field, generat-
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ed with optical rectification, as a function of distance. '

They made use of the linear electro-optic effect to detect
the change in the polarization of a probe pulse induced
by the electric field of the phonon polariton.

Here we are interested in studying phonon-polariton
generation and propagation in LiNb03 in a time-resolved
way by diffracting a probe pulse from a pump-induced
refractive-index grating as will be explained in the next
section. The use of femtosecond pulses in the study of
phonon polaritons offers considerable advantages com-
pared to studies where picosecond, nanosecond, or cw
lasers are used. The bandwidth of femtosecond pulses is
very large so that far-infrared phonon-polariton frequen-
cies can be made by mixing frequency components within
the bandwidth of these pulses. With femtosecond pulses,
much higher laser intensities can be used in the crystal
before damage occurs. We will show that the conse-
quence of this is that ultrashort coherent phonon polari-
tons can be created and detected very efficiently in LiN-
b03. Note that for high frequencies, femtosecond pulses
are needed to observe the oscillations of the phonon po-
lariton in a time-resolved way.

In addition, we performed experiments focused on the
propagation of these phonon polaritons. Surprising re-
sults are found when a femtosecond probe pulse is
diffracted from a propagating phonon-polariton
refractive-index grating. In this case, the diffracted signal
is sensitive to the phase of the phonon polariton. This
can only be measured with pulses that are shorter than
one period of oscillation of the phonon polariton. The
technique that we used to generate phonon polaritons in
LiNb03 is similar to that recently used by Etchepare
et al. to excite phonon polaritons in PbTi03.

The paper is organized as follows. In the next section
we will describe the experimental setup used for the gen-
eration of phonon polaritons. We then show some results
concerning the generation of phonon polaritons and their
dispersion. Roughly the second half of this paper is de-
voted to the study of their propagation. We show the re-
sult of diffraction of a probe pulse from a propagating
grating followed Gnally by a calculation explaining the re-
sult.

monic generation in a short potassium dihydrogen phos-
phate crystal, was found to be ~ 100 fs. The beam is split
into three beams as shown in Fig. 1 where the pump-
probe setup is depicted schematically. Two beams form
the pump-pulse excitation pair. They are aligned parallel
to each other with distance d. Using a lens with a focal
length f of typically 25 cm, the beams are focused
through a pinhole with an appropriate diameter to optim-
ize spatial overlap in the focus. The third beam is the
probe beam. It passes through a computer controlled
variable-delay line, which has an accuracy of 1 pm. 1%
of the probe beam is split off, using a CaF2 window and is
detected by a Si diode. It is used as the reference signal.
The beam is aligned parallel with respect to the pump
pair but in a different horizontal plane so that we are able
to spatially separate the signals caused by self-
diffraction ' of the pump beams, from the diffracted
probe beam after the focus. The probe is focused through
the pinhole with the same lens as the pump pair.

Temporal overlap between the two pump pulses is
found by first replacing the pinhole by a 50 X 10X 1 mm
(or a 10X10X3 mm ) polished LiNb03 and varying the
delay between the pump pulses until self-diffraction ' is
observed. Temporal overlap between the probe pulse and
the pump pair is found by delaying the probe pulse with
respect to the pump pair until diffraction of the probe
pulse from the pump grating is observed. The first-order
diffracted probe beam is detected with the help of a Si
diode. The signals from the reference diode and the
diode used for the detection of the diffracted probe pulse
are fed into the computer. A typical experiment consists
of several computer controlled delay scans, each scan
consisting of 70 delay positions. At each delay position,
20 laser shots are collected. The diode signals for each
laser shot, together with the delay position, are stored on
floppy disk for later analysis.

