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We have constructed a lattice-dynamical model which possesses many of the features occurring at
first-order structural phase transitions in solids. The model includes an asymmetric nonlinear on-site po-
tential and anharmonic interparticle interactions. The anharmonicity in the interaction is introduced in

a way which lowers the phonon frequencies in the high-temperature, metastable phase. The interaction
provides a mechanism for a vibrational-entropy-driven first-order phase transition. We present results
from molecular-dynamics calculations which show (i) clear evidence in the thermodynamic functions for
the existence of a first-order phase transition produced by heating from low temperature, and (ii) unusual

properties for the position probability distribution and the dynamic structure factor. These spectral
functions have significant intensity in the quasielastic region, and this contribution is strongly maximized

near the transition temperature. The wave-vector dependence of this "central peak" clearly points to the
existence of propagating nonlinear modes.

I. INTRODUCTION

This paper is concerned with understanding the micro-
scopic character of a significant class of displacive phase
transitions, particularly those involving body-centered-
cubic (P cubic) to close-packed arrangements, which
occur in, e.g. , alkali metals and martensitic alloys. Over
the past several years a large amount of accurate experi-
mental information has been obtained (see, e.g. , the re-
cent summary of displacive transformations from P cubic
to a hcp, or P cubic to the co phase in pure Ti and Zr by
Heiming et al. ,

' and references therein). These transfor-
mations are diffusionless, being accomplished specifically
by a particular set of displacive distortions of the P-cubic
lattice to produce a different symmetry structure. The
transformations are topologically reversible, and the rela-
tionship between the high- and low-temperature struc-
tures is referred to as a lattice correspondence. In gen-
eral, both elastic strains and modulation waves may be
involved. A useful brief discussion of this structural rela-
tionship concept is found in Lindgk, rd and Mouritsen
and more extensively in Nishiyama.

The important heuristic advance in describing these
transitions combined two ideas: employing a Landau ex-
pansion of the free energy in powers of the amplitudes of
the distortion modes with the relevant symmetry and us-

ing mode frequencies which are temperature dependent
due to lattice anharmonicity. This free-energy function
and the temperature-dependent quasiharmonic mode fre-
quencies derive from essentially mean-field approxima-

where g denotes the static, uniform displacement ampli-
tude. For T) To, this polynomial form for F is mini-
mized by q, =O, while for T& To, F develops an un-

stable maximum at g =0 and stable minima at
g, =+[a~ T —To~/Bj'~ . Thus, as T decreases through

To, g, grows continuously from its zero value above To,
proportionally to

~

T —To' . (As is well known, diverg-

ing fluctuations change the exponent from the mean-field
value of —,', but the values of the critical exponents are not
of primary concern here. ) Concurrently, there is a close
relation between the coefficient of the g term and the
quasiharmonic frequency measured by inelastic neutron
scattering:

m *co, ,=a( T —To), (1.2)

where m* is an appropriate reduced mass. Though pos-
tulated by Cochran and by Anderson, formal demonstra-
tion of this relation was given by Cowley and by Mara-
dudin and Fein using many-body anharmonic phonon
perturbation theory. Equations (1.1) and (1.2) together
give the "soft-mode" theory of displacive transitions.

tions to the statistical mechanics. One of the early
motivating examples was a theory of the ferroelectric
transition described by a specific static displacement cor-
responding to an optical mode, e.g., of a perovskite lat-
tice. For that transition, Cochran and Anderson postu-
lated a free energy '

F =
—,'a (T —To)ri + ,'Br) +—
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Its key features are (1) the lattice becomes unstable
against static displacements in a particular mode when
the quasiharmonic frequency of that mode goes to zero at
T = To, (2) the resulting distortion of the lattice produces
a new phase (the high- and low-temperature phases are
known as parent and product phases, respectively), (3)
the description is limited to second-order transitions
since the order parameter g changes continuously at To.

This classic "soft-mode" theory, being both intuitively
appealing and easy to apply to data, has been widely in-
voked and for a few prototypic materials has been re-
markably successful, considering the level of approxima-
tion involved. However, the following observations
showed that important features were missing from the
theory: (1) the existence of the "central peak, " i.e., the
anomalous, large quasielastic intensity in neutron-
scattering experiments; (2) the fact that very few trans-
forming materials showed the magnitude of "softening"
needed to fit a soft-mode model; (3) evidence for precur-
sor structures in many, but not all, cases. Indeed, precise
experiments by Muller on carefully prepared perovskite
samples showed evidence for precursor regions of the
product phase, even in the purest samples. Stimulated by
these anomalies, research was initiated on model systems
where the statistical mechanics could be treated exactly,
e.g., by the transfer integral method for the one-
dimensional (1D) systems or by the Onsager method for
highly anisotropic 2D systems. Increasing computational
capabilities also motivated research on these model sys-
tems by molecular dynamics. ' '"

The prototypic case of these model systems, the so-
called "(t model, "begins with an on-site potential energy
(not free energy),

V(u;)= —
—,'au, + —,'Pu, (1.3}

where u; is a one-component dynamical variable (a dis
placement in this lattice-dynamical context) at each lat-
tice site i. In addition, displacements at nearest-neighbor
sites are coupled harmonically, V(u;, uj ) =vj (u;—uj) /2. The order parameter is the average displace-
ment, ri=(u;), where ( ) denotes finite-temperature
ensemble average. The potential V(u) has degenerate
minima at +(a/P)'~, and so the T=O ground state is a
broken symmetry state with uniform displacements
throughout the system, giving rt=+(a/P)' . In con-
trast, at suSciently high temperature, g=O. The simula-
tions by Schneider and Stoll' and by Kerr and Bishop"
bear out the expected behavior in 2D or 3D. Of the three
experimental features listed above which are missing
from the soft-mode model, the simulations' '" confirm
the existence both of a central peak not related to impuri-
ties and of precursors, in accord with Muller's experi-
ments. A soft mode, which displays a substantial de-
crease in frequency as T changes, is present in these com-
puter simulations, but, as discussed by Kerr and
Bishop, " there are important additional features beyond
the original soft-mode theory.

The (() model still describes a second-order phase tran-
sition, however, and it has a substantial mode softening,
as mentioned above. These features differ from many ex-

perimental findings' which show that very few
diffusionless structural transitions are second order, and
most have only minor frequency softening for the modes
which produce the displacive lattice correspondence.
The consequence is that different considerations are
necessary, which brings us to the research reported here;
models which can deal with first-order transitions must
be constructed.

