
PHYSICAL REVIEW B VOLUME 45, NUMBER 13 1 APRIL 1992-I

Thermal conductivity of amorphous solids above the plateau: Molecular-dynamics study
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(Received 23 August 1991;revised manuscript received 18 November 1991)

The thermal conductivities of two-dimensional crystalline, amorphous, and quasicrystalline classical
models are studied via the nonequilibrium molecular-dynamics method. The behavior of the high-
temperature thermal conductivities of crystal and glasses are reproduced. The difference between the
thermal conductivities of the crystalline and amorphous models is explained by the presence of localized
vibrational modes found in the latter. The results support the model of anharmonicity-induced hopping
heat transfer in glasses. The thermal conductivity of the quasicrystalline model does not differ from that
of the amorphous model, suggesting that the effect of quasiperiodicity on the thermal conductivity is the
same as that of a simple aperiodicity. It is shown that localized modes are at the origin of strong anhar-
monicity of amorphous solids. This anharrnonicity, together with the localization, inAuences the spec-
tral intensities, which have several peaks instead of one.

I. INTRODUCTION
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The thermal conductivity of amorphous solids is not
well understood in any temperature range. It differs very
much from that of crystals. One can distinguish three
characteristic temperature intervals: (a) low T ( T ~ 1 K),
where tc(T)-T'; (b) medium T (T=10 K), where
the thermal conductivity is constant (plateau); and (c)
high T (T) 10 K), where tc rises smoothly to a limiting
value tc( ao ) given by the kinetic formula

K=
3

CUl

where I is the mean free path, of the order of interatomic
distance, v the velocity of sound, and C the classical
specific heat (see Fig. 1).

It is surprising that the thermal conductivity of amor-
phous solids depends very weakly on the structure and
chemical composition. Amorphous materials as different

as, for example, Si02, Se, disordered crystals, and poly-
mers have very similar thermal conductivities. This fact
suggests that the explanation of the thermal conductivity
of amorphous solids must be independent of structural
details or the vibrational spectrum. The only common
feature of all amorphous solids is their aperiodicity. In
this paper we demonstrate that aperiodicity alone is
enough to explain qualitatively the thermal conductivity
of glasses at high temperatures ( T) 10 K). We also show
that the vibrational localization, which arises from the
aperiodicity, is at the origin of the strong anharmonicity
of amorphous solids.

This paper is organized as follows. In Sec. II we re-
view different theoretical models intended to explain
thermal conductivity above the plateau. In Secs. III—VI,
we present our molecular-dynamics simulation of the
thermal conductivity of classical periodic and aperiodic
models. In Sec. VII we study vibrational properties of
our models and explain our results for the thermal con-
ductivity by the localization and anharmonic interaction
of vibrational modes (part of the contents of Secs.
III—VII has already been communicated. In Sec. VIII
we present our simulation of the thermal conductivity of
a model, quasiperiodic in one direction, in order to
answer the question of whether or not the influence of
quasiperiodicty on the thermal conductivity is different
from that of a simple aperiodicity. In Sec. IX we show
how a strong anharmonicity results from the vibrational
localization and what influence both of these have on the
spectral intensities of the normal modes. In Sec. X we
discuss the theoretical models presented in Sec. II in the
light of our results.

II. REVIEW OF THE THEORETICAL MODELS

FIG. 1. Thermal conductivity for temperatures above the
plateau temperature for four amorphous solids (from Ref. 1).
The data for vitreous silica are plotted according to the scale on
the right.

A mechanism by which the thermal conductivity of
amorphous solids increases with temperature above 10 K
has been proposed by Alexander, Entin-Wohlman, and
Orbach. According to their proposal, the connectivities
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of the bonds in amorphous solids have fractal geometry
at short length scale (i.e., at distances shorter than a criti-
cal length l„).At long length scale, the structure is Eu-
clidean. Low-frequency phonons whose wavelengths are
longer than the critical length are not affected by the
fractal structure and can be well described by the Debye
model. High-frequency vibrations are "fractons"—
vibrations of fractals. Fractons are localized and cannot
participate directly in the transport of energy at low tem-
peratures. At higher temperatures (T~ 10 K), the frac-
tons can contribute indirectly to heat transport by ex-
changing energy by means of anharmonic interactions
(hopping conductivity) . This mechanism gives the
thermal conductivity, which first increases linearly with
temperature and then saturates at a constant value when
the lifetime of fractons becomes comparable with the
period of their vibrations. Even if the fracton wave func-
tion alone has been used to represent the localized vibra-
tions in the calculation of the thermal conductivity, one
would expect the same results to hold for more conven-
tional vibrations localized above some critical frequency

6S
A quite different mechanism has been proposed by

Karpov and Parshin. According to these authors, at
temperatures above the plateau temperature, the heat is
transported by phonons of frequencies co « ks T/fi.
These phonons are scattered resonantly by two-level sys-
tems, with the population of level differences proportion-
al to I/T. The phonon mean free path then grows linear-
ly with increasing T. As a result, the thermal conductivi-
ty increases linearly with temperature, as in the fracton
model. Both models give the same qualitative results, but
they are based on completely different mechanisms: In
the fracton model, the augmentation of the thermal con-
ductivity is due to an additional heat transport introduced
by the anharmonic interactions, whereas in the other
model, this augmentation is explained by a diminution of
the phonon scattering.