The focused pump pair creates a spatially periodic in-
tensity grating in the crystal. Frequency components
within the bandwidth of the pulses are mixed using the
g' ' and the y' ', to generate phonon polaritons with fre-
quency ~ and wave vector +q. Note that phase match-
ing is important since only those frequencies will be

II. EXPERIMENTAL

The experimental setup is based on an amplified short
pulse laser system. Femtosecond pulses with central
wavelength 620 nm from a colliding-pulse mode-locked
laser (CPM) are amplified to an energy of approximately
250 pJ at a 10-Hz repetition rate. Dispersion increases
the pulse duration when they propagate through the dye
amplifiers and the optical components. Self-phase modu-
lation generates a somewhat larger bandwidth. For this
reason, the pulses are led through a folded two-prism
compressor to shorten their duration. Approximately 30
pJ is used for the experiment. The beam is first spatially
filtered to obtain a good beam profile. In this way, the
amount of amplified spontaneous emission is also reduced
to approximately 5%. After spatial filtering, we have an
energy of several microjoules per pulse. The pulse dura-
tion, measured with autocorrelation using second har-
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FIG. 1. Experimental setup for the generation of phonon po-
laritons. M, Mirrors coated for maximum reflection at 620 nm;
FD, 6xed delay; VD, variable delay; L, lens; BS, beamsplitters;
Sil and Si2, silicon diodes; and D, diaphragm.
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amplified which "fit'* the imposed wave vector q. The ab-
solute value ~q~ of the wave vector is determined by the
pump vacuum wavelength k „,and the angle y between
the two pump pulses. For small angles we can write

y =d /f, with d the separation between the pump beams.
If k& and k2 are the wave vectors of the two pump pulses,
then the length of the wave vector q can be expressed as '

A different value of q can be chosen by changing d or f.
The c axis of the crystal is chosen parallel to the polar-

ization of the laser. In this configuration, both the laser
pulses and the generated phonon polaritons are of pure
extraordinary character and thus only the largest
electro-optic coefficient (r33 ) is relevant. Because the two

pump pulses are identical, two counter propagating pho-
non polaritons are created that form a standing wave.
The standing wave modulates the index of refraction
through the linear electro-optic effect and thus forms a
periodically vanishing grating. The grating can be
detected in a time-resolved way by diffracting a probe
pulse from it. Results are described in the next section.

III. GENERATION AND DETECTION
OF PHONON POLARITONS IN LiNb03

A. Dift'raction e%ciency versus pump-probe delay

We monitor the energy of one of the first-order
diffracted probe beams. A typical measurement of the
diffraction efficiency of the pump grating as a function of
delay between pump pair and probe pulse is shown in
Fig. 2. Starting at small negative delays, the diffracted
signal increases rapidly until it reaches a maximum at de-
lay zero (here the signal is flat due to saturation of the
detector). The diffracted signal at delay zero is complete-
ly dominated by diffraction caused by effects other than
the presence of phonon polaritons, such as the electronic
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FIG. 2. Measured first-order diffracted signal as a function of
delay between pump pair and probe, for q =2513+100
rad cm '. The signal oscillates at twice the frequency of the po-
lariton. Note that the signal at delay zero is very large due to
other contributions to the diffracted signal such as the electron-
ic y"' of the medium.

y' ' of the crystal. For positive delays, the signal oscil-
lates at twice the frequency of the phonon polariton 2~
because we have created two counter propagating phonon
polaritons, each with frequency co, that form a standing
wave. It is interesting that we can resolve the osciHations
of the grating in a time-resolved way. This is because the
pulse duration of the 620-nm pulses is shorter than the
period of oscillation of the phonon polariton: We are
studying the response of the medium in the impulsive lim-
t 16, 17

We can get an estimate of the value of the electric field
of the generated polariton from the following. The
diffraction efficiency gz;& of a refractive-index grating, is
given by '

(2)

with I, the intensity of the first-order diffracted beam, I;„
the intensity of the probe beam before the crystal. An,
the induced extraordinary refractive index change, l the
thickness of the grating, and A,

„„

the pump-laser wave-
length. A typical value of the diffraction efficiency that
we measured at the first maximum after delay zero, was

gQ f 1 .0 X 10 . If we take the following experimental
parameters: l =1 mm, A,„„=620nm, then the pump-
pair-induced refractive-index change that we calculate
from Eq. (2) is b,n, =6X10 . If we assume that, by
means of the electro-optic effect, the index of refraction is
modulated only by the presence of the electric field asso-
ciated with the (photonlike) phonon polariton, we can
calculate the electric field strength. The electric field is
polarized along the c axis of the crystal and propagates in
the x direction. The equation relating the relevant
electro-optic coefficient r», the index of refraction n„the
induced index of refraction change An„and the electric
field @ is given by

n, r33
(3)