Paralleling the development of the soft-mode models, a
"Landau mean-field" description is constructed. A Lan-
dau free-energy function of the form' (see Fig. 1)

F 2 3 4
=A (T) — + +

Fo 2 3 4
(1.4)

describes a first-order transition; as before, g is the order
parameter, A(T) a temperature-dependent control pa-
rameter, and Fo a scale energy. It is important to note
that this function is asymmetric in r) (the point symmetry
of the high-temperature phase may dictate other forms
for F}. The absolute minimum of F determines the equi-
librium state; thus, for A (T))—,', the order parameter is

rt=O, for A (T)=—', , the values g=O and —,
' are degen-

erate, and for A (T) (2/9, rt= [1+[1—4A (T)]'~ ]/
2& —', . The order parameter jumps discontinuously as
A (T) passes through —'„which is the condition for the
transition. Physically, ri=O could correspond to a P-
cubic phase, and g= —,

' to a close-packed structure along

[111],„b;„for example.
Again, paralleling the soft-mode theory and the anhar-

monic phonon theories, ' the coefficient A ( T) can be re-
lated' to the quasiharmonic frequency of the mode gen-
erating the lattice correspondence, i.e., A (T) ~tv„. Ac-
cording to this mean-field theory, however, co„ap-
proaches a nonzero value ( —', in the appropriate units) at
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FIG. 1. This figure has two interpretations. The first is a plot
of the Landau free-energy function F as a function of order pa-
rameter g of Eq. (1.4). The dot-dashed curve is for A (T)= —',
the dashed curve is for A (T)= —,and the solid curve is for
A ( T) in the range 0( A ( T) & —.The second interpretation is a
plot of the on-site potential-energy function of Eq. (2.2); the

0 2
solid curve is for the value ao = 1.50 eV/A used for the simula-
tions (see Tables I and II).
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the transition. In fact, little change in frequency occurs
as A (T) moves through the transition. ' Over some tem-
perature range, A ( T) can be represented by a ( T —To ),
just as in the soft-mode theory Eq. (1.1), but, as noted in
Ref. 13, To may even be negative. Thus, this putative
soft-mode instability temperature has little to do with the
transition temperature, although the mode pattern still
associates with the transformation lattice correspon-
dence. ' These observations can be fit by the heuristic
models of Cook' and Krumhansl and Gooding. ' How-
ever, again the questions of transformation precursors
and detailed dynamics are not answered by the Landau
mean-field approach.

To obtain information on these questions we continued
to follow the strategy applied to the P model and turned
to the computer simulation (as in Ref. 11) of models ap-
propriate to first-order transitions. The comparison of
the free energy Eq. (1.1) and potential energy Eq. (1.3) for
the second-order transition of the P model suggested
that, for a first-order transition, we should use a potential
energy with the form of Eq. (1.4) but with temperature
independent parameters [see Eq. (2.2) below]. ' ' By us-

ing a potential energy with the same form as a Landau
free energy which has a first-order transition, we expected
to get the same form as the Landau free energy with ap-
propriately temperature-dependent parameters.

However, the results obtained here, and also by Morris
and Gooding, ' show that expectation to have been
somewhat simplistic, for good physical reasons. The
physical argument goes back to Zener' (in 1947): If, at
T=O, a low-symmetry structure [e.g. , the co phase, or
some (111)close-packed modification] has lower potential
energy than a high-temperature structure (e.g. , P cubic),
then the likely way by which the high-energy phase can
have lower free energy at finite temperature is by having
greater vibrational entropy, which is achieved by having
lower-frequency phonons. In particular, the P-cubic
structure has intrinsically very low-frequency —', (1,1,1) or

(1,1,0) phonons compared to those of the close-packed
lower-temperature structure, which corroborates Zener's
suggestion that the transition between the low-T and
high-T structures is entropy driven. (See also the discus-
sions of Ye et al. and of Willaime and Massobrio. )

Having recognized the importance of the vibrational
entropy in this context, we then had the problem of ap-
propriately controlling the phonon frequencies in the
simulation models while maintaining the desired form of
the on-site potential energy (cf. the discussion in previous
paragraph). We have done this by introducing an addi-
tional term in the intersite potential energy which stiffens
the coupling in the g&0 (viz, close-packed or product)
structure relative to the i)=0 (viz, P-cubic or parent)
structure. This term appears as an "anharmonic" cou-
pling term between displacements at nearest-neighbor
sites [cf. Eq. (2.4) below]. The importance of including
this feature to incorporate physical realism into the mod-
el has become apparent from the simulations.

For clarity there are two additional points which merit
attention here. First, in the discussion above, and also
frequently in the literature, the variables [u, ] might ap-
pear to denote the actual atomic displacements. That

may be the case in some situations; however, if the
mode(s) describing the lattice correspondence of the two
phases is (are) at wave vector(s) qo, which are nonzero,
then the u, are really the modulation amplitude u o(r;) of
these significant modes; the actual displacement at site
r, is uqo(r, )cos(qo. r; ). Averaging over the rapidly varying
cos(qo r;) terms produces an effective Hamiltonian in
terms of these amplitudes u o(r;). The procedure for ob-
taining such effective Hamiltonians is discussed for a
number of cases by Bruce, Cowley, and Murray. ' Thus,
one is to think of u; as the amplitude (complex, in gen-
eral) of the phonon exp(iqo r;) at position r, . For exam-
ple, for the co phase, the significant phonon is the LA
mode at qo= —,

' (1,1,1) and for the hcp "a phase" it is the

TA2 mode at the N point (110)of the Brillouin zone.
Lastly, we mention two other interactions that may be

important to this model, but which we are ignoring:
order-parameter-strain coupling, and coupling between
the distinct variants of the ~ phase that have different q
values. The strain that couples to the order parameter
for this transition ' is the symmetric strain. Thus, the
part of the static physics that we are ignoring is that
there is a small homogeneous volume change at the tran-
sition. While this is probably an irrelevant effect for the
statics, the effect of the strain field on the dynamics is not
necessarily small. To be specific, we know that the
long-ranged elastic force induced by any inclusions alters
the classical nucleation rate, but for now we shall ignore
this effect. The second interaction that we have ignored
is that between domains of the product phase with
different wave vectors belonging to the star of q=qo. We
do not expect this interaction to be important, as it is a
high-order invariant that appears in the phenomenologi-
cal free-energy expansion (fourth-order, in comparison to
the third-order umklapp term that leads to the stability
of the single-variant co phase' ), and thus here we shall
only consider one possible wave vector for the product
phase. Thus, understanding that the simulation is
effectively for the amplitude of a single-phonon eigenvec-
tor that does not include the coupling to homogeneous
strains, we proceed to a detailed description of the model
in Sec. II, of the molecular-dynamics techniques in Sec.
III, and of the results in Sec. IV. Discussion and con-
clusions are in Sec. V.