A very simple qualitative explanation of the thermal
conductivity of amorphous solids above the plateau was
proposed by Kittel. According to this, the phonons are
scattered so strongly by the structural disorder that their
mean free path is the shortest possible and is equal to the
interatomic distance a. If one uses the kinetic formula
[cf. (I)] ~= —,

' Cua, one sees that the thermal conductivity
increases with the specific heat C. This qualitative ex-
planation is not satisfactory because the kinetic formula
is applicable only where one can assign a velocity v to
phonons. This is not possible if the mean free path is
shorter than the wavelength. Moreover, in amorphous
solids, the high-frequency vibrations are localized and
cannot propagate. Nevertheless, Allen and Feldman,
who used the Kubo formula to calculate the thermal con-
ductivity of the Wooten-Winer-Weaire model of amor-
phous silicon, ' found a thermal conductivity that agreed
well with the Kittel model. Unfortunately, their results
were not in quantitative agreement with experiment'"
(they were too small), but Allen and Feldman attributed
this to the fact that low-frequency modes were absent
from their calculations because of the small size of the
system studied (216 atoms in a cubic box).

III. DESCRIPTION
OF THE PERIODIC AND APERIODIC MODELS

In order to be able to decide which properties of amor-
phous solids are responsible for their thermal conductivi-
ty above the plateau and to verify the models described in
the previous section, we undertook a molecular-dynamics
simulation of thermal Aux through two two-dimensional
classical (i.e., not quantum mechanical) models of a
periodic (crystalline) and an aperiodic (amorphous) solid,
respectively. The two models are very similar —they are
both modifications of the Penrose tiling. ' ' The choice
of the Penrose tiling as the basis of our models was
prescribed by the facility it affords to construct the
aperiodic model from the periodic in such a way that the
topology and orientational order of the bonds are the
same for both models. Therefore the possibility of details
of local structure being responsible for the difference in
thermal conductivity of the models (see Sec. V, in partic-
ular Fig. 5) may be excluded. Similarly, our choice made
it possible to compare the thermal conductivity of the
quasiperiodic model (Sec. VIII) with those of the periodic
and aperiodic ones. First, we will describe the periodic
model in detail, and then we will define the amorphous
model in relation to the periodic one.

The periodic model (PM) consists of 8 unit cells of 50
atoms each, which form a strip (see Fig. 2). Each unit
cell is a so-called ~=2 periodic approximant of the Pen-
rose tiling with I' =I =2 and the grid parameters
y, =0.5, i = 1, . . . , 5 (see Appendix A). Atoms are
placed at the vertices of the tiling and are coupled to each
other by springs along the sides and also along the short
diagonals of the rhombi. We added these short diagonals
to make the system more rigid and avoid large stringlike
vibrations of the strip. In this way one obtains bonds of
three different lengths r, (i =1,2, 3), numbered in the or-
der of increasing length. r2 is the length of the rhombus
side, r& =(r—1)r2, r3 =2(1 2/4)' r2, r= —,'(]+V'—5)
being the golden number. All bonds are oriented along
one of the side directions of a single regular pentagon or
along lines pointing to the vertices of the same pentagon.
Even if the orientational order of the bonds is not "crys-

FIG. 2. Unit cell of the periodic model.
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= —E+ —,'r5, —
—,'p, 5,+-,'v5, ,

2 & 3 & 4 (2)

where 52=(r rz)/r2 —For .the constants E and r2, nu-
merical values appropriate to solid rare gases were
chosen: r2 =3X 10 cm, c.= 1.75 X 10 ' erg. With
these values one finds

y=126X10 ' erg,

p=10.5y,
v=61.83y .

(3)

Interaction along the short rhombus diagonals is modeled
by anharmonic springs with the same strengths as for the
sides of the rhombus, but of different equilibrium lengths.
The corresponding potentials are V(r, r;; r2 ):

V(r, r, ;r2) = s+ ,'r52 —3p5-3+ ,'v—54- (4)

where 5; =(r —r, )/r2, i =1,2, 3.
In our simulations we used the potential V(r, r, ;r2)

both in its complete form (4) (hereinafter referred to as
anharrnonic springs) and in a shortened form, with

p =v=0 (harmonic springs). It should be noted that even
with harmonic springs the system has anharmonicity in
the following sense: When an atom is displaced by a dis-
tance u in a direction perpendicular to a bond of length
r, , the length of this bond becomes r = ( r; + u )

' ~ . The
force exerted on the displaced atom by its bond partner
will be nonlinear in u because of the presence of the
square root in r.

The aperiodic model (AM) is constructed from the
periodic model. In each of the unit cells of the periodic
model, we have chosen five atoms whose coordination
number is six (see Fig. 3). Each of these atoms can be dis-
placed to a new position of equilibrium, maintaining the
orientational order of the bonds ("hexagonal flip"; see the
description in Fig. 3). The aperiodic model is composed
of eight different cells. The differences between the cells
have been produced by moving, with probability —,', five

designated atoms in each cell to new equilibrium posi-
tions. Owing to this method of construction, the orienta-
tional order and topology are the same for the two mod-
els PM and AM, and in consequence, their densities of vi-

brational states are the same (see Sec. VII).

tallographic, " the unit cell is rectangular and the system
composed of such unit cells is crystalline (periodic).

The dimensions of the unit cell are L XL, with

L =[3(1+r )' +2(1—r /4)' ]r2=6.881 91rz

and L =(3r+ 1)rz =5.8541r2. The "volume" of the cell
is V=L„L„=40.2874rz. The mean interatomic spacing
is a =3/V/50=0. 8976rz.