If we use the numbers r33=30.8X10 ' m/V, n, =2.2,
An, =6 X 10, we calculate an electric-field strength of

~
8~ =4X 10 V/m. This number is on the order of field

strengths generated with optical rectification. '

B. Dispersion of phonon polariton

By forcing a q value onto the system and measuring the
frequency of co, the dispersion relation ~ (q) can be
determined. The results are shown in Fig. 3. The figure
shows that for frequencies lower than =50 cm ', the fre-
quency is linear in wave vector q. This is the photonlike
regime of the phonon polariton. The deviation from
linearity for higher frequencies is indicative of the fact
that the phonon polariton begins to increase its phonon
character there. The dispersion co (q) can also be calcu-
lated. In LiNb03 there are four infrared-active TO pho-
nons for polarizations parallel to the c axis. These pho-
nons all influence the dielectric constant e(co ) and conse-
quently the dispersion co (q). If we assume that these
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FIG. 3. Measured phonon-polariton dispersion in LiNb03.
The curve is calculated using reflectivity data of Ref. 22 and
contains no adjustable parameters. The agreement with the
measured points is good.

TO-phonon branches are independent, then we can sim-

ply add their contributions to the dielectric constant. If
we also assume that we can neglect phonon damping,
then we can write for the dielectric constant

4 2
&st, iT, i

E(COp ) t~)+
l =1 NTl Np

(4)

with e„;the contribution to the static dielectric constant
e(co =0) of TO phonon branch i, with frequency cor, ,
and with e,1

the electronic dielectric constant. The ex-
pressions for the dispersion relation reads '
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TABLE I. Room-temperature central frequencies,
linewidths, and absorption strengths of the four TO phonons in
LiNb03 polarized parallel to the c axis {Ref.22).

TO phonon frequency
(cm ')

248
274
307
628

Linewidth
(cm ')

21
14
25
34

16.0
1.0
0.16
2.55

The strength e„;of each mode can be deduced from
reflectivity measurements and these numbers are we11

known for the case of LiNb03. We use the data of Bark-
er and Loudon and reproduce their results in Table I.
The curve in Fig. 3 is calculated from Eq. (5) using the
data from Table I and contains therefore no adjustable
parameters. The agreement with the measured points is
good. It should be noted that the contribution to the
dispersion of the lowest 248-cm ' mode is by far the larg-
est in this frequency range and that the incorporation of
the other modes only leads to a small correction of the
calculated curve.

In Fig. 3, the deviation of the measured points from a

straight line cop/2m. c ~q for high frequencies, is a sure
sign that the phonon polariton begins to increase its pho-
non character there, while for low frequencies, it is dom-
inated by electromagnetic wavelike behavior.

The generated frequencies range from 30 to 130 cm
It proved to be very difficult to resolve signals with a fre-
quency higher than 130 cm '. Although we did observe
decaying signals for large q vectors, the amplitude of the
oscillating part of the signal was too small so that we
were not able to measure the frequency. There may be
two reasons for this: (i) For the highest frequencies, the
time resolution of the setup decreases due to the fact that
the pump-pulse duration becomes of the order of the
period of the phonon polariton. This leads to a smearing
out of the signal. This is another way of saying that the
frequency bandwidth of the pump pulse puts a maximum
on the value of the phonon-polariton frequency that can
be generated. (ii) For the higher frequencies, we need
larger q values and, consequently, larger angles of y. Be-
cause the length of the pump pulses in the crystal is short
compared to the focus diameter, large values of y will
lead to reduced effective-overlap area. This results in a
lower diffraction efficiency. With these pulses we can
therefore not measure the dispersion for large values of
the wave vector q. If one is not interested in time-
resolved experiments, however, the dispersion can be
measured with Raman scattering, as was demonstrated
with nanosecond pulses.

In optical rectification (the Cerenkov-type experiment),
it is also the duration of the femtosecond pump pulse that
is one of the limiting factors that determines the length
and the frequency bandwidth of the generated electrical
pulse 1 3 —1 5

The number of oscillations of the phonon polariton de-
pends on the ratio of the grating spacing and the diame-
ter of the pump beams in the focus. The diameter of the
focus clearly also determines the width of the polariton.
This resembles the Cerenkov-like experiment where, in
order to generate electrical pulses that have a width that
is only determined by the bandwidth of the laser pulse,
the diameter of the focus in the crystal must be very
small.

