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Estimates of Anderson's electron-phonon-coupling constants for nonadiabatic small polarons
in n-type BaTi03 using a polarizable point-ion shell model

E. Iguchi, A. Tamenori, and N. Kubota
Materials Science, Department ofMechanical Engineering and Materials Science, Faculty of Engineering, Yokohama National University,

Tokiwadai, Hodogaya-Ku, Yokohama, 240 Japan
{Received 6 May 1991)

Using a combination of the attractive potential of a polaron proposed by Anderson and the polariz-
able point-ion shell model developed by Dienes et al. , Anderson's electron-phonon-coupling constants
(A, ) and changes in interionic spacings (x) due to nonadiabatic small polarons in n-type BaTiO3 have
been estimated by adjusting the calculated values to fit the experimental results, i.e., the polaron binding

energy and the deformation energy. Although these values are important for an understanding of the
dynamics of small polarons, they are quite dificult to estimate experimentally. In the shell model, the
repulsive interactions between ions have been evaluated by the free-ion model constructed by Wedepohl.
Though the shell parameters representing the effective numbers of polarizable electrons in ions are deter-
mined empirically, they are very close in values to the theoretical ones of Shankar et al. Since there is
no information on the nature of the electrons localized on Ti ions, two possibilities have been considered,
i.e., 3d electrons or s-like electrons. The calculations have been carried out in cubic and rhombohedral
structures. In the cubic structure, A, and x between Ti3+ and Ti + in (110) are ——3.60 eV/A and
——0.01 A and those between Ti + and 0 in (100) are -0.82 eV/A and -0.03 A for 3d electrons.
In the case of s-like electrons, A, and x for the ion pair Ti'+ and Ba2+ in (111)and those of Ti'+-0'
pairs are ——1.29 eV/A, ——0.02 A and -0.60 eV/A, -0.03 A, respectively. In the rhombohedral
structure, the values for A, and x are a little different from those in the cubic structure. These calcula-
tions suggest clearly that small polarons are stabilized in both the cubic and rhombohedral structures
and the polaronic conduction is also confirmed theoretically to take place in n-type BaTi03.

I. INTRODUCTION

As majority carriers in crystals of high ionicities, pola-
rons have attracted much interest, and it is important to
understand their behavior. A polaron is stabilized
through a local deformation of the lattice due to the
electron-phonon interaction. From this point of view,
Anderson ' proposed an attractive potential, V, for a po-
laron. This potential is caused by the drawing together of
the ions in the bond Uia the electron-phonon interaction
and has the following form:

V= —,'cx —
A,x,

where c is the relevant elastic constant, A, is the electron-
phonon-coupling constant, and x represents a change in
the spacing between ions. This potential indicates that
the lattice distortion due to the formation of a polaron
leads to an increase in the lattice energy (the first term on
the right-hand side), but the electron-phonon interaction
decreases the total energy of the crystal (the second
term). Consequently, the polaron is stabilized when the
attractive potential has a negative value. Based upon this
potential, Chakraverty and Schelenker and Gehlig and
Salje explained polaronic conduction in Ti407 and %03.
Thus, the formation of a polaron is associated with a
change in the lattice energy due to the local distortion,
namely, a polaron relates directly to the lattice energy.
This fact calls for a theoretical estimate of the deforma-
tion energy due to changes in interionic spacings, which

is indispensable in understanding the dynamics of pola-
rons. Since the deformation energy and displacements of
ions are expected to be very small, stringent constraints
must be imposed for the required accuracy in making
these theoretical estimates. A polarizable point-ion shell
model developed by Dienes et al. is certainly one of the
most reliable theoretical means which meet such criteria
because this is constructed for the purpose of calculating
an energy change due to very slight displacements of ions
in a crystal.

Though the nature of carriers in n-type BaTi03 has
still been a subject of discussions as to whether it is a con-
duction electron or a small polaron, our experiments
measuring the dielectric properties with dc conductivities
provide direct evidences for the conduction due to hop-
ping motions of nonadiabatic small polarons with hop-
ping energy 8'H=0. 068 eV and the coupling constant
a=5.4 at low temperatures below the rhombohedral-
monoclinic transition point. From the we11-known
definition' [Eq. (2)] and the experimental results on the
longitudinal optical phonon frequency near the zero wave
vector in BaTi03 (co„o=7X10' /s),

a (deformation energy)
2 'AcoL~

one can assign -0.12 eV to the deformation energy of
this small polaron.