Atoms of mass m = 10 g interact along the sides of
the rhombi by a potential V(r, r~;r2) represented by the
leading terms of the expansion of a Lennard-Jones poten-
tial about the equilibrium spacing rz.

V(r, rz,'rz ) =s[(rz/r )' —2(rz/r ) ]

FIG. 3. Unit cell of the aperiodic model. The five atomic po-
sitions circled may be shifted to produce aperiodicity (see text).
One of the shifted positions is shown by a small circle, and the
shifted bonds are the dotted lines.

IV. METHOD OF SIMULATION

AE
AAt ' (5)

where A is the cross section of the system, and (b) by the
formula'

N N
X=V ' g v, E, + —,

' g g (r, —r, )[F,, (v, +v, )]
i=i i=1 j=l

where r, , v,-, and E,. are, respectively, the position, veloci-

To obtain the thermal conductivity of the periodic and
aperiodic models, we used the following procedure.

(1) All atoms were placed at their equilibrium posi-
tions and provided with initial velocities chosen random-
ly from a Maxwell distribution of temperature 2T (only
kinetic, no potential energy). The atoms at the ends of
the strip were fixed in their lattice positions. Periodic-
boundary conditions were imposed in a direction perpen-
dicular to the strip axis.

(2) The Beeman molecular-dynamics algorithm' was
applied to solve the time-discretized equations of motion
of the interacting atoms. The time step was about —,

' of
the period of the highest-frequency harmonic mode of the
system.

(3) As soon as the equipartition of energy between the
kinetic and potential parts was established (after about
2000 times steps), the two ends of the sample were placed
in contact with heat reservoirs of temperatures T1 = 1.5T
and T2=0.5T. In practice, this was achieved by trans-
forming the 25 leftmost atoms into the high-temperature
reservoir and the 25 rightmost atoms into the low-
temperature reservoir. At each time step, the velocities
of the atoms lying in the right and left reservoirs were
scaled so that the desired temperature difference was
maintained between the ends of the sample. '

(4) The process was continued until a uniform temper-
ature gradient was obtained (180000 time steps).

(5) The heat current S was calculated by two methods:
(a) by determining the amount of energy entering (or
leaving) the system per unit time,
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ty, and energy of atom i, F,-- is the force exerted by atom

j on atom i, and V is the volume of the system (in our
two-dimensional case, V is the area of the system}. The
mean value of g was calculated during 180000 time
steps. In the steady state, (5) and (6}give identical results
for t'„within the accuracy of the calculation. The es-

timation of the accuracy is given by the transverse
current S„calculated from (6). Ideally the transverse
current should be zero; in practice, it fluctuates during
the simulation, but its value did not exceed 8% of 2„.

(6) The thermal conductivity Ir was calculated from

dT
K

8x
(7)

where x is the longitudinal direction of the strip. The
temperature gradient dT/dx was determined by a linear
fit to the temperature profile far from the boundaries, the
latter being deduced from the energy of layers of atoms
perpendicular to the heat Aux. Each layer contained 25
atoms (one-half of the unit cell).

V. THERMAL CONDUCTIVITY
OF THE PERIODIC AND APERIODIC MODELS

The temperature profile for the aperiodic model with
harmonic springs is shown in Fig. 4, curve a. The tern-
perature is a linear function of position. The profiles for
both models with anharrnonic springs (not shown here)
are also linear. The profile for the periodic model with
harmonic springs is shown in Fig. 4, curve b. The tem-
perature is only a linear function of position away from
the boundaries. This fact is due to the boundary resis-
tance of the thermal contact between the thermal reser-
voir and bulk. The boundary resistance does not depend
on the size of the system. This is reflected in the fact that
the length of the boundary regions, where the tempera-
ture profile is not linear, is independent of the length of
the sainple at a given temperature (see Fig. 4, curves b

and c). A boundary resistance exists for the aperiodic
model also, but since at 40 K the thermal resistance of
the bulk is about twice as large as that for the periodic
model, its effect is not visible in Fig. 4(a) (for further dis-

tr(2D )=
A br dT/dx

(8)

where 3 is the cross section of the system, which is one
dimensional in our case. To obtain the corresponding
thermal conductivity Ic(3D) of a three-dimensional sys-
tem, we divide the right-hand side of (8} by the lattice

cussion of the boundary resistance and its influence on
size dependence, see Appendix B). Using only the linear
part of the temperature profile to calculate the thermal
gradient dT/dx, we can use the formula (7) to find the
thermal conductivity ~.

Figure 5 allows a comparison of the thermal conduc-
tivities as functions of temperature T of the periodic and
aperiodic Inodels. The thermal conductivity of the
periodic model with harmonic springs is high and de-

creases when the temperature increases, as in a crystal.
The introduction of harmonic terms in (4) reduces the
conductivity by a factor of 2 at 10 K, but at high T the
two curves converge.

The destruction of the periodicity, accomplished by
displacing 5% of the atoms as explained in Sec. III (see
Fig. 3), reduces the thermal conductivity by a factor of 3
at 10 K. The conductivity of the aperiodic model in-
creases with temperature until saturation at about 60 K.
This behavior of the thermal conductivity is observed ex-
perimentally in amorphous solids.