The frequency of the generated phonon polariton with
respect to that of the lowest frequency transverse-optical
phonon determines whether the y' ' process becomes im-
portant in the generation process. If the frequency is
much lower than that of the TO phonon, then there is al-
most no energy in the phonon part of the phonon polari-
ton. In that case, the process is the far-infrared
equivalent of g' ' difference-frequency generation. The
other extreme is when the frequency of the phonon polar-
iton is close to the TO-phonon frequency. Now, a large
fraction of the energy resides in the phonon part and the
g' ' is important. The generation process is now a com-
bination of parametric generation and Raman scatter-
ing and is therefore different from pure Raman scatter-
ing processes where only the y' ' has a nonzero value. In
our case we generate frequencies ~ 130 cm ', whereas
248 cm ' is the frequency of the lowest TO phonon. The
generation process is therefore mainly (but not totally) a
y' ' process.
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The use of femtosecond pulses is an advantage if one
wants to generate high electric-field strengths, because
the damage threshold Id, of a material increases when
shorter pulses are used: Id, ~ ~ ' . Using parameters,
typical of our experiment, beam diameter D =1.5 mm,
focal length f=25 cm, pump-pair wavelength 620 nm,
pulse duration ~=100 fs, energy per pulse E=2 pJ, we
arrive at an intensity in the focus of the pump pair of
=40 GW/cm . At this intensity, no visible damage oc-
curred. At the highest intensities () 10" W/cm ), the
diffracted signal was obscured by stray light emerging
from the crystal, roughly in the shape of a cone, oc-
casionally accompanied by visible damage.

A related point deserves some attention. LiNb03 is an
insulator with an optical bandgap of =4.0 eV (310 nm).
Using 620 nm as the excitation pulse, two-photon absorp-
tion will occur and charge carriers will be excited to the
conduction band of the material. Charge carriers are ac-
celerated by the electric fields of the femtosecond pump
pulse and could damage the crystal. However, as indicat-
ed above, this did not seem to play an important role.
Moreover, within an accuracy of 5%, we did not observe
any absorption. This becomes radically different for en-
ergies of around 20 pJ where strong absorption was seen.
Due to the fact that two-photon absorption is a nonlinear
process, this seemingly sharp transition within one order
of magnitude variation of intensity should not be surpris-
ing.

IV. PHONON-POLARITON PROPAGATION

A. Introduction

The standing-wave phonon polariton is formed by two
counterpropagating waves that leave the focus. For a
traveling wave, there is no such thing as a periodically
vanishing grating. If carefully aligned, however, then for
fixed delay, the probe pulse will see a grating which ap-
pears to be frozen. This is true because, during propaga-
tion of the probe pulse, the traveling wave will also prop-
agate which causes the probe pulse to see always the
same phase of the traveling wave. For a different but
fixed delay, some other part of the frozen wave will be
sampled, and we expect to see a diffracted signal with a
different energy. Intuitively, it would seem that, since the
grating does not vanish periodically, the diffracted signal
as a function of delay between the probe and the traveling
wave will be a smooth curve. This smooth curve is then
expected to have roughly a Gaussian shape where each
point on the curve reflects the number of "grating lines"
in the focus at a given delay, and therefore the diffraction
efficiency.

B. Experimental

The setup used for the detection of the traveling waves
is identical to that of the measurements where we detect
the standing wave. The experiment begins by measuring
the diffraction from the standing wave. With respect to
the pump pair, we then give the probe beam a small dis-
placement in the horizontal plane in which the phonon-

C. Diffraction from a propagating phonon polariton:
Results

A measurement of the diffracted signal versus delay for
a distance between pump pair and probe of =80 pm, is
given in Fig. 4. The signal shows, contrary to our intui-
tion, an oscillatory curve under a Gaussian-like envelope
of =3 ps duration, with oscillations at approximately the
frequency of the polariton, not twice the frequency. Ap-
proximately eight oscillations are visible. The signal is
the result of a measurement series, consisting of 20 laser
shots at each delay position. When these measurements
are repeated, the results are qualitatively the same. The
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FIG. 4. Measured diffracted signal (points) vs delay between

probe pulse and phonon polariton. The signal oscillates at ap-
proximately the frequency of the polariton, not twice the fre-

quency. We choose a wave vector q=2335+100 rad cm ' mea-

sured at a frequency of 85+5 cm '. The curve is a guide to the
eye.