Our primary aim is to estimate electron-phonon-
coupling constants and changes in spacings between ions
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II. LATTICE ENERGIES OF PERFECT CRYSTALS

The shell model starts from calculations of lattice ener-
gies of perfect crystals (cohesive energies). Based upon a
fully ionic model (ionicity of BaTi03-—0.9), the lattice
energy per BaTi03 formula unit, El, has the form of the
summation of the long-range Coulombic interaction ener-

gy (Madelung energy, EM), the short-range repulsive en-

ergy (Ez), van der Waals energy (E„zw), and the zero-
point energy (Eo) in the following way 0'"

EI. =—g q;P;(0)+g' A;z exp( B,~r,j )——1 C

I J IJ

9nk, e~+
8

(3)

where P;(0) is the self-potential of the ith ion with the
charge q;, as developed from Ewald's method' by Van
Gool and Piken, ' A; and B; are the Born-Mayer con-
stants of the repulsive interaction between the particular
ion pair, r," is the spacing between ions i and j, C;.
represents the van der Waals constant of the ion pair, n is
the number of ions per formula unit, OD is the Debye
temperature (450 K) (Ref. 14), and ka is Boltzmann's
constant. In Eq. (3), g; represent the summation of ions
per unit cell and gl indicates the summation over all ions

of a nonadiabatic small polaron in n-type BaTi03 using

these experimental results. The combination of
Anderson's attractive potential and the polarizable
point-ion shell model enables such estimations. A calcu-
lation like this is of great importance from the scientific
point of view because these values are still difficult to esti-
mate experimentally. In addition, they are necessary in
order to clarify the nature of nonadiabatic small polarons
responsible for the conduction in n-type BaTi03. The re-

sults of these calculations are presented in this paper.

in a crystal except the ith ion.
The Born-Mayer parameters are determined, in gen-

eral, from perfect-crystal properties. In ternary systems,
however, such determinations are difficult because of too
many combinations of ion pairs. Alternatively, these in-

teractions have been calculated from the Wedepohl pro-
cedure' ' using the Hartree-Fock wave functions of
free ions as we did on several oxides. ' The wave

function obtained by Watson ' for 0 and those of Ti +

and Ba + calculated using the short Herman-Skillman

programs were used. The Born-Mayer parameters A

and B relevant to particular ion pairs and designated
ranges of separations, r;J, have been obtained by fitting

the numerical results calculated by Wedepohl's pro-
cedure. These parameters are collected in Table I but
some of them, Ba +-Ba +, Ba +-0, and 0 -0, were

already reported together with the discussion on their re-

liability. ' In order to test the appropriateness of the
Born-Mayer parameters of Ti +-0 and Ti +-Ti +, cal-
culations have been made on the lattice energy of Ti02
(rutile), the force constants in tetragonal BaTi03, and the
lattice constant of the cubic structure. These values are
compared with the results in other literature' ' in

Table II. The calculation of the lattice energy in TiOz
has employed the values for Madelung, van der Waals,
and zero-point energies which were evaluated in the pre-
vious reports.

The van der Waals constant between ions consists of
electronic polarizabilities a' and some average exciting
energies of ions. The values for these parameters are
quoted from literature' ' ' and collected in Table III,
together with free-ion polarizabilities a and ionic polari-
zabilities a'. The van der Waals constants determined
with these parameters are indicated in Table I.

We have calculated the lattice energy of the cubic
structure because the shell parameter representing the
effective number of polarizable electrons in each ion, the
most important parameter and the most difficult term to

TABLE II. Comparison of parameters calculated using Born-Mayer constants in Table I with results
in other literatures. (Top) potential energy, EpT, of each ion and the lattice energy per formula unit of
Ti02 in which every energy except the repulsive interaction is referred to previous results (Refs. 10 and

23), where Eo and E&z represent the zero-point energy and the experimental lattice energy determined

by Born-Haber cycle analysis (Refs. 10 and 23). EEL is the discrepancy between EL and E«. Units of
eV are used. (Middle) force constants in the tetragonal structure of BaTi03 where values in columns of
A, B, C, and D are results calculated by Havinga (Ref. 24), Fowler (Ref. 25), Pauling's procedure (Ref.
26), and obtained in this report, respectively. Units of 10 dyn are used. (Bottom) experimental lattice
constant a& (Ref. 24) and calculated value aT.