In order to verify the results presented in Fig. 5, we
have studied the effects of varying the anharmonicity pa-
rameters p and v in the formula (4) for thermal conduc-
tivity at constant temperature. The thermal conductivi-
ties for different values of the anharmonic parameter are
shown in Fig. 6. Since the higher the temperature, the
larger the vibrational amplitudes of the atoms, and hence
the higher the anharmonicity, Fig. 6 confirms the results
presented in Fig. 5.

Although our simulation does not aim to describe any
particular material, it is interesting to compare our re-
sults with experiment. Combining (5) and (7), we obtain,
for the thermal conductivity a(2D) of the two-
dimensional model,

00
hC

C)

24-

20-
I

distance along the system

FIG. 4. Temperature profiles for systems with harmonic
springs at T=40 K. For clarity the profiles are shifted in the
vertical direction: (a) aperiodic model, 8 cells; (b) periodic
model, 8 cells; and (c) periodic model, 12 cells. Note that the
regions in which the profile is not linear have the same lengths
in (b) and (c).

0
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32-
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I ~ I I ' I I I8
0 20 40 60 80 100 120 140

temperature (K)

FIG. 5. Thermal conductivity as a function of temperature
for systems consisting of eight unit cells each: periodic model
with harmonic springs (0), aperiodic model with harmonic
springs (0), periodic model with anharmonic springs ( X ), and
aperiodic model with anharmonic springs (+ ).
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with the specific heat C =2nkz (n is the number of atoms
per unit surface; in our case, n =50/V = 1.38 X 10'
cm ), v the velocity of sound, and I the mean free path.
With the sound velocity v=1250 m/s and the value
K—12X 10 " W/K from Fig. 5, one obtains the mean
free path l =5 X 10 cm, which is about twice the mean
interatomic distance a. We have thus reproduced the
limiting thermal conductivity [see formula (1)j.

VII. VIBRATIONAL PROPERTIES

constant a (a =0.8976rz=2. 7X10 cm). This simu-

lates a two-dimensional sample cross section. With
~(2D ) = 12 X 10 " W/K from Fig. 5, we arrive at
~(3D)=4.4 mW/cmK, which is close to the values ob-
tained for several amorphous solids (see Fig. 1).

VI. PROPAGATION OF SOUND

We have determined the sound velocity by simulating
the introduction of a shock wave into the system. Initial-
ly, all the atoms were immobile at their equilibrium posi-
tions. At the instant t=0, five atoms at one end of the
system were shifted from their equilibrium positions by a
distance d=10 ' cm (=0.0033rz) toward the interior
and then the system was left to evolve freely. We calcu-
lated the local energy at each site and observed how it
changed with time. The result is shown in Fig. 7. One
can see waves propagating at constant velocity
v =1250+100 m/s (the same for both models, PM and
AM).

In two dimensions the kinetic formula for the thermal
conductivity is given by

K =
—,'Cvl, (9)

FIG. 6. Thermal conductivity at T=20 K as a function of
the strength of the anharmonic terms in Eq. (4). The abscissa is
the ratio p/y, and the ratio p/v is held constant.

To explain the differences in the behavior of the
thermal conductivity of the periodic and aperiodic mod-
els, we calculated the eigenvectors and eigenvalues of the
dynamical matrices (obtained from the equations of
motion in the harmonic approximation) of both models.
Periodic-boundary conditions were imposed in both
directions. The density of states of the periodic model is
shown in the histogram of Fig. 8. For the aperiodic mod-
el, the histogram is not significantly different from that
for the periodic model. This is consistent with the obser-
vation that it is the local structure that determines the
gross features of the density of states. ' Both models
have the same local structure and thus very similar densi-
ties of states. It follows that the difference in the thermal
conductivities of the periodic and aperiodic models can-
not be attributed to a difference in the densities of states.
It is therefore likely that the density of states of an amor-
phous solid is not responsible for its thermal conductivity
above the plateau.

Examination of the eigenvectors of the dynamical ma-
trix (see Fig. 9) shows that the normal modes of the
periodic model are extended and periodic (i.e., the distri-
bution of the amplitude of vibration is periodic in space).
In the aperiodic model, some of the high-frequency
modes are strongly localized, and none of them is period-
ic (see Fig. 10). To obtain a quantitative measure of lo-
calization, we calculated the inverse participation ratio
(R,p) defined for each eigenvector y as'

60
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FIG. 7. Evolution of the local energy as a function of posi-
tion along the periodic model composed of 30 unit cells (1500
atoms). Anharmonic springs. Waves propagating at a constant
velocity are clearly seen.

0 I I I I

0 2 4 6 8 10 &2

(o (THz)

FIG. 8. Number of vibrational states per Ace of the 400-atom
periodic model as a function of the frequency co (left scale). The
mean inverse participation ratio R,p of groups of eigenstates
within he@ are plotted for the aperiodic (A) and periodic (B)
models (right scale). Ace=0. 333 THz.
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FIG. 9. Typical examples of the harmonic modes of the
periodic model. The bars are the amplitudes of vibration of
each atom moving in the mode.
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The definition (10) implies that for vibrations localized on
one site, R &p

= 1, whereas for uniformly spread vibrations
RIP=I/N, where N is the number of atoms. Figure 8

shows that the R,p increases with frequency and is larger
for the aperiodic model. It should be noted that, even if

the Rgp s for high-frequency modes of the periodic model
are bigger than those for smaller frequencies, this does
not mean that these modes are localized. They are ex-
tended, as can be seen in Fig. 9, where the periodicity of
the modes is also clearly visible. On the other hand, the
higher R,p's for normal modes of the aperiodic model im-

ply localization (see Fig. 10).
One sees that the aperiodicity of the aperiodic model

involves the localization of vibrations. Now we are able
to explain the difference in the thermal conductivities of
the periodic and aperiodic models.