II. THE MODEL

As explained in the Introduction, the microscopic
model used in this paper is a generalization of one that
has been used extensively to study second-order structur-
al phase transitions. The first element of the model is a
two-dimensional square lattice with N and N sites

along the x and y axes, respectively; the total number of
sites is N=N N . These sites are labeled by vectors
n=(n„n ) whose components are integers restricted to
lie in the ranges 1 n N, 1 n N . The value of
the displacement field at lattice site n is denoted by
u (n)=u (n, n ). This is a one-component or scalar field;

that is, the model assumes that the significant displace-
ments occur in only one direction. As discussed in the
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V&(u) =
—,'aou —

—,'Bu + —,'Cu (2.2)

where the parameters ao, 8, and C are positive. We are
interested in effects arising from changes in the shape of
V, (u). From the three parameters, the overall scales of
energy and displacement are determined by the combina-
tions B lC and B/C, respectively. The shape is deter-
mined by the dimensionless ratio ao/(B /C). When this
ratio is in the range 0 & ao l(B /C) & —,', V& (u) is an asym-
metric double well (Fig. 1) with the higher (metastable)
minimum located at u, and the lower (stable) minimum
located at u„where

Qms 0& Qs
I++1 4[ao l(B —/C))

2 C
(2.3)

For aol(B /C)= ,', V, (u) is —a symmetric double well;

this is the on-site potential usually considered in theories
of second-order structural phase transitions. (Usually
the origin is taken at the maximum of the potential rath-
er than at the left-hand minimum as we are doing here. )

The single-particle potential is nontranslationally invari-
ant for both symmetric and asymmetric cases. It is to be
imagined to arise from an underlying sublattice whose
atoms do not participate in the structural transition.

For the pair-interaction term, we have used the anhar-
monic function

Vz(u (n), u(n')) =
—,
'

t k +a[u (n)+ u(n')] I

X [u (n) —u(n')] (2.4)

with harmonic force constant k and anharmonic force
constant a. [The anharmonic part is different from that
in Ref. 18 because the on-site potential in Eq. (2.2) is
asymmetric. ] The motivation for this choice is the fol-
lowing. In the models for second-order transitions the in-
teraction term is taken to be the nearest-neighbor har-
monic interaction obtained by setting a =0 in Eq. (2.4),

Introduction, this field is actually the amplitude of the
phonon mode which drives the displacive correspon-
dence. Periodic boundary conditions are used, so that

u(n„+N„, n )=u(n, n +N )=u(n„, n~) .

The total potential-energy function 4 is a sum of
single-particle (on-site) terms and nearest-neighbor pair-
interaction terms:

4= g V, (u(n))+ —,
' g V2(u(n), u(n+5)) . (2.1)

n, 5

Here 5 denotes the set of nearest-neighbor vectors in two
dimensions [(+1,0) and (0,+1)].

The on-site potential is taken to be

occurs when the harmonic interaction [Eq. (2.5)] is com-
bined with the asymmetric on-site potential in Eq. (2.2)
for dimensionality d=2. A way to understand this result
is to note that the shape of the asymmetric on-site poten-
tial as a function of u is very similar to the shape of the
symmetric potential plus a contribution from an external
force acting on each particle, which adds a term —Fu in
the potential energy for each particle. Whether the sym-
metry is removed by a cubic term or by a linear term does
not seem to be important. It is known that an external
field destroys a second-order transition that is present
without the field. The results of our earlier simulations
are consistent with the fact.

In order to produce a first-order transition (for d )2),
we introduce the additional anharmonic term proportion-
al to the parameter a in Eq. (2.4). From the form of that
function one sees that this term effectively makes the
force "constant" of the spring (bond) joining a nearest-
neighbor pair of particles dependent on the position of
the center of mass of the pair. We take n) 0 so that the
force "constant" is larger when both particles are near
the stable minimum of the on-site potential V, (u) than
when both are near the metastable minimum or when
there is one particle near each minimum. For tempera-
tures near the transition, we imagine that the system or-
ganizes itself into clusters within which the particles are
nearly all in one phase: either the metastable phase with
the average displacement ( u ) near u, =0 or the stable
phase with (u ) near u, [Eq. (2.3)]. The position depen-
dence of the force "constant" causes the local (within a
cluster) lattice vibrational frequencies to be higher in the
clusters of the stable phase than in the clusters of the
metastable phase. Because of the inverse relation be-
tween vibration frequencies and entropy, this change
increases the entropy of configurations which have more
or larger clusters of the metastable phase. Through this
mechanism, the anharmonic pair potential in Eq. (2.4)
causes an entropy-driven phase transition' between these
two configurations for dimensions d & 2.

The added terms iri the pair-interaction potential are
not translationally invariant. In this respect they are like
the on-site potential V, (u) and can be thought of in the
same way as arising from the background sublattice of
atoms that do not take part in the transition but do affect
the potential energy between the atoms that are in-
volved.

The equations of motion obtained from the potential
energy in Eqs. (2.1), (2,2), and (2.4) are

Mii(n)= —aou(n)+Bu (n) —Cu (n)

+ g [u(n+5) —u(n)]

V2(u(n), u(n'))~ 0= —,'k[u(n) —u (n')] (2.5)
X [k+ —,'a[u (n+5}+3u(n)]I . (2.6}

When this pair-interaction energy is combined with the
symmetric on-site potential (cf. the previous paragraph),
the resulting system is the so-called P model, which has
been extensively studied. " For dimensionality d)2,
this system has a second-order phase transition. We
found by computer simulation that no phase transition

+ g (k +2auo)[u (n+5) —u (n)], (2.7)

These equations can be linearized for small oscillations
about either the stable or metastable minimum of the on-
site potential. The resulting linear equations are

Mii(n) = —(ao 2Buo+3Cu 0)u(n)—
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where uo denotes either u, =0 or u, [Eq. (2.3)], depend-
ing on which point is chosen for the linearization. (In the
continuum limit, this is a 2D Klein-Gordon equation. )
The solutions of these equations are propagating lattice
waves. The dispersion relations are (l is the lattice con-
stant, q the wave vector)

M [co"(q)] =ao —2Bu, +3Cu,'

+4(k +2au, )

The location of the extrema of this expression are found
by setting the derivatives with respect to U, and u, to
zero. When we introduce the explicit form of V, from
Eq. (2.2) and use the fact that we are seeking nonuniform
solutions so that u, &0, we obtain

2aoU, B—(2U, + —,'u„)

+C(2U, + —,
' U, u„')+4au, =0 (2.12)

and
q, l ql

X sin +sin
2 2

for small oscillations about the stable minimum, and

q, l q I
M [co' "(q) ] =ao+4k sin + sin

2 2

(2.8)

(2.9)

(ao+8k)+(16a —2B)U, +3CU, + —,'Cu„=O .

(2.13)

The c.m. and relative variables can now be separated by
solving Eq. (2.13) for u„,

ao+Sk

for small oscillations about the metastable minimum.
For the parameter values we have used in the simulations
(cf. next section), the curvature of the on-site potential is
greater at the stable minimum than at the metastable
minimum [i.e. (ao —2Bu, +3Cu, ) )ao], and so near
q=O, where a has no effect, Eqs. (2.8) and (2.9) show that
the phonons in the stable well have higher frequency than
those in the metastable well. Furthermore, comparison
of the coefficients of the q-dependent term shows that the
anharmonicity introduced through the parameter e in-
creases the bandwidth of the phonon spectrum for small
oscillations about the stable minimum. This observation
is relevant for the results presented in Sec. IV.