E Evdw Eo E ELa ~EL (%)

Ti4+
02—

Ti02

—179.00
—51.79

22.89
12.22

—1.55
—1.39

—157.66
—40.96

0.27 —119.52 —124.68 4.13

Ion pair
Ti-O(1)
Ti-0 (2)

A

50.0
12.5

B
46.5
10.1

C
41.9
10.1

D
41.3
13.9

(A)
aE =4.007
aT =4.005
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cx' (A ) a'(A) o." (A ) E,„(eV)

TABLE III. Electronic (Ref. 28), ionic (Ref. 28), and free-ion
polarizabilities (Ref. 30) with average exciting energies in
BaTi03 (Refs. 10 and 29).

TABLE IV. Potential energies of ions, zero-point energy, and
the lattice energy in the cubic structure of BaTi03, where EPT is
the potential energy which is the sum of Madelung, repulsive,
and van der Waals energies. Units of eV are used.

B 2+

Ti4'
02—

1.955
0.187
2.405

0
0.382
0.378

1.562
0.186
3.880

14.40
72.19
19.90

Ba +

T 4+

02
BaTiO3

E Evdw EpT

—38.72 5.07 —1.64 —35.29
—177.92 19.70 —1.06 —159.28
—46.40 8.63 —2.51 —40.28

0.22 —157.49

A brief description on the framework of the polarizable
point-ion shell model, including our modifications, will be
given in this section because fu11 details were published
elsewhere. When an imperfection such as a polaron or a
lattice defect is formed in a perfect crystal, it has an
effective charge Ze, the electric field from which acts over
all of the ions in a crystal. Each ion is then displaced so
as to minimize the energy of the crystal; that is, a relaxa-
tion takes place. The displacement of an ion results in a
dipole moment on that ion. The total energy of the crys-
tal containing an imperfection ET is given by

ET —EL. +ERc)~x ~ (4)

where ER,&,„represents the relaxation energy which con-
sists of the changes in Madelung, repulsive, and van der
Waals energies, i.e., AEM, AE~, and AE„dw and the po-
larization energy, Ep, consisting of three components,

evaluate in the shell model, is to be determined by using
the experimental result on the energy required to form an
oxygen vacancy in the cubic structure with the lattice

0
constant, a =4.007 A. The contributions of Madelung,
repulsive and van der Waals energies to the potential en-

ergy of each ion, are tabulated in Table IV. The total of
these contributions yield a calculated lattice energy of
157.49 eV per formula unit.

III. A POLARIZABLE POINT-ION SHELL MODEL

Pi
rgJ re +

where p; and Q; are the dipole moment and the shell pa-
rameter of the ith ion. In this scheme, the total energy
ET is a function of dipole moments. The equilibrium di-

pole moments are obtained by minimizing the total ener-

gy with respect to the components of individual dipole
moments as follows:

BET
=0, k=x, y, orz,

~PIk
(6)

where p,.k is the k component of the ith dipole moment.
From Eq. (6), we have the following expression along the
x direction which includes our modifications:

i.e., the interaction between the dipole moment and the
monopole field due to the imperfection (E~, ), the dipole-
dipole interaction energy (Epz), and the so-called dipole
self-energy (E~3). The last term E~3 includes the free-ion
polarizabilities for which we have used the values ob-
tained by Pauling (see Table III). After the relaxation
has taken place, the vector between ions, i and j, changes
from r;, the vector before the relaxation, to the effective
vector r,'. which is given by

Pix

q;e (e;.)„B; A," exp( —B, r,")"
=e;„ I — +g'

(e,")„B,"A,"(p e," )exp( B, r, )—""6C, (e, . )„
7

Q, r;&

+g' (Pj IJ ( IJ X IJPJX

J LJ

(e,") B, A," exp( B, r", )—("e,"")„(e,") B, A," exp("B,r, )—""
CXr' j Q; J Q;

(e,")„(e,")„B, A," exp( B, r,")—""
J Q;

(7)

where e; =r,"/r, =(e,")„i+(e, ) j+"(e; ) k, i, j, and k
being the unit vectors along the x, y, and z axes, e is the
electronic charge, e, is the electric field acting on the ith
ion, which is the sum of the monopole field e; and the
electric field from the imperfection with the effective
charge Ze. Compared with the original shell model con-
structed by Dienes et al. , we have taken into account

the contributions of the Coulombic interaction between
the imperfection and the ith ion, i.e., —e,„q;e/Q, , van

der Waals interactions [the fourth term in the right-hand
side in Eq. (7)], and the dipole-dipole interactions (the last
term). Along other directions, we have the similar rela-
tions.