Owing to lack of periodicity, some of the modes be-
come localized. A localized mode does not contribute ap-
preciably to the heat current, because to do so a mode
must have a sizable amplitude at both ends of the sample.
Consequently, energy does not propagate well in the
aperiodic model. A localized mode can transfer its ener-

gy to another mode localized elsewhere, or to an extend-
ed mode, by means of anharmonic interactions, contrib-
uting to the heat current in this way. Even the extended
modes of the aperiodic model cannot transfer heat as
effectively as those of the periodic model. Indeed, in
solids, energy propagates in the form of wave packets,
which are superpositions of the stationary normal modes.
In a periodic structure, a given wave packet can propa-
gate freely because it is composed of the same normal
modes everywhere. In the aperiodic model, a wave pack-
et has to change its composition while moving, because
the normal modes are not periodic, and this change is
possible only through anharmonicity. Thus anharmonici-
ty facilities heat transfer in the aperiodic model (see Fig.
11).

On the other hand, modes localized near the ends of
the sample prevent a rapid drop in temperature close to
the boundaries, thereby increasing the thermal gradient.
The anharmonicity which increases the heat current di-
minishes the thermal gradient in the aperiodic model (see
Fig. 12). It follows that the thermal conductivity, being
the heat current divided by the temperature gradient, in-
creases with anharmonicity (see Fig. 6).

In the periodic model, where all modes are extended
and periodic, anharmonicity introduces scattering, which
diminishes the thermal conductivity, as in crystals. Thus
the difference in the behavior of the thermal conductivi-

co = 9.384 THz

pip = 0.0675

r r
~ ~ ~,

~ ~ %~ ~r
~ ~ ~ ' ~

\ ~
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~ r ~
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~ ~li r ~ ~ ~ ~~P~ly
I

0.22

0.20E

m = 8.296 THzg»
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(o = 4.232 THz

Rlp —0.0071
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—0.0054

~ ~

~ 4,

0.18

0.16
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0.14

0.12 I ~
g ~ I ~ ~ ~

0 2 4 6 8 10
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FIG. 10. Typical examples of the harmonic modes of the
aperiodic model.

FIG. 11. Thermal current at T=20 K as a function of anhar-
monicity. The abscissa is the ratio p/y in Eq. (4), and the ratio
p/v is held constant.



7060 J. MICHALSKI

1.4
E

o 1.3

1.2-
U
65
h 1.1
CD

1.0;
CL

0.9E
0

ic Model
dic Model

I t I I I

2 4 6 8 10

anharmonic ratio ply

14

13-

'g 12-

11-c
O
O 10-
cd
E
8 9-

8
0 20

0 g 0
d

~ Quasiperiodic Model

«& Aperiodic Model

$ ~ ~ I g ~ g ~

40 60 80 100 120 140

temperature (K)

FIG. 12. Thermal gradient at T=20 K as a function of
anharmonicity.

FIG. 13. Thermal conductivities of the quasiperiodic and
aperiodic models (550 atoms).

ties of the periodic and aperiodic models is due to the
difference in localization and periodicity of the normal
modes.

VIII. THERMAL CONDUCTIVITY
OF THE QUASIPERIODIC MODEL

In the preceding sections, we showed that lack of
periodicity and the localization of vibrations which this
entails can explain the thermal conductivity of arnor-
phous solids. To verify this conclusion further, we under-
took the simulation of a model which is very similar to
the periodic and aperiodic models, but is quasiperiodic in
one direction. The questions were the following.

(1) What influence does the quasiperiodicity have on
the thermal conductivity?

(2) Is this influence different from that of a simple
aperiodicity?

We constructed the quasiperiodic model (QM) as an
approximant of the Penrose tiling with F, =~ and F =—', ,
r being the golden number (see Appendix A). For the
grid parameters, we chose y; =0.2, i = 1, . . . , 5 [see Ap-
pendix A, Eq. (Al)j. We added bonds along the short di-
agonals of the rhombi, as in the periodic and aperiodic
models (see Sec. III). The infinite quasiperiodic strip was
cut in such a way that the quasiperiodic model contained
550 atoms. Here we chose the size of the system to be
larger than that of the PM and AM studied earlier be-
cause this facilitates the detection of quasiperiodicity,
which remains invisible if the system is too small. In or-
der to make a direct comparison of the conductibilities of
the aperiodic and quasiperiodic models, we repeated our
simulation for the AM with 11 unit cells (550 atoms).
The linear dimensions of these two models (AM and QM)
with 550 atoms are identical.

Since the length of the models with 550 atoms is larger
than that of the models with 400 atoms, more time steps
were necessary in order to obtain a stable temperature
profile. We waited 500000 time steps before recording
data for a further 500000 time steps (for models with 400
atoms, we used 180000 time steps; cf. Sec. IV). Figure 13
shows that the thermal conductivities of the aperiodic
and quasiperiodic models are the same. Thus the effect of

the quasiperiodicity on the thermal conductivity is the
same as that of a simple aperiodicity. Nevertheless, it is
possible that the small size of the model (550 atoms) did
not allow the quasiperiodicity to show any effect in the
results.