Inspection of Eqs. (2.1), (2.2), and (2.4) suggests that
the minimum-energy configuration (which is the T=O
structure) of the system is spatially uniform. Equation
(2.4) is then zero, and the value of the uniform displace-
ment minimizes the on-site potential, which is u, in Eq.
(2.3). However, because the anharmonic term propor-
tional to cz is cubic, it can take on large negative values;
this possibility allows spatially nonuniform structures to
have lower energies for sufficiently large a values. We
now explain this caveat.

We consider the 2D square lattice to be composed of
two interpenetrating sublattices A and B with the proper-
ty that the nearest neighbors of every A site are B sites
and vice versa. If the displacements within each sublat-
tice are uniform with the values U~ and Uz, then the po-
tential energy of this configuration is

and substituting in Eq. (2.12) to give

(2. 14)

CU, +(9a—B)U, + —ao+ 12k+ U,
(8a —B)

4 C

+ (ao+8k)(8a —B)=0 .
l

8C
(2. 1 5)

0.5

0.0
Stoggered structure; high energy

—0.5

& -1.0
ZL —1.5
LJJ

St

From this point we proceed numerically, taking ao, B,
C, k fixed at the values used for the simulation and con-
sidering a range of a values. The roots of Eq. (2.15) are
found, giving the possible U, values. These values sub-
stituted into Eq. (2.14) give the possible u„values. The
energies of these solutions are obtained from Eq. (2.11).
The results are shown in Fig. 2. For a(5.96 eV/A,
there are no real solutions of Eqs. (2.14) and (2. 15),
whereas for n larger than this value there are two real

4 =—V, ( U„)+—V, ( Us )
1V 1V

—2.0

—2.5

+N [k +a( U„+Us ) ](U„—Us ) (2.10)

+N(k+2aU, )u„. (2.11)

In terms of the center-of-mass (c.m. ) displacement
U, = ( U~ + U~ ) /2 and the relative displacement
u„= U~ —Uz, this energy is

4& =—V, ( U, + —,
' u „)+—V, ( U, —

—,
' u „)iV X

—3.0
6.0 6.2 6.4

a (ev/A')
6.6 6.8 7.0

FIG. 2. Energy per particle vs anharmonicity parameter a
for the two-sublattice structure discussed in the text. The
curves labeled "staggered structure" are the energies of the two
real solutions of Eqs. (2.14) and (2.15), calculated from Eq.
(2.11). The constant value labeled uniform structure" is the
minimum of the on-site potential Vi (u).
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solutions. The energy of one of these decreases rather
rapidly with increasing a and for n 6.16 eV/A it lies
below the energy of the uniform solution. Thus, this
nonuniform solution is the stable structure at T=O for
these 1arger a values.

The simulations described in the following sections are
all for a values less than this critica1 value, so that the
T=0 structure is spatially uniform at the stable minimum
of V, (u). However, it is useful to keep in mind that the
model contains possibilities for more complicated struc-
tures.

III. MOLECULAR-DYNAMICS CALCULATIONS

The equations of motion used for the simulations are
given in Eq. (2.6). These equations are integrated by an
algorithm due to Beeman, which is deterministic and
conservative (rnicrocanonical ensemble). Additional
damping and stochastic terms, to represent the interac-
tion of the system with a heat bath (canonical ensemble),
are not included.

The values for the mass M, and the potential-energy
parameters ao, B, C, and k are given in Table I. They are
chosen to represent zirconium, which has a much-studied
structural transition from a high-temperature P-cubic
phase to a low-temperature co phase. The values for ao,
B, and C are obtained by fitting the cubic polynomial
V, (u) in Eq. (2.2) to frozen phonon calculations of the
energy as a function of the amplitude for the —,'(1,1,1)

phonon of Zr, done by Ho et al. (Those calculations
are not accurately fit by a cubic polynomial, so the simu-
lations cannot be expected to be an accurate description
of real Zr. ) The value for k was obtained to fit the cur-
vature in the longitudinal direction at the minimum at
—,'(1,1,1) of the observed phonon dispersion curves for
Zr. (The phonon dispersion of Zr is highly anisotropic
about this point so that a force-constant tensor is re-
quired to describe it accurately rather than a single k.
This is another reason these simulations cannot be an ac-
curate description of Zr. )

A value for the parameter n for Zr is not available, so
we used theoretical considerations to determine a reason-
able range of values. Equation(2. 8) shows that the
change of phonon frequencies for the low-temperature
phase from Brillouin-zone center to boundary is governed
by the combinations (k+2au, ). The decrease of the
phonon frequencies from the low-temperature structure
to the high-temperature structure is the mechanism for
producing the entropy-driven transition between the
phases. Thus, it seemed reasonable to consider a values

Unit

TABLE II. Units.

Formula Value

in the range from zero to where au, =k. Thus, given the
values of the other parameters, we have done simulations
for several values in the range 0 ~ o. ~ 3.40 eV/A .

Certain energy comparisons determined by these num-
bers are of interest. The maximum and minimum of
V, (u) (Fig. 1) are V,„=5.73 meV and V;„=—27.9
meV. For the interparticle interaction energy, first con-
sider the case where a=0. The interaction energy re-
quired to move one particle from the metastable
minimum to the maximum of the on-site potential, a11

other atoms remaining fixed, is (recall that this displace-
ment stretches four springs) 2ku, „=96.2 meV. Similar-

ly, the interaction energy to move a particle from the
stable minimum to the maximum is 2k (u
—u,„) =346 meV. If we now include the effect of a,
these numbers become even larger. Thus, for displace-
ment of a particle out of either well, the interaction
(bond) energy is larger than the corresponding site ener-

gy. A system with this ordering of the energies is said to
be displacive; the larger bond energy tends to cause the
particle displacements to vary slowly as a function of site
position.

Integration of Eq. (2.6) is simplified by rewriting them
in terms of dimensionless units. The factors for doing
that conversion are given in Table II; the effect is to make
M =B =C= 1 and, of course, to change the values of ao,
k, and a.

The equations are integrated for a system of 6000 par-
ticles, with N =80, 1V =75. The time step for the in-
tegration is chosen to be ht =2.74X 10 ' sec. With this
time step the energy is conserved to within a few parts in
10 . For one of our a values (3.40 eV/A ), two different
series of runs were carried out: a "cooling" series, started
at high temperature and a "heating" series started at low
temperature. For other a values only a "heating" series
of runs was performed. The initial conditions for the be-
ginning step of each of these series were random positions
and velocities approximately appropriate for the starting
temperatures. The initial conditions for the other tem-
perature values in both series were derived from the posi-
tion and velocity data at the end of the previous tempera-
ture step by cooling or heating the system.