By solving the system of linear equilibrium equations,
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IV. RESULTS AND DISCUSSION

A. Shell parameters

Shell parameters are, in general, determined empirical-
ly by using experimental results such as formation ener-
gies of point defects. As a useful starting point, we have
employed the following theoretical relation proposed by
Dick and Overhauser:

(Qfe )
~0

kf
(8)

where Qf and kf represent the shell charge (the effective
number of polarizable electrons corresponding to the
shell parameter of a free ion) and the spring constant cou-
pling the shell and core in the free state. Based upon the
theory of Dick and Overhauser, Shanker et al. ' ob-
tained theoretically a correlation between the shell charge
in the free state and the atomic number, from which we
can estimate the shell charges, Qf, of Ti +, Ba + and
0 . Then, Eq. (8) and the free-ion polarizabilities in
Table III enable us to deduce the spring constants of free
ions. In a crystal, there is also a similar relation,

(Qoe )'

k
(9)

where Qo and k abbreviate the shell parameter and the
spring constant in the lattice. Substituting the spring
constants in free states for k in Eq. (9), the electronic po-
larizabilities in Table III yield the shell parameters in Ba-
Ti03, Qo. The parameters (Qf and Qo) are tabulated in

typified by Eq. (7), by the matrix techniques, each com-
ponent of the dipole moments can be obtained. Since it is
impractical to solve the equilibrium equations for all ions
in the crystal, the dipole moments in a spherical region of
diameter -3.2a around an imperfection have been deter-
mined in this fashion, a being the lattice constant. In the
shell of diameter —12a outside of the spherical region,
the dipole moments have been evaluated by the approxi-
mate method of Mott and Littleton ' which involves the
static dielectric constant of BaTi03, i.e., 5000 (Ref. 32),
besides ionic and electronic polarizabilities of individual
ions. Every ion in the remainder of the crystal is fixed.
In the sphere, there are about 100 ions, while we have
taken into account about 4500 ions in the outer shell. By
using the sheH parameters, which are to be determined in
the next section, with the dipole moments obtained in
this way, the effective vectors, r,'., were evaluated and
then each energy term in Eq. (4) has been calculated.

Table V together with spring constants in free states.
Using the polarizable point-ion shell model with the

shell parameters Qo, we have calculated the formation
energy of a doubly charged oxygen vacancy (Z =+2) in
the cubic structure because the experimental value on the
formation energy of this point defect confirmed by two
different groups, 5.70—5.79 eV, is the most reliable
and the most reproducible one in the experiments on
point defects in BaTi03. In the cubic structure, the
monopole filed acting on each ion is essentially zero be-
cause of the high point symmetry. The contributions to
the energy of relaxation and polarization and the conse-
quent energy of formation of a doubly charged oxygen
vacancy in the relaxed, polarized lattice of cubic BaTi03,
calculated with these shell parameters, are collected in
Table VI together with the energy of formation in the rig-
id, unpolarized lattice, (EF )Q.

Then, we find a deviation of the calculated formation
energy from the experimental value. Such a deviation
must be due to the substitution of spring constants in free
states for k in Eq. (9). The effective spring constants in
the lattice must be different virtually from those in free
states. In order to compensate for this deviation, we have
changed the shell parameters, as did Dienes et al.
Every shell parameter has been changed in the same ra-
tio, step by step, and we have obtained the final parame-
ters, Q, which yield the best agreement of the theoretical
formation energy with the experimental one. These shell
parameters and the spring constants in the lattice are in-
dicated in Table V as well. The resulting energies for re-
laxation, polarization, and formation are shown in Table
VI.

As described before, we have taken into account about
100 ions in a spherical region around the vacancy and
about 4500 ions in the outer shell. %e have changed the
numbers of these ions within +30%. The formation en-

ergy of an oxygen vacancy is nearly independent of the
numbers of ion employed. This fact indicates the legi-
timacy of the shell model used. In addition, the final
shell parameters, Q, are very close in values to the
theoretical parameters, Qo, evaluated by the procedure of
Shanker et a/. , ' i.e., Q/Qo=0. 9. This is indicative of
the appropriateness of their theoretical treatments in as-
signments of shell charges.