IX. LOCALIZED VIBRATIONAL MODES,
ANHARMONICITY,

AND THE SPECTRAL INTENSITY

In Fig. 5 one sees that the two curves of the thermal
conductivities of the PM and AM with harmonic springs
converge to the common value 12X10 "%/K, but the
thermal conductivity of the AM saturates at about 60 K,
while that of the PM has still not reached its high-
ternperature limit value even at 120 K. The reason for
this difference is that the anharrnonicity is stronger in the
aperiodic model than in the periodic model, even if the
two models are very similar (as described in Sec. III) and
the interatomic interactions (the springs) are exactly the
same. To understand this, let us look at Figs. 9 and 10.
It is clearly visible that the high-frequency modes of the
AM are strongly localized, while those of the PM are ex-
tended. In a classical system, a11 modes have the same
energy (equipartition of energy), and so, in particular, a
localized mode has the same energy as an extended one.
Now, in a localized mode, only some of the atoms move,
and their displacernents must be much larger than those
of atoms moving in an extended mode, if the two modes
are to have the same energy, and larger displacements
mean larger anharmonicity. These arguments are also
valid for a quantum system (where not all of the modes
are excited at low temperatures}, but they should only be
applied to modes of (almost) the same frequency. Thus
we see that the anharmonicity is stronger in the aperiodic
model than in the periodic model because the vibrational
localization involves anharmonicity.

To verify this statement, we performed a molecular-
dynamics simulation.

(1) In a system (PM or AM) with harmonic springs (we
recall that harmonic springs do not imply harmonic ap-
proximation; see Sec. III), we excited only one harmonic
mode found from the diagonalization of the dynamical
matrix of the system in the harmonic approximation.
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N

Q„=g (u;"q„'"+u,i'q„'i'), (12)

P„=mg (v qk'+Ufq/;~) .
i=1

(13)

In {12)and (13), qk =(qk', . . . , qr, ', qk'~, . . . ,q„)is the
kth eigenvector of the dynamical matrix, u,. (U, ) is the
ath component of the displacement (velocity) of the ith
atom, and m is the atomic mass. Figure 14 presents the
results of this simulation. One notes that the higher the
R gp of a mode, the faster the mode loses its energy. This
result confirms the statement that higher vibrational lo-
calization involves higher anharmonicity. However, the
situation in which only one harmonic mode is excited is
rather artificia1, and this simulation does not describe
completely what happens when all the modes are present.

To study the effects of anharmonicity further, we ex-
amined the spectral intensities which are the Fourier
transforms of the time evolution of the vibrational
modes. ' The time evolution of the kth vibrational mode
is given by (12).

To obtain correct results for the spectral intensities
from the time evolution of a classical system at constant
temperature, the energy should be uniformly distributed
over all modes. At high temperatures (T- 1~00 K), the
equipartition of energy can be rapidly obtained by plac-

This was done by choosing the initia1 displacements of
the atoms equal to the corresponding components of a
given eigenvector of the dynamical matrix and putting
the initial velocities equal to zero.

(2) We allowed the system to evolve freely during ten
periods of vibration of the harmonic mode, and we
looked at the energy of the mode. The energy of the kth
mode is given by

2
mE= +—coQk 2 2 k k

where

ing the atoms at their equilibrium positions and provid-
ing them with initial velocities chosen randomly from the
Maxwell distribution. Owing to the anharmonic cou-
pling, after a certain time (we used 2000 time steps), the
energy was redistributed among the modes. This pro-
cedure fails at low temperatures, because of the small
value of the anharmonic coupling. For this reason we
adopted the following procedure.

(1) All atoms were placed at their equilibrium posi-
tions and provided with initial random velocities chosen
from a Maxwell distribution of temperature 2T. We
chose T=400 K.

(2) The system was allowed to evolve freely during
2000 time steps.

(3) We cooled the system to a required temperature by
multiplying the velocities by a factor of 0.992 at every
tenth time step (for example, to attain the temperature 10
K, 4600 time steps were necessary).

(4) As soon as the required temperature was attained,
we allowed another 5000 time steps of free evolution be-
fore starting to record data.

That this procedure proved to be effective was shown
by the independence of the results on details of prepara-
tion such as different initial random velocities or the scal-
ing factor equal to 0.995 instead of 0.992.

After having obtained the equipartition of energy at a
required temperature, a run of 399360 time steps was
made. The deviations of each atom from its equilibrium
position were recorded every 26 time steps, in order to
find the time evolution of the modes according to (12).

The spectral intensities of some modes of the periodic
and aperiodic models are shown in Figs. 15-17. The
spectral intensities of the modes of the periodic model are
all well-defined single peaks, the position and linewidth of
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FIG. 15. Spectral intensity of the tenth mode of the periodic
model, co=9.390 THz, R» =0.022.
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which are in qualitative agreement with experimental ob-
servations, ' numerical simulations, ' and theoreti-
cal predictions for crystals: ' the linewidth increases
with temperature, and the position of maximum shifts to
lower frequencies. The spectral intensities of the local-
ized modes of the aperiodic models are quite different.
Some of them have additional peak (see Fig. 16). Other
are similar to those of the modes of the periodic model,
but there are some humps visible on the graphs (Fig. 17)
which do not occur in the PM. We can see that localized
harmonic modes are not always well-defined excitations
of the aperiodic model with harmonic springs, even at
low temperature. To explain this we did another
molecular-dynamics simulation. We excited a localized
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FIG. 18. Harmonic modes of the aperiodic model with fixed
ends.

harmonic mode in the aperiodic model with harmonic
springs, and we examined the energy of this mode togeth-
er with the energies of the other modes. In this way we
were able to see with which modes a given mode interacts
most strongly.