The procedure for changing the temperature is as fol-
lows. The actual temperature is estimated from a short
run of 1400 time steps. If it is not equal to the desired
temperature to within a certain tolerance, then over the
next 1400 time steps, the velocities are gently adjusted to

Quantity

M
ao
8
C
k

Value

1.49 X 10
1.50 eV/A
12.1 eV/A
18.5 eV/A
1.67 eV/A

TABLE I ~ Values of parameters.
Length
Energy
Mass
Time
Frequency
Force
Harmonic force constant
Cubic force constant
Quartic force constant

8/C
84/C
M
(MC)' /8
8/(MC)'~2
83/C2

82/C
8
C

0.654 A
3.39 eV
1.49 X 10 g
3.43 X 10 ' sec
2.92X10" sec
5.18 eV/A
7.91 eV/A
12.1 eV/A
18.5 eV/A
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move the temperature toward the desired value. Next
the system evolves undisturbed for 5600 time steps, and
then a new actual temperature is calculated over the next
1400 steps. This process is repeated until the desired
temperature is achieved. Then the system is "aged" for
50000—100000 time steps, while monitoring the temper-
ature, specific heat, and the fourth and sixth moments of
the velocity distribution. After thermal equilibrium is
obtained, the equations are integrated for 10 sec of real
time, which is approximately 360000 time steps. The
data necessary for the computation of phase-space trajec-
tory averages are accumulated on every tenth integration
step.

The various thermodynamic averages are computed
from the following formulas. The temperature is ob-
tained from the average kinetic energy,

(3.6)

The spectral function is then, according to the Wiener-
Khinchin theorem,

D (q, cv) = lim —
~u, (q, tv)

~

1 1

max
(3.7)

results for the wave-vector-dependent displacement
correlations in the next section. This spectral function is
the one-phonon approximation to the scattering law for
inelastic neutron scattering. The solutions u (n, t) of the
equations of motion are Fourier transformed with respect
to both space and time to obtain

t

u, (q, co)= J dt +exp[ i—(q nl tv—t)]u(n, t) .
max

,'Nktt T—= g —,'M [v(n)]~ (3.l)
The actual spectrum calculation also includes smoothing
the data and averaging spectra from several overlapping
time series.

g= (p ( = —X «(n() .
1

N
(3.3)

At very high temperatures this approaches the metasta-
ble minimum u, =0, and at very low temperatures it ap-
proaches the stable minimum u, [Eq. (2.3)]. The dis-

placement susceptibility is obtained from the displace-
ment fluctuations

where v (n) is the velocity of the nth particle, and ( )
denotes a time average. The specific heat is obtained
from the two formulas

1 1

2 —4((bK) )/NT 2 —4((b@) )/NT

where ((DID) ) and ((b,4) ) are the mean-square fluc-
tuations in kinetic and potential energies, respectively.
Since the total energy is conserved, these two quantities
are, in principle, equal; when evaluated from the
molecular-dynamics (MD) data, they are not equal due to
numerical errors. In presenting results in the next sec-
tion, the average of the two formulas is given.

Th order parameter q for the system is the average dis-
placement, averaged over all sites and over time,

IV. RESULTS

Figure 3 shows the energy as a function of the temper-
ature for both the "cooling" and "heating" series at
a=3.4 eV/A . The discontinuity in the "heating" series,
with the "discontinuity temperature" T, between
T=936.77 and 936.99 K, is reminiscent of the behavior
of a system undergoing a first-order phase transition. No
discontinuity occurred in the "cooling" series down to
200 K, even though we tried different tactics to cause one
(for example, lowering the temperature through a large
amount, say from 2000 to 600 K, rather than from just
the next higher temperature in the series). Since hys-
teresis evidently occurs here, the temperature at this
discontinuity is somewhere above the true transition tem-
perature.

It is interesting to follow the "time dependence" of the
temperature as it is raised through this transition, using
the procedure described in Sec. III. Table III shows the
series of "actual temperature" values as we raised the
temperature in the "heating" series from just below the

(3.4)

The correlation of displacement fluctuations on two sites
separated by lattice vector n is measured by

g (n) = —g [u (n+n') —(P ) ][u (n') —(P ) ]
1

N „,

0.20

0.1 5—

0.1 0—

a = 3.40 eV/}('

1—X «(n+n'(«(n'() —(p (' .
N „,

(3.&)

W
0.05—

0.00—
We obtain the probability distribution function for the

displacements from the MD data. At every data-taking
step, the displacements of all particles are sorted into a
histogram. The average of these histograms over the en-
tire run, suitably normalized, gives the distribution.

Spectral functions for time-dependent correlation func-

tions are also obtainable from the MD data. We present

—0.05
500 1000

T (K)
1500 2000

0 3
FIG« 3. Energy per particle vs temperature at o.=3.40 eV/A

for both "heating" (squares) and "cooling" (circles).
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TABLE III. History of temperature changes (in K) on heating

through the transition. (Heating procedure is described in Sec.
III.)

1.30 I I I I I

3.40 eV/A'

1.20—

a=3.40 eV/Aa=2.00 eV/A

936.4
935.7
935.2
937.5
936.6
937.3
680.8
805.2
871.3
904.5
921.2
929.2

1070.1
1072.2
1067.0
1071.4
1073.3
1037.2
1039.3
1034.1
1004.6
946.6

1009.3
1041.4

1.10—

1.00—

0.90—
COOLING

0.80
200015001000

T (K)
500

FIG. 5. Specific heat (per particle) in units of Boltzmann's
0 3

constant vs temperature for a=3.40 eV/A. Squares show
"heating" values, circles show "cooling" values.

value, the kinetic energy and the temperature fall when
the particles shift their positions. After this sudden
change in the spatial configuration, the "heating" pro-
cedure continues to move the temperature toward the
desired value (which took several adjustments beyond
those shown in Table III).

From seeing how the transition occurs in the "heating"

HEATING

1.5-

1.0 .—

0.5—

0.0

HEATING

0.15-

0.10 .—

0.05—

0.00

a = 1.00 ev/A'

500 1000 20001500
200015001000500 2.0:

1 0 5

1.0 :
0.5 :
0.0-

0.15-

0.10—

0.05—

0.00
500

a = 1.25 ev/)('

0

o 6

500 1000 1500 2000

200015001000

~ 0.15-
IJJ

a = 1.50 ev/)(4, —

0.10 2— nnnnnnn
0.05 0

50 ev/A'
500 1000 1500 20000.00

500 1000 1500 2000 3

0.12

0.08—
a = 2.00 ev/)('0.04— 0a = 2.00 ev/A

1000
T (K)

0.00 500 1500 2000
500 1000 1500 2000

T (K)
FKr. 6. Specific heat (per particle) vs temperature for several

a values. All are obtained for "heating. " Notice the changes in
0 3

the vertical scales, especially for a = 1 ~ 50 eV/A .
FICx. 4. Energy per particle vs temperature for several a

values. All are obtained for "heating. "

transition to just above it, for two difFerent a values. (For
a=2.00 eV/A, we are going from 1068 to 1070 K, and
for a=3.40 eV/A from 936.77 to 937 K.) Partway
through these small increases, the temperature falls

dramatically, showing that many particles move into the
metastable well of the on-site potential at u, =0 (Fig. 1).
(The spatial distribution of the particles is presented
more precisely later in this section. ) Since the energy is
conserved, except at the instants when the velocities are
adjusted to move the temperature toward the desired
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series, one can speculate that having a transition occur on
cooling would be difficult. In a "cooling" transition the
particles would be moving from the metastable to the
stable well, thereby decreasing potential energy and in-
creasing kinetic energy. But increasing the kinetic energy
increases the temperature, which tends to return the par-
ticles to the metastable well where they started. Thus,
the energy-conserving MD algorithm we have used may
inhibit a transition on cooling. A Langevin or constant-
temperature MD method, incorporating damping and
noise forces which could absorb the energy released at a
"cooling" transition, may be better suited to study this
transition.