B. Combination of Anderson's attractive potential
and shell model

Our experiments provide the dielectric relaxations due
to hopping motions of small polarons with an activation

Q(e)Qf (e)

TABLE V. Shell parameters and spring constants in free states, Qf aud kf, shell parameters in
BaTiO, obtained by using spring constants in free states and electronic polarizabilities, QD, and shell
parameters which yield the best agreement with the experimental result on the energy required to form
a doubly charged oxygen vacancy in the cubic structure and spring constants in the lattice, Q and k.

kf (eV/A ) Q0(e) k (eV/A )

2+

Ti4+
02—

5.650
4.350
2.400

294.29
1464.95

21.38

6.321
4.362
1.890

5.688
3.924
1.701

238.30
1185.70

17.32
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TABLE VI. Contributions to the formation energy, EF, of doubly charged oxygen vacancy in units
of eV with shell parameters Qe and Q, where (EF }0 represents the energy of formation in the rigid, un-
polarized lattice.

SP ~EF ~o

20.14
20.14

AEM

—11.86
—10.03

7.04
7.69

AE dw

—1.34
—1.64

—10.71
—10.42

E

3.26
5.74

(ET), =EL(Ti +)+(ER,l,„), , (10)

where EL (Ti +
) is the lattice energy of the rigid, unpolar-

ized crystal containing a Ti + ion and the subscript "a"
represents the energy without electron-phonon interac-
tions. The Born-Mayer parameters of the ion pairs con-
taining Ti + are determined by the scaling procedure
based upon ionic radii ' ' because Wedepohl' ' treats
spherical symmetric negative charge distributions of elec-
trons such as s p . The relaxation term (E„l,„), is in-
duced by the electric field from a Ti + ion (Z = —1). The
dipole moments on individual ions are to be determined
by the conditions similar to Eq. (6) and then the values
for (r,

' ), are obtained. We have employed a value of
(3.924+ 1.000)e for the shell parameter of Ti + because a
trapped electron can polarize very easily compared with
the electrons in inner shells.

In a material containing small polarons, Anderson
proposed an attractive potential like Eq. (1). Denote the
Ti + ion as the ith ion and the another ion, the phonon of
which interacts with the localized electron, as the jth ion,
then the electron-phonon interaction energy E, h [the
second term in Eq. (1)] is represented precisely in the fol-
lowing form:

E, ph= —g' jl.„x,,
= —&' &;, [l(r',J ), I

—l(r', J ). I ],
J

where A, , and x,- represent the electron-phonon-coupling
constant and the change in the spacing between ions i
and j. The vector between these ions changes from (r,'~. ),
to (r

&
)h, i.e., the vector in the crystal where the

electron-phonon interactions are included in the relaxa-
tion. As we convert the ionic spacings obtained above to
~(r,'J ), ~, we can treat these terms as constants.

Then, the total energy of the crystal containing a single

energy of 0.068 eV, which was also obtained in the con-
duction measurements, in the rhombohedral structure at
temperatures below 100 K as stated before, while Rid-
path and Wright also obtained a value of 0.074 eV for
the hopping energy of small polarons in the cubic struc-
ture at high temperatures (-500 K). Then, we can assign-0.07 eV to the hopping energy of the small polaron
which looks insensitive to temperatures, being nearly in-
dependent of phase transitions. Therefore, estimates of
the electron-phonon interaction have been made, first, in
the cubic structure.

The total energy in the relaxed, polarized lattice of Ba-
Ti03 containing a Ti ion trapping an electron, which is
just localized on a Ti ion and does not interact with pho-
nons of neighboring ions, is given as follows:

polaron (Z = —1) is given as follows:

(ET)b EL( )+(ERelax)b+Ee-ph & (12)

where the subscript "b" indicates the energies after the
electron-phonon interactions are taken into considera-
tion. In such a crystal, the effective vector between ions i
and j can be expressed in the similar way as before,

(P;)b (P, )b
(r,', )b =r,, +

l j
Then,

~ (r,'j )b ~
is approximated reasonably as follows:

l(r,', )bI= I(r,', )b(r,', )b
'"

(P, )b

Q,

(13)

(14)

—ED e-ph & (15)

where ED = [(ER«,„)b—(ER«ax ), ] represents an increase
of the lattice energy due to the local distortion associated
with formation of a single polaron. We can replace the
first term of the right-hand side in Eq. (1) with ED.