polariton waves propagate. The displacement in the
focus is of the order of one to several pump-focus diame-
ters so that the pump and the probe are separated. The
distance between the center of the pump and the center
of the probe in the focus is measured by scanning a
pinhole through the focus and monitoring the transmis-
sion. With the crystal in the focus, we then place a pho-
todiode at a considerable distance behind the crystal, at
the position where the first-order diffracted signal was ob-
served when all three beams spatially overlapped. Note
that the displacement of the probe with respect to the
pump may cause the diffracted signal to arrive at a point
that is somewhat displaced with respect to the position of
the detector.

The measured signal is weak compared to the signal
that we measure when pump pair and probe spatially
overlap, and is usually not visible to the naked eye. This
is probably caused by the decay of the phonon polariton
while it propagates and/or by its divergence, since both
mechanisms will lead to a decreasing electric-field
strength, therefore a weaker grating and consequently a
lower diffraction eSciency. In these experiments we in-
creased the diameter of the probe beam before the focus-
ing lens, thereby decreasing its diameter in the focus.
This leads to a higher probe intensity in the focus.
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oscillations, however, are phase shifted with respect to
the previous series or they show oscillations that show a
phase jump within the same series. When the different
series are added, the oscillations are smeared out and the
signal begins to look more and more like its envelope. If
the signal is sensitive to the phase of the phonon polari-
ton, then it becomes clear why the signal smears out after
the addition of several measurement series: The phase of
the phonon polariton is determined by the phase
difference between the two pump pulses. Since we are
not interferometrically stable over times much longer
then the time needed to complete one measurement series
(1—2 min), the phase difference between the two pump
pulses changes and, consequently, the phase of the pho-
non polariton changes too. At this point it is important
to emphasize the following: We see individual oscilla-
tions of the phonon polariton. The modulation depth is
high. The signal appears to be sensitive to the phase of
the phonon polariton.

D. DifFraction from a refractive-index grating:
Calculations

The fact that we measure an oscillatory signal can be
explained at least qualitatively: The traveling wave
creates a refractive-index grating (phase grating) with a
Gaussian envelope by means of the linear electro-optic
effect. From this grating we diffract a probe pulse which
has a Gaussian spatial profile in the direction perpendicu-
lar to its propagation direction. We assume that the
probe propagates in the z direction, perpendicular to the
grating. For simplicity, we also assume that both the
spatial profile of the probe and the grating only vary with
coordinate x. We then basically have a two-dimensional

problem.
For a given delay between grating and probe, the prob-

lem then reduces to that of diffraction of a probe beam
from a static grating. In doing this we also ignore the
fact that we are in reality diffracting light from a moving
grating which has a momentum associated with it. The
grating actually shifts the frequency of the diffracted light
with a value that corresponds with the frequency of the
grating. This shift is in our case always smaller than the
bandwidth of our pulses. We are now in a position to cal-
culate the diffracted signal for a certain diffraction angle
a as a function of the delay between the probe and the
grating. Note that, in solving this problem, the time
dependence enters the calculation implicitly through the
delay between the grating and the probe. The calculation
is based on similar calculations in Ref. 25.

For the electric field of the phonon polariton we take a
pulse with a cosine oscillation under a Gaussian envelope.
The effects of the phase grating are then taken into ac-
count by means of the phase transmission factor

proportional to the spatial width of the phase grating,
and 2m. /a =

~q~ the wave vector of the grating. The cal-
culation uses the position x' as the "delay" variable. At
the end of the calculation this will be translated into a
time delay.

Since both the cosine term and the Gaussian term in
Eq. (6) contain the argument (x —x'), we implicitly as-
sume that the point where the phase change has a max-
irnum coincides with the maximum of the Gaussian.

We can estimate the typical value of t from the average
phase change that the probe accumulates while it propa-
gates through the region of the crystal where the pres-
ence of the phonon polariton changes the index of refrac-
tion. The accumulated phase change hP is

b,/=co b,n, 1/c,

T =exp( [1+it exp[ —(x —x') /x, ]

Xcos[2~(x —x')/a]] ), for t &&1 .