Figure 4 shows the energy per particle as a function of
temperature for several smaller values of a. For the two
smaller values of a, this function is smooth and shows
there is no transition, whereas at +=1.50 eV/A there is
evidence for a transition. The major conclusion from this
series of graphs is that a minimum strength of interparti-
cle anharmonicity is required to produce a transition.
The evidence from this E vs T graph and from other
thermodynamic functions presented below is that the
critical value of a to produce a transition is close to

0 3a= 1.50 eV/A (this value is, of course, a function of the
other parameters in the model). It is possible that, at the
critical a, the transition is continuous, i.e., second order.
This possibility will be discussed further after the other
thermodynamic functions are discussed. A further result
from Figs. 3 and 4 is that T„the "discontinuity tempera-
ture, " decreases with increasing a. This decrease occurs
because increasing a produces a larger entropy difference
between the two structures, thereby stabilizing the high-
temperature phase to a lower temperature.

The specific heat is shown in Fig. 5 at a=3.40 eV/A
for both the "heating" and "cooling" series and in Fig. 6
for the smaller values of a. In Fig. 5, C, appears to sig-
nal the transition when it is approached from below but
not on approach from above. In Fig. 6 for +=1.50

0

eV/A, the curve could be interpreted as a k-type singu-
larity seen at second-order transitions (note the vertical

0.50—

0.40—

0.30—

A

0.2

0.10—

0.00—
500

1.50 eVjk'
QP-~2. 00 eV /A

3.40 eV/II'

1000 1500
T (x)

2000

FIG. 8. Order parameter vs temperature for several a values.
All are obtained for "heating. "

scale change). This is part of the evidence that this value
of n is close to "critical. "

The next two figures are related directly to the
structural change which occurs at the transition. Figure
7 shows the order parameter [Eq. (3.3)] for both heating
and cooling at +=3.40 eV/A and Fig. 8 shows it for
heating at smaller a values. This quantity is discontinu-
ous for the larger a values and smooth for the smaller
values. The hysteresis for the case where we have "heat-
ing" and "cooling" runs is clearly evident. At a=1.50
eV/A this function could be interpreted to be continu-
ous but with diverging slope, again showing the closeness
to a critical a.

The order-parameter susceptibility is in Fig. 9 at
a=3.40 eV/A for both "heating" and "cooling. " The
heating curve shows similar behavior to the specific heat
in that it appears to signal the transition. Figure 10
shows the susceptibility for the smaller a values and
again presents evidence that a=1.50 eV/A is close to

0 3

"critical. "

0.50—

0.40—
cx = 3.40 eV/A

1.0

O.S—

cx = 3.40 eV/A'

A

V

0.30—

0.20—

Q
Q)

x Q.4—

0. 1 0—

0.00—
COO LI N G

n
I I

0.2—

0.0

500 1000
T (x)

1500 2000

o 3FIG. 7. Order parameter vs temperature at o, =3.40 eV/A
for both "heating" (squares) and "cooling" (circles).

500 1000
T (x)

1500 2000

FIG. 9. Displacement susceptibility vs temperature at
a=3.40 eV/A for both "heating" (squares) and "cooling" (cir-
cles).
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FIG. 12. Displacement correlation for several a values at
separation of one lattice constant in the x direction vs tempera-
ture. All are "heating" values. The left panel is for a values up
to the critical value, and the right is for values larger than criti-
cal. The a values on the left panel are as follows: plus signs,
1.00 eV/A; diamonds, 1.25 eV/A; triangles, 1.50 eV/A .

1:—a
0 =
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FIG. 10. Displacement susceptibility for several a values.
All are obtained for "heating. " Notice the changes in vertical

0 3
scale, especially at a = 1.50 eV/A .
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FIG. 11. Displacement correlation function [Eq. (3.5)] for
0 3a=3.40 eV/A at separation of one lattice constant in both the

x and y directions, as functions of temperature. Squares show
"heating" values and circles show "cooling" values.

The preceding discussion has referred to the possibility
that there is a critical value of a (close to 1.50 eV/A for
our parameter values) necessary for a first-order transi-
tion and that the temperature dependence of the thermo-
dynamic functions suggests a second-order transition at
the critical value. The situation appears analogous to the
van der Waals fluid with the critical temperature being
the analogue of the critical a, in the sense that decreasing

a produces a line of first-order phase transitions which
terminates at a second-order transition. However, one
should recall that the simulations are for a small number
of particles; it is possible that the second-order critical
temperature would scale to zero for increasing particle
number. Another possibility is that some variety of mul-
ticritical phenomenon occurs here. However, these possi-
bilities are peripheral to our objective to study the dy-
namics of the first-order transition at the larger a values.

The next three figures are related to the static displace-
ment correlation function [Eq. (3.5)]. Figure 11 is for
a=3.40 eV/A and shows the correlation at one unit of
separation along both the x and y axes as functions of
temperature. The two functions are essentially equal,
which shows the isotropy of the system. For this a value
these functions are monotonically increasing at all tem-
peratures and appear to have a diverging slope at the
transition (in the "heating" series). Figure 12 shows
g(1,0) for the smaller a values (and all for "heating").
For the a's below the "critical" value, g(1,0) goes through
a maximum, with the a=1.50 eV/A curve possibly3

showing a divergence. For a=2.00 eV/A the case ap-
0

pears to be discontinuous at the transition as opposed to
the +=3.40 eV/A case which appears continuous but
with a diverging slope. Finally, Fig. 13 shows the spatial
dependence g(n, 0) for a=3.40 eV/A just above the
transition ( T=936.99 K) and far above it ( T= 1800.3 K).
Since the two graphs are nearly parallel on this semiloga-
rithmic plot, there is essentially no increase in the range
of correlation over this temperature interval. This result
is very different from the behavior of the same function at
the second-order transition of the 2D P4 system (see, e.g. ,
Figs. 6 and 8 of Ref. 11), which, of course, is character-
ized by a diverging correlation length.