We observed that some modes took much more energy
from the initially excited one than others did. This im-
plies that they interact much more strongly with the ex-
cited mode than do the others. For example, when we
excited mode 7 of the aperiodic model (its spectral inten-
sity is shown in Fig. 16), after ten periods of its vibra-
tions, 12% of its initial energy went to modes 26 and 28,
no energy went to modes 5 and 8, and very little to each
of the others, 55% remaining in mode 7. The frequencies
of modes 26 and 28 correspond to the position of the ad-
ditional peak at co=9.2 THz in Fig. 16. Thus the ex-
istence of the additional peaks is explained. But why
does mode 7 interact strongly with modes 26 and 28,
while its interaction with modes 5 and 8 is very weak?
Figure 18 gives an immediate answer: Modes that are lo-
calized at the same place interact strongly, even if their
frequencies are not very close; modes that are localized at
different places interact very weakly, even if their fre-
quencies are very close.

Thus we arrive at the following conclusions.
(1) Vibrational localization involves strong anharmoni-

city.
(2) The strength of the anharmonic interaction be-

tween localized modes is determined predominantly by
the position of localization and not by the distance be-
tween their frequencies. This fact is rejected in the spec-
tral intensities of the localized modes, which have several
peaks instead of only one.

I e I I I

8.8 9.0 9.2 9.4 9.6
m (THz)

9.8 I 0.0
X. DISCUSSION

FIG. 17. Spectral intensity of the fifth mode of the aperiodic
model, co=9.445 THz, R»=0.035. Small humps are visible at
frequencies near 9 and 9.3 THz.

Our results for the thermal conductivity are in agree-
ment with the predictions of Jagannathan, Orbach, and
Entin-Wohlman (cf. Sec. II)—the conductivity first in-
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creases linearly with temperature and then saturates
when the lifetime of the localized modes becomes of the
order of the period of their vibrations. Indeed, the mean
lifetime is given by B=l/v =(5X10 ' m)/ (1250 rn/s)
=4 X 10 ' s (l is the mean free path, and v is the velocity
of sound), the period of the localized vibrations is

2' 2' 0
—]3

9.5X10" s

and one finds 6=0.66. The results of our simulation
agree particularly with the note of Jagannathan, Orbach,
and Entin-Wohlman, that even if their calculations were
based on the model of fractons, the results should also be
valid for more conventional localized vibrations. Indeed,
the connectivities in the periodic and aperiodic models
are the same, so that, even if one imagines that the AM is
"fractal, " the PM should also be "fractal. " This supports
the idea that, as long as vibrations are localized, the exact
form of their wave functions is not important for the
thermal conductivity.

Our results show that the model of Karpov and
Parshin, whereby the increase of the thermal conductivi-
ty is attributed to the decrease of the population of two-
level systems (see Sec. II), is not indispensable to explain
the thermal conductivity of glasses above the plateau.
Indeed, in the aperiodic model, there are no two-level sys-
tems (there are no double-well potentials, and moreover
the system is classical), but nevertheless the conductivity
increases with temperature. Thus we conclude that the
mechanism proposed by Karpov and Parshin can, at
most, be added to that predicted by Jagannathan, Or-
bach, and Entin-Wohlman.

The mechanism proposed by Kittel (in which the
thermal conductivity increases with the specific heat; see
Sec. II) and confirmed numerically by Allen and Feld-
man should also be considered as additional to that of
Jagannathan, Orbach, and Entin-Wohlman. Indeed, our
molecular-dynamics simulation is classical and the
specific heat of the aperiodic model is constant —thus the
increase of the thermal conductivity cannot be attributed
to the increase of the specific heat. It is not surprising,
then, that Allen and Feldman found the thermal conduc-
tivity of their model of amorphous silicon smaller than
that measured experimentally —their calculations, done
in harmonic approximation, neglected (apart from the
contribution of long-wavelength vibrations) the increase
of the conductivity due to anharmonicity.

The thermal conductivity of the quasiperiodic model
studied in Sec. VIII is the same as that of the aperiodic
model. This suggests that the quasiperiodicity affects the
thermal conductivity in the same way as a simple
aperiodicity. Nevertheless, the small size of the model
does not allow a definitive conclusion to be drawn about
the thermal conductivity of quasicrystals.

The results of Sec. IX show that vibrational localiza-
tion in amorphous solids involves strong anharmonicity
which cannot be treated by perturbation calculation, even
at low temperatures. Thus any realistic description of
thermal properties of amorphous solids must include a
full treatment of anharmonicity and not consider it as a
small correction to the harmonic forces. We believe that

this strong anharmonicity, which is due to the vibrational
localization, may be responsible for the low-temperature
thermal properties of glasses.
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APPENDIX A: CONSTRUCTION
OF APPROXIMANTS OF THE PENROSE TILINGS

BY THE MULTIGRID METHOD

K (y)= [y g
—y, ], i =1, . . . , 5, (A2)

where [x] =min[n EZ~n ~x I. Let xo be an intersection
point of two grid lines and U(xo) a small neighborhood of
xo containing no other intersection points. From (Al)
and (A2) it follows that on U(xo) the vector K(y) takes
on four different values K(xo,j), j=l, . . . , 4. The four
vectors

5

P(xo,j)= g E;(xo,j)g;, j=l, . . . , 4, (A3)

point to the vertices of one of the two Penrose rhombi.
The set of rhombi defined by all intersection points form
a perfect tiling.