C. Electron-phonon-coupling constants
of a nonadiabatic small polaron in cubic structure

The experimental result, ED ——0. 12 eV, and the
theoretical approximation, W~ =2WH, which holds in
the case of nonadiabatic small polarons, i.e., Wp —0. 14
eV, allow us to estimate electron-phonon-coupling con-
stants. As is we11 known, ' the electron localized on the
cation site is stabilized by the electron-phonon interac-
tions which draw the cations to the electron and the
anions away from it. Then, the spacing between Ti +

and a neighboring cation decreases, i.e.,
[ I (r,'J )b I 1 (r,'1 ), ~ ] (0, and the electron-phonon-coupling
constant between them must be negative so that E, ph

may be negative, while the coupling constant between
Ti + and a neighboring anion must be positive for a simi-
lar reason.

Since there are no experimental results indicating

From the conditions, d(ET)b/B(}M; )bb =0 (k =x, y, or z),
we can determine (r;j )b if A,;j is known.

The difference between (ET ), and (ET )b is an increase
of the total energy which is required to form a single po-
laron, corresponding to the binding energy of the pola-
ron, Wz, i.e.,

Wp =(ET )e (Er )b—
[( Relax )a (ERelax )b ] Ee-ph
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() ()

(

iE W i1
%F

() ~ ()
: Ba*

~:Ti

0

(a) (b)

FIG. 1. Schematic illustrations of orbitals of (a) the 3d elec-
tron and (b) the s-like electron at the Ti + site in BaTiO3. The
ions which interact with Ti + through the electron-phonon in-

teractions are indicated.

direct evidence on the characteristics of the electron 1o-

calized on a Ti ion, two possibilities are taken into ac-
count. One is that this electron has the nature of 3d elec-
trons and another one is that the electron is loosely bond-
ed to a Ti ion and, consequently, it behaves like an s-like
electron. First, we have considered the case of 3d elec-
trons. The lowest orbital of the electron is one of three
singlets —de wave functions which point directly toward
the nearest Ti + ions in (110). Then, we can expect the
electron-phonon interactions of the Ti + ion with four
neighboring Ti + ions in (110) and also four nearest-
neighboring 0 ions in (100) as illustrated in Fig. 1(a}.
Therefore, j in Eq. (11) refers to these ions. Since the
maximum directions of the de wave function do not ex-
tend directly toward 0 ions, the electron-phonon in-
teraction between Ti + and 0 must be rather weak
compared with that between Ti + and Ti +.

We have changed the electron-phonon-coupling con-
stant between Ti + and Ti + and also that between Ti +

and 0 in the range of 0.00 to +5.00 eV/A. The
method yields A,(Ti +)= —3.60 eV/A and A,(0 ) =0.82
eV/A, adjusted to fit the data, where A,(Ti +) and A,(0 )
denote the electron-phonon-coupling constant between
Ti + and Ti + and that between Ti + and 0 . In Table
VII, we have summarized the difference in the relaxation
energies before and after the electron-phonon interac-
tions are included, the electron-phonon interaction ener-

gy E ph and the deformation energy, ED, which
were calculated with the coupling constants,
A,(Ti +

) = —3.600 eV/A and A,(0 )=0.815 eV/A.

There is only one group of the combinations of the cou-
pling constants centered around A,(Ti +

) = —3.600 eV/A
and A,(0 ) =0.815 eV/A, which fit rather well to the ex-
perimental results. In the case of s-like electrons, six 0
ions and eight Ba + ions around the Ti + ion are taken
into consideration as indicated in Fig. 1(b). The calcula-
tions yield A,(Ba +}=—1.29 eV/A and A,(0 )=0.60
eV/A, where A,(O ) and A,(Ba +

) have the similar mean-
ings. The energies relevant to this polaron calculated
with A,(Ba + }=—1.287 eV/A and A,(0 ) =0.600 eV/A
are summarized in Table VII as well. In both cases the
coupling constant between Ti + and a cation has a nega-
tive value and that between Ti + and an anion a positive
value, as predicted.