The next series of figures shows the position probabili-
ty distributions for several a values. Figure 14 shows
a=3.40 eV/A for both "cooling" and "heating. " The
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"cooling" series just shows the distribution becoming
narrower in the metastable well of the on-site potential.
The "heating" series shows the jurnp in the center of the
distribution from the stable to the metastable well. The
most remarkable feature of these distributions is that
each has only a single maximum even very close to the
transition. That is, the distributions do not show any
marked tendency for particles to cluster in configurations
appropriate to the "other" phase either above or below
the transition (heterophase fiuctuations). The only indi-
cation of such a tendency is seen in the "heating" series
for temperatures below the transition. The centers of the
distributions are slightly to the left of the stable minimum
of the on-site potential u, [Eq. (2.3)], and the distribu-
tions are slightly asymmetric, with a longer tail to the
small-u side, toward the metastable minimum. One way
to quantify this tendency is to calculate the kurtosis of the
distribution, which is the ratio of the fourth moment to
the square of the second moment. For a Gaussian distri-
bution the kurtosis has the value 3, and so larger (smaller)
values of the kurtosis indicate more (less) weight in the
wings compared with the Gaussian. Because the on-site
potential is asymmetric about its minima, the distribution
is never exactly Gaussian in any situation. However, the
temperature dependence of the kurtosis shows the wings
grow and then contract as T goes through the transition.
Values of the kurtosis are in Table IV.

Figure 15 shows the probability distributions for the
smaller a values ("heating" series only). These distribu-
tions show the same asymmetry as the larger a distribu-
tion (see the kurtosis values in Table IV). In all cases the
kurtosis goes through a maximum at the transition and
then falls to a value less than 3. (For a=1.25 eV/A,
where there is no transition, the kurtosis maximum coin-
cides with the specific-heat maximum. ) However, we
found no instance of a distribution with two maxima for
these o. values.

The next set of figures is related to the dynamic dis-
placement correlation function or spectral function
D(q&ru) [E. (3.7)]. These are for the single value a=3.40
eV/A and are all from the "heating" series. Figure 16(a)
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is for a low temperature and Figs. 16(b) and 16(c) are for
temperatures slightly below and above the transition.
The components of the wave vector q are noted on each
plot, expressed as fractions of the zone boundary wave
vector (i.e., ql/m), and the frequencies are expressed as
co/coo, where coo is the frequency unit given in Table II.
Each spectral function is plotted on semilogarithmic axes
to emphasize important low-intensity features; however,
such a plot exaggerates the width of the phonon peaks,
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FIG. 13. Displacement correlation function [Eq. (3.5)] at
0 3a=3.40 eV/A as a function of lattice site separation for tem-

peratures just above (solid line) and far above (dashed line) the
transition.
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FIG. 14. Position probability distributions at a=3.40 eV/A .

The downward arrows show the location, from left to right, of
the rnetastable minimum u, =0, maximum, and the stable
minimum u, of the on-site potential (Fig. 1). (a) Three tempera-
tures in the "cooling" series. (b) Three temperatures in the
"heating" series.
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TABLE IV. KuKurtosis (ratio of the fo
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non peaks broaden, the central peak cutoff is not so
sharp, and the high-frequency structure in the spectrum
is harder to discern, especially at the larger wave vectors.

In Fig. 17 we plot the location of the phonon peaks
versus wave vector for T (T, (left panel) and T ) T~
(right panel). On both panels, the solid curve is the
theoretical phonon dispersion relation for small oscilla-
tions in the appropriate well of the on-site potential, i.e.,
the solid line on the left of Fig. 17 shows (the square root
of) Eq. (2.8) for oscillations about the stable minimum,
and on the right Eq. (2.9) for small oscillations about the
metastable minimum. For T increasing up to T„ the
whole phonon spectrum softens with the long-wavelength
part decreasing more than the rest of the spectrum.
However, this softening is considerably less than that
occurring at the second-order transition of the P sys-
tem. " At T, two effects occur. The first is that the

small wave-vector part of the spectrum "hardens" some-
what, up to the value appropriate for small oscillations in
the metastable well [cf. Eqs. (2.8) and (2.9)j. Moreover,
for larger wave vectors the slope of cd(q„,O) decreases con-
siderably. Since most of the particles are now in the
metastable well, the anharmonicity introduced in the in-
terparticle interactions through the terms proportional to
a is now essentially absent. The total effect is that the
average phonon frequency is lower in the high-
temperature phase, even though the part of the spectrum
near q =0 increases. Overall, these changes are in agree-
ment with Zener's discussion of the mechanism for P-
cubic —close-packed transitions. '

Now we discuss the "central peak" part of the spec-
trum. The dispersion relation for the cutoff frequency
(the downward arrows on the plots in Fig. 16) is graphed
in Fig. 18; it is a linear function of the wave vector to
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reasonable accuracy. The cutoff frequencies are very
temperature independent within each phase; for example,
the graph for T=199.27 K is nearly identical to the one
shown for T=936.77 K. However, there is a definite
change in the slope at the transition. The values of these
slopes in each temperature range are nearly the same as
the slopes of the corresponding phonon dispersion rela-
tion in the linear region at the larger q„values (see Fig.
17); that is, they are accurately equal to the velocity of
"linear" sound that would be obtained by omitting the
constant frequency term from the discrete Klein-Gordon
equation in Eq. (2.7).

Figure 19 shows the wave-vector dependence of the to-
tal and central peak intensity just below the transition.
The shapes of the two curves are generally the same at
other temperatures. However, the fraction of the intensi-
ty in the central peak is maximum at this temperature,
being approximately 20% of the total for qllm ~0.2 and
falling to about 5% of the total for larger wave vectors.

At T=199 K, the fraction in the central peak is reduced
by a factor of about 20. Just above the transition at
T=936.77 the fraction in the central peak is reduced by
about a factor of 3 from its value just below T, . If we
take the wave vector ql/m =0.2, where the central peak
intensity begins to decrease more rapidly than the total
intensity, as a measure of the size of the nonlinear fluc-
tuations which contribute to the central peak, then these
fluctuations extend over roughly 10 lattice constants.

These properties of the spectral functions are very
similar to those which occur in one-dimensional sine-
Gordon systems. Computer simulations ' of that system
give a central peak with a sharp cutoff at coq, where co is
the velocity of "linear" sound. Ideal-gas phenomenolo-
gy attributes this central peak to soliton and breather
propagation. One would like to make a similar interpre-
tation here, but there are two reservations. The first is
that sine-Gordon solitons depend on the existence of de-
generate ground states and thereby acquire a topological

~'
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character. There are no topological solitons for the
asymmetric on-site potential. This objection does not ap-
ply to breathers, and so one may speculate that breather-
type motions are responsible for the central peak seen
here. The second reservation is that the system here is
two dimensional and very isotropic (cf. Fig. 11). Very lit-
tle is known about propagating nonlinear entities in di-
mensions greater than one, and so there is no theory on
which to base a phenomenological calculation of these
spectral functions.