The probe beam that propagates in the z direction has a
spatial x dependence of the electric field amplitude ac-
cording to

First-order
diffracted field

th Re

with co the probe frequency, hn, the induced extraordi-
nary refractive-index change, l the crystal or grating
thickness, and c the velocity of light. Using typical num-
bers to=3.0X10' rad/s, An, =1.0X10,1=3.0X10
m, and c =3.0X 10 m/s, we calculate a phase change of
5$=3.0 X 10 rad. The calculation serves to illustrate
that A4 && 1, for the 3-rnrn-thick crystal and consequent-
ly also for the 1-mm crystal. Note that the number for
the induced refractive-index change hn, is typical only
for measurements where pump pair and probe spatially
overlap. It is much smaller for the propagating polariton
outside the focus, since it was already noted that the
diffracted beam was usually not visible to the naked eye.
We now have t «1, allowing us to approximate Eq. (6)
by a Taylor series and truncate after the second term so
that we have

T=exp(i[1+t exp[ —(x —x') /x, ]

X cos [2m (x —x ') /a ] I ), (6)

with t the amplitude of the phase change, x' the shift (de-
lay) of the maximum of the envelope of the phase grating
with respect to the spatial maximum of the probe field, x

&

FIG. 5. Total electric-field amplitude for fixed a. The vector
that corresponds to the first-order diffracted signal has an oscil-
lating phase 4(x') that is translated into an amplitude oscilla-
tion of the total electric-field amplitude 6~;f(x') when the vector
is displaced along the real axis by the "zeroth-order" contribu-
tion {oralong any direction, for that matter).
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2
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x /x
@probe

The diffracted field amplitude Az;t(a) as a function of
diffraction angle cz can then be calculated, from Ref. 25

ikax / 0
2 2

6z;f(a) ~ f e'" "Te 'dx .

This integral can easily be calculated and reads

(10)

—k a xo/42 2 2

Nz, ga) ~ xo/ere

it+ XpX) x +x

' 1/2

exp
2' +ka
a

4x' . , kcx 2m+t4x'
x&22 x2 ax 2

4 +1 1

Xo X)

it+ xox
X +X

1/2

exp
2' —kcz
a

4x' + 4, ka 2m+t4x'
x&22 x2 ax 2

1 1
4 +

Xp X)

In this derivation we have omitted the prefactor contain-
ing terms like ro ', with rp the distance between the
grating and the detector, which ensure that the electric-
field strength and therefore the intensity decreases when
the distance increases.

This awesome-looking solution (11)actually has a rath-
er simple physical explanation. The solution is the sum
of three terms. The first contains no grating parameters
and is the original probe field as it diverges (diffracts) due
to the final diameter of the beam in the focus. The two
other terms are the first-order diffracted beams on the
left- and right-hand sides of the probe beam. They peak
for diffraction angles a= 2n/(k—a ) a.nd a=+2m. /(ka ),
respectively. There are no higher-order diffracted beams
due to the assumption that t &&1. Each of the first-order
diffracted electric fields can be represented by a vector in
the complex plane with a phase 4(x'),

ka 2m
(12)

I

of a. The contribution from the other first-order
diffracted field can clearly be neglected. The figure shows
the calculated value for the diffracted intensity as a func-
tion of diffraction angle a. In this figure, the x' was given
the value 6 JMm to clearly show the dip in the intensity for
a value of a where the electric-field strengths are approxi-
mately the same. The intensity around these values of o.
oscillates as a function of x'. The "spatial period" of this
oscillation A„,is not precisely the period of the grating
a. A„,can be obtained from Eq. (12) and reads

2n.(1/x 0+ 1/x i )

( 0 a/x f + 2n /ax o )
(13)

For x& ~~, we get A„,—+a.
The difference between a and A„„for finite values of

x', can be appreciated from the following example where
we use the same parameters as in Fig. 6. We consider the

that changes when x' is varied, but that has an amplitude
that decreases monotonically. When we now add the
complex vector of the first term (which is real), we actual-
ly displace the rotating vector along the real axis as can
be seen from Fig. 5. The amplitude of this vector sum
has now become a periodic function of x' (note that a
value for x' corresponds to a particular delay between
probe and grating). Since intensity is proportional to
~@, the diffracted signal as a function of x' will show os-
cillatory behavior.