Table VIII demonstrates the interionic spacings be-
tween Ti + and other ions before and after the electron-
phonon interactions are taken into account, (r;~), and

(r;~ )b, together with the changes in the spacings induced
by these interactions, x; . The ions interacting directly
with Ti3+ are found to displace in the ways as expected,
i.e., cations (Ti + or Ba +) displace toward Ti3+, while
0 ions away from Ti +. The ions interacting with the
Ti + ion knock on others but their displacements are
found extremely small. The results in Tables VII and
VIII reveal that the changes in the lattice energy and the
interionic spacings due to formation of a polaron are very
slight as expected in the Introduction, but every value ob-
tained here suggests that small polarons are stabilized in
the cubic structure.

Though no information can be obtained in our calcula-
tions regarding the nature of the electron localized on a
Ti ion, the electron transfer integral between neighboring
Ti ions in (110) estimated in the experiments ' ' sug-
gests an interaction between Ti + and Ti +. This fact
leads to a conclusion that the 3d electron is more plausi-
ble. In this case, the electron-phonon interaction energy
of the Ti3+-Ti + pair has a value of ——0.040 eV, while
that of the Ti +-0 pair is ——0.025 eY. This agrees
with the prediction mentioned above.

Our previous report investigated the stability of
Ti407 crystal in which a spatial ordering of highly packed
bipolaron states on crystallographic shear planes is found
at low temperatures. The electron-phonon-coupling con-
stants of a bipolaron were also estimated in this material.
It is of use, therefore, to compare the coupling constants
in BaTi03 with those in Ti407, although the polaron den-

TABLE VII. Difference in relaxation energies before and after electron-phonon interactions are in-
cluded in calculations, deformation energies, E&, electron-phonon interaction energies, E, » and bind-

ing energies, 8'p, in units of eV. (Top) results in cubic and rhombohedral structures for 3d electrons,
and (bottom) those in the case of s-like electrons.

Structure (~ER ) -b (~E d%') -b

3d electron
E.»

Cubic
Rhombohedral

1.00
0.14

—1.18
0.28

0.13
—0.03

—0.08
—0.51

0.13
0.12

—0.26
—0.26

0.13
0.14

s-like electron

Cubic
Rhombohedral

1.39
0.75

—1.49
0.02

0.16
0.02

—0.18
—0.91

0.12
0.12

—0.26
—0.25

0.14
0.13
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sity in BaTi03 is very small compared with that in Ti407.
Since the calculations on Ti407 were based upon 3d elec-
trons, we employ the coupling constants of 3d electrons
in BaTi03 for comparison. The values obtained in Ti407
are A, (Ti +)=—10.7 eV/A and A,(O )=1.40 eV/A,
—

A, (Ti +) being larger than A,(O ) as well as BaTi03.
The coupling constants in BaTi03 are, however, some-
what smaller than those in Ti407, but the differences are
not so unreasonable for the following reasons. In Ba-
Ti03, a small polaron is treated as an isolated one be-
cause of the low density of polarons, while Ti407 is a "po-
laron crystal" and bipolarons in this material have strong
polaron-polaron interactions. In addition, the
difference between a single polaron and a bipolaron must
be also one of the reasons responsible for such differences.

D. Electron-phonon-coupling constants
in rhombohedral structure

Since our experiments observe the hopping motions of
nonadiabatic small polarons directly in the rhombohedral
structure, estimations of electron-phonon-coupling con-
stants are also required in this structure. Ion positions in
the rhombohedral structure with the lattice parameters,
a =4.001 A and a=89.868' (Ref. 49), are indicated in

Table IX. As is well known, this structure is in a fer-
roelectric state and every ion is spontaneously polarized.
In such a crystal with a low point symmetry, a monopole
field acts on each ion. The monopole filed on the ith ion,
e;, is given by

= —grad/;(0) . (16)

Table X collects the monopole field acting on each ion.
As Dienes et al. suggest, the monopole fields allow ions
in a perfect crystal to relax their positions in an identical
fashion to the defect calculation and, consequently, Ti +

ions as well as others in the perfect rhombohedral struc-
ture have a relaxation energy, EE(Ti +), which is called
the spurious "perfect-crystal relaxation energy. " Then
we have to correct Eqs. (10) and (12) in the following
way:

(ET)g=Er(Ti +)—EE(Ti +)+(ER,i,„), ,

(ET)b=EL(Ti +)—bE(Ti +)

(17)

+(ER 1 )b+E -ph ' (18)

However, the final representation for the binding energy
of the polaron, Eq. (15), does not change.

If the electron localized on a Ti ion has the nature of

TABLE VIII. Interionic distances between Ti + and a neighboring ion the phonon of which in-

teracts with Ti'+, (r;,. ), and (r;,. )b, and differences in spacings, x;, , due to formation of a small polaron
in both of cubic and rhombohedral structures.