The existence of the high-frequency structure in the
spectrum can be interpreted as further evidence showing
the existence of breather-type motions. In addition to
propagation, breathers have a high-frequency internal os-
cillation. In the sine-Gordon system this oscillation
makes a contribution to the high-frequency part of ap-
propriate spectral functions. '

V. DISCUSSION

We have presented the results of a simulation of an ap-
parent first-order phase transition, intended to be a first

approximation to the transformation undergone by Zr,
under pressure or upon alloying, from the bcc to the ~
phase. The major conclusions from these calculations are
the following. (1) The thermodynamic functions collect-
ed in Figs. 3—13 show that the combination of asym-
metry in the on-site potential plus anharmonicity in the
interparticle interaction suffices to produce a first-order
transition in this system with a one-component order pa-
rameter. These thermodynamic functions show the evo-
lution of a latent heat on heating, with a concomitant
jump in the order parameter, at a first-order transition
temperature T, . The change in the system is extremely
abrupt, with no appreciable change in the range of the
correlations as T, is approached from below. (2) The ab
sence of two maxima in the position probability distribu-
tions in Figs. 14 and 15 for temperatures near the transi-
tion shows that the formation of large precursor clusters
of the other phase is not occurring in this system. (3) The
existence and wave-vector dependence of the central peak
in the dynamic structure factor (Fig. 16) indicates (by
analogy with the sine-Gordon system) that propagating
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1 ~ 2
n = 3.40 eV/A'

~ I t ~ ~ ~ l ~ ~ I

1 2~ C
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nonlinear entities exist in this system.
However, several issues remain unresolved, which we

review here. First, note in Fig. 1 that the on-site poten-
tial is not symmetric, viz. , V(u)A V( —u). Thus, the ex-
pectation value of the displacement, which is the order
parameter, should never be zero, and this is indeed seen
in Figs. 7 and 8. However, in Figs. 3—10 we seem to be
observing something which resembles a first-order phase
transition. This is not a symmetry-breaking transition,
since already the on-site potential (and thus the Hamil-
tonian) lacks inversion symmetry, so it is interesting to
observe so many features that are reminiscent of
symmetry-breaking transitions.

Secondly, one feature that stands out in our simula-
tions is the huge hysteresis loop in the case where we did
both "cooling" and "heating" runs (a=3.40 eV/A ). On
cooling, we never observed a transition of the particles
out of the metastable minimum of their on-site potentials,
even though we followed the system for 10 sec. On the
"heating" series, where the initial conditions at the
lowest temperature had all the particles near the stable
minimum, a transition of some kind does occur at close
to 937 K (for this a value). An alternative interpretation
to this being a first-order transition can be based on the
results for specific heat (Fig. 6) and susceptibility (Fig. 9).
Those plots could be interpreted as possibly showing a
tendency to diverge, as at a second-order transition. Our
numerical results are not accurate enough to distinguish
between a discontinuity and a divergence. If we assume
that they are diverging, then we would say, using the
language of mean-field theory, that our observed transi-
tion is the limit of metastability of the low-temperature
phase, where these thermodynamic functions would
behave as we have observed. To be specific, there is a
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FIG. 18. Location of the cutoff frequency for the quasielastic
part of the spectral functions for temperatures just below and
just above the transition.

discontinuity in the order parameter and energy, but, in
contrast, the specific heat and susceptibility are diver-
gent. The Landau theory of this transition (in the ab-
sence of the a nonlinear intersite interaction) was previ-
ously discussed' and it was found that the parameter
A ( T) in Eq. (1.4) acquired the value of —,'at the transition
(see Fig. 1). Unfortunately, self-consistent phonon
theory' ' does not allow for a simple consideration of
the cubic term in the potential (viz. , when only linear
variations in the free energy are considered, odd order
terms in the Hamiltonian are not accounted for), and
thus it is difficult to test the conjecture that this is simply
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and for the right panel it is about the metastable minimum [Eq.
(2.&)].
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FIG. 19. Wave-vector dependence of the total and central
peak intensities of the spectral functions at a temperature just
below the transition.
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a loss of metastability, and not a first-order phase
transition —much more sophisticated variational theories
are required.

The resolution to this dilemma follows from Figs. 3
and 4, where the importance of the a nonlinear intersite
coupling term in the Hamiltonian is seen. As discussed
extensively in Sec. II (and in Ref. 18 for the symmetry-
breaking case), the role of this term is to change the
dispersion of the phonons in the two states, which then
increases the entropy of the metastable well state in com-
parison to the stable well state. Then an impetus is pro-
vided for an entropy-driven transition. ' In Fig. 3 we see
evidence for such an entropy-driven transition in that a
latent heat is clearly evolved for sufficiently large n.
More evidence for this association is provided by the fact
that if a gets too small, we never observe a jump in the
internal energy. Thus, the transitions that we observe are
indeed below the metastability limit of the stable we11

phase, and in the parlance of mean-field theory, T=937
K (for a=3.40 eV/A ) corresponds to somewhere be-
tween —,'and —', for the Landau-type parameter A ( T) in

Eq. (1.4). Further, the transition is driven by the vibra-
tional entropy difference between parent and product
phases produced by the nonlinear, intersite coupling
term.

So, at least on heating we have clear evidence of a
first-order transition. Thus, we may discuss the primary
focus of this study, namely, the dynamics associated with
the first-order phase transition. As mentioned above, the
probability distribution function clearly shows that in the
equilibrium state assumed by the system (on heating)
when allowed to evolve for 10 sec, there is only one
maximum, but there is also nonzero probability of the
fluctuations tending towards the metastable well from the
stable well as T is increased. This is shown qualitatively
from the kurtosis lised in Table IV, where, as the transi-
tions (for different a) are approached, the wings of the
distribution function grow. This behavior of P(u) is very
different from that displayed by the same function for the
case of a symmetry-breaking first-order transition'
caused by the same mechanism for producing tempera-
ture dependent phonons. A major question for further
work is to understand the reasons for this difference.

In order to study the dynamics of these fluctuations,
one must turn to the dynamic structure factor shown in

Fig. 16. The central peak is clear evidence of the
coherent nonlinear nature of these fluctuations, but what
is not clear is their amplitude. That is, for these fluctua-
tions to be true heterophase fluctuations (e.g., on the
low-temperature side of the transition), they must carry
particles away from the stable minimum of the on-site po-
tential, as far as the "spinodal point" (vanishing second
derivative) or over the maximum into the metastable
well. The analogue of these fluctuations in the sine-
Gordon system is large-amplitude breathers, which carry
particles over the potential maxima into adjacent wells of
that periodic potential. To be nonlinear the fluctuations
have to move the particles only far enough from the bot-
tom of the well for the anharmonicity to be felt. The
analogue of these fluctuations in the sine-Gordon system
is small-amplitude breathers.

More work will be required to elucidate the issues
raised by our simulation. Why does the hysteresis loop
on cooling extend down to the lowest temperature stud-
ied? How could there possibly be a potential barrier that
is accessible on heating, as opposed to cooling? Answers
to these questions may be provided when Langevin dy-
namics simulations are completed. Secondly, and most
importantly, what are the nonlinear excitations associat-
ed with the central peak that appears in the dynamic
structure factor? From graphs of displacement profiles
we have found similarities between the evolution of the
displacements in these 2D simulations and that found in

1D, from which dynamical motion, e.g., interfacial prop-
agation, may be more easily studied analytically. These
results will be presented in a separate paper. Eventual-
ly we plan to do simulations using more realistic symme-
try restricted anharmonic on-site potentials representa-
tive of a wide class of first-order structural phase transi-
tions.
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