This method can be generalized. The vectors g; in
the formula (A3) are not necessarily the same as those in
(Al). One can associate an arbitrary vector t; with each
vector g, . The only restriction is that for every couple of
indices (i&, iz) the corresponding pairs of vectors (g;,g; )

1 2

and (t, , t; ) span a surface of the same orientation. In-
1 2

stead of (A3) one can write

5

P(xo j)= g K,.(xo j)t, , j=1, . . . , 4. (A4)

To obtain the Penrose tiling, the vectors t;, i
= 1, . . . , 5, are given (with accuracy to the normalization
factors) by

Let Ig; J;, 5 be a star of unit vectors pointing to
the vertices of a regular pentagon. These are called grid
vectors. The grid G~ is defined as an ensemble of five ar-
rays of equidistant parallel lines orthogonal to the vectors
gi:

Gq=txGE ~x g; —y;=k;; i =1, . . . , 5, k, EZI . (Al)

The grid parameters y; ER define translations of the ar-
rays relative to the origin.

Let us assign a vector K(y)GZ to every point yFE,
defined by the components K;(y) given by
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t4—

2

7—3

t2=
2r —1

7.—1 ' 3

1 —2w

T

3 —7.

(A5)

12

10-

8-

6-

4-
where r=(1+i 5)/2=1. 61803 is the golden number.

If one chooses the vectors g, in (Al) identical to the
vectors t; given by (A5), using (Al), (A2), and (A4), one
obtains the ideal Penrose tiling (quasiperiodic, self-
similar).

To obtain periodic approximants of the Penrose tiling,
one utilizes rational approximants of the golden number.
The golden number is the limit of the series

7= llm
)~oo

I ' I ' I ' I ' I ' I ' I

0 2 4 6 8 10 12 14 16

1 isample length {10 cm )

FIG. 19. Length dependence of the thermal conductivity of
the aperiodic (line 3) and periodic (line B) models with harmon-
ic springs at 40 K. Data points indicated by the arrows are
those used in Fig. 5.

0
g~= 2 g2

2F —1 3 —F

g4=
F„—3 1 —2F

F —1
y

(A7)

where x,y=3, 4, 5,6, . . . . Let us note that, in general,
different components of the vectors g,. can utilize
different approximants of the golden number; i.e., x and y
in (A7) may not be the same. In this way one obtains
periodic approximants of the Penrose tiling with different
periods in each direction. In particular, we used
F Fy

&
to construct the unit cell of the periodic mod-

el (Sec. III) and F„=rand F =—', for the strip, quasi-
periodic in the x direction (Sec. IX).

APPENDIX B: BOUNDARY RESISTANCE
AND SIZE DEPENDENCE

To study how the size of the system can infIuenee the
results for thermal conductivity, we performed simula-
tions for the periodic and aperiodic models of different
lengths (i.e., composed of different numbers of the "unit
cells" ). We found that, at a given temperature, the length
dependence of the thermal conductivity a. Idefined by Eq.
(7)] is well described by

where f; is the ith Fibonacci number. The two first Fi-
bonacci numbers are 1, f, =f2 =1, the ith number, i )2,
is defined as f; =f; 2+f;,. Consecutive approximants
of the golden number are thus —,

' =1, —', =2, —,'=1.5,
—,
' = 1.667, —,

' = 1.6, —", = 1.625, etc. Let us define

F; =f; +, /f; . In order to obtain periodic approximants
of the Penrose tiling, one defines the vectors g; as follows
[cf. (A5)]:

—=r+R /I. ,
1

K

where r is the bulk thermal resistance per unit length and
Rb is the boundary resistance. r and Rb are both in-

dependent of the length I.. Owing to the presence of
boundary resistance, the thermal conductivity ~ increases
with the length of the system and saturates at
a(L=oo)=1/r. The plot of I/v versus 1/L for the
periodic model with harmonic springs is shown in Fig.
19, line 8. The slope is the boundary resistance, and the
intersection of the line with the vertical axis gives the in-
verse of the thermal conductivity of the bulk.

%e found that the boundary resistance varied little
with temperature; for instance, at 40 K it is about 10%
smaller than at 20 K. One can expect the boundary resis-
tance to be the same for both the periodic and aperiodie
models. Indeed, the slopes of the two lines in Fig. 19 are
very similar. It is clear then that increasing the length of
the systems will not change the qualitative difference be-
tween the thermal conductivities of the periodic and
aperiodic models. For this reason our simulations were
limited to systems of fixed lengths, and in order to mini-
mize the inhuence of size dependence on the conclusions,
the properties of models of the same size were compared.

One could imagine that the vibrational localization (see
Sec. VIII) might infiuence the size dependence of the
thermal conductivity of the aperiodic model. Indeed, in a
finite system, some of the localized modes may still have
nonzero amplitudes at both ends of the system and so
contribute directly to the heat conduction. The longer
the system, the smaller the fraction of such modes. Thus
one of the effects of the vibrational localization could be
to diminish the thermal conductivity of the aperiodic
model when the length of the system is increased. We did
not observe such an effect in our simulations.
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