What we have described is in fact the interference be-
tween the "zeroth-order" probe field and the first-order
diffracted probe field. The effect becomes important
when the electric-field amplitudes of both contributions
are approximately the same. The value of o. for which
this is the case will lie somewhere between the maxima of
both contributions, as is shown in Fig. 6. Note that we
implicitly assumed that the contribution to the diffracted
field for values of o. where the interference is the greatest
has only two sources: the "zeroth-order" field and only
the first-order diffracted field that peaks for these values

~ I ~ ~ ~ ~
$ ~ ~ ~ ~

g
~ ~ ~ ~ s ~ ~ % ~1

Xl
O

10
O
C

~~
lO

UI 1000

—0.1 -0.05 0 0.05 0.1

Diffraction angle n (rad)

FIG. 6. Calculated diffracted intensity as a function of cz.

The figure clearly shows the interference dip between the
"zeroth-order" and the first-order contribution. The magnitude
of this dip oscillates as a function of x'. Values for the different
parameters: xo=30 pm, x, =60 pm, a =23.8 pm, k=3.5X10
m ', x'=6 pm, t =0.001.
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+ case in Eq. (13): lf we take x
&
=60 pm, xo =30 pm,

k=3.5X10 m ', a=23. 8 pm, and a=0.057 rad, we
calculate A„,=25 pm. This difference with a can be
neglected due to the uncertainty in the frequency of the
phonon polariton deduced from the measurement in Fig.
4. In Fig. 7 the diffracted intensity is plotted versus delay
td =x'n /c for a value of u where oscillations in the in-

tensity are expected. Here n is the index of refraction
for the propagating wave, and c is the speed of light in
vacuum. All the other parameters have the same values
as in Fig. 6. This calculated curve should be compared
with the measured signal plotted in Fig. 4. It can be seen
that many of the essential features are reproduced. We
therefore conclude that the model used to explain the os-
cillations is a realistic one.

In the Cerenkov-like experiments in LiTa03, the phase
and amplitude of the propagating broadband electrical
pulse is measured by the value of the polarization change
of a CPM probe pulse, induced by the propagating elec-
trical pulse. ' ' This technique is clearly capable of
determining accurately both the phase and the amplitude
of the electrical pulse.

In our case, we measure the propagation of phonon po-
laritons, which have a well-defined frequency and a well-
defined wave vector, by scattering a probe pulse from the
induced grating. Although in our experiment we are sen-
sitive to the phase of the phonon polariton, it is difticult
to determine its value.

At this point the following should be noted. We have
ignored the frequency shift that occurs when light is
diffracted from the grating. The interference between the
diffracted field and the zeroth-order contribution was
based on the assumption that both fields have the same
central frequency. We know that this is not fully correct
because of the frequency shift of the diffracted field.
However, as was pointed out in the beginning of the sec-
tion, the frequency shift is signaller than the bandwidth of
the 620-nm pulses. The addition of two electric fields
with a different frequency will lead to a modulation of the
pulses in the time domain. This modulation period is
longer than the pulse duration when the frequency
difference is smaller than the bandwidth of the pulses.
Consequently, our calculated results will not be affected
very much by the frequency difference.

.-3 0
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Xl
L0

2x10
O
C

M

s 8 ~ ~ ~ s ~ ~ ~ F s I ~

9
V
O

D 0
II

I ~ s ~ ~ I ~ s ~ a

-2 -1 0 1 2
Deloy (ps)

FIG. 7. Calculated density of the diffracted signal vs delay
for a propagating phonon polariton. The curve shows oscilla-
tions with a period of 0.4 ps. Parameters are the same as in Fig.
6.

V. CONCLUSIONS
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We have generated phonon polaritons in LiNb03, and
measured their dispersion and their propagation in a
time-resolved way. For the propagating case we observe
oscillations in the diffracted signal versus delay that can
be explained in terms of interference between the electric
field of the undiffracted probe and the electric field of the
first-order diffracted probe. The phonon polaritons have
a duration of approximately 3 ps corresponding with an
average number of oscillations of eight and an electric-
field strength of several hundred V/cm.
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