Structure

Cubic

Rhombohedral

Cubic

Rhombohedral

Ion

02—
Ti4+

0'-(-,', 0,0)
(0, 2,0)

(0, ——,',o)
(
—

—,', 0,0)
Ti +(1,1,0)

(1,—1,0)
(-'1,l,'0)

( —1,—1,0)

02—
Ba+

0 ( —'00)
(0,—,', 0)

(0,0, —)

(00, 2)
(0, —-',0)
( —

—,',0,0)

( ——————)
1 1 1
27 2t 2

(~;, ). (A)
3d electron

2.151
5.666
1.884

1.883
2.177
2.177
5.654
5.651
5.651
5.675

s-like electron

2.151
3.469
1.884
1.883
1.908
2.152
2.177
2.177
3.411
3.442

3.441
3.438
3.484
3.478
3.479
3.527

{r;,)q (A)

2.182
5.655
1.887

1.886
2.180
2.180
5.640
5.637
5.637
5.661

2.176
3.453
1.894
1.893
1.918
2.164
2.189
2.189
3.391
3.423

3.422

3.419
3.465

3.459
3.460
3.508

x;, (A)

0.031
—0.011

0.003

0.003
0.003
0.003

—0.014
—0.014
—0.014
—0.014

0.025
—0.016

0.010
0.010
0.010
0.012
0.012
0.012

—0.020
—0.019
—0.019
—0.019
—0.019
—0.019
—0.019
—0.019
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TABLE IX. Ion positions in the rhombohedral structure
translated to Cartesian coordinates in units of the lattice con-
stant, a =4.001 A. O(1), O(2), and O(3) are 0 ions in the x -y,

y-z, and z-x planes. 5=1.443 X 10
Ion x y

TABLE X. Components of monopole fields acting on ions
along the x, y, and z axes in the rhombohedral structure in units
of e/eV.

Ion

2+

Ti4+

O(1)
O(2)
O(3)

5
0.5131
0.4846
0.4869

—0.0131

5
0.5131
0.4846

—0.0131
0.4869

5
0.5131

—0.0084
0.4869
0.4869

Ba +

Ti4+

O(1)
O(2)
O(3)

0.1387
0.1175

—0.2306
0.8193

—0.2303

0.1390
0.1178

—0.2357
—0.2238

0.8211

0.1388
0.5125
0.7089

—0.2415
—0.2415

3d electrons, we have to consider three distributions of
the electron orbitals which are not equivalent because of
the distorted structure, i.e., the 3d electron lying on the
x -y, y-z, or z-x plane, but the electron-phonon-coupling
constants are found to be nearly independent of the
plane. The calculations yield A,(Ti +)= —4.5 eV/A and
)(,(0 ) =0.09 eV/A for 3d electrons and
A, (Ba +)= —1.6 eV/A and A,(O ) =0.17 eV/A for s-like
electrons. In Table VII, we have tabulated the difference
in the relaxation energies before and after the electron-
phonon interactions are included in calculations, the
electron-phonon interaction energy E, ~h and the defor-
mation energy En obtained with A,(Ti +)= —4.501 eV/A
and A,(O )=0.084 eV/A for 3d electrons on the x-y
plane and A,(Ba +)= —1.580 eV/A and A,(O )=0.170
eV/A for s-like electrons. Table VIII demonstrates the
interionic spacings (r; ), and (r;J )b and the changes in the
spacings x;.. In comparison with the electron-phonon-
coupling constants in the cubic structure, the magnitudes
of the coupling constants of cations —

A, (Ti +) and
—

A,(Ba +) are large, while those of 0 ions are consid-
erably small. This fact suggests that the electron on a Ti
ion interacts with phonons of cations more directly in the

rhombohedral structure. In fact, the interaction energy
between the electron on the Ti ion and the phonon of a
cation, i.e., ——0.063 eV for 3d electrons or ——0.030
eV for s-like electrons, is larger than that relevant to an
0 ion, i.e., ——0.0003 eV for 3d electrons or
——0.0017 eV for s-like electrons.

Our calculations indicate that small polarons are stabi-
lized not only in the cubic but also rhombohedral struc-
tures. This conclusion confirms, from the theoretical
point of view, the polaronic conduction in n-type BaTi03.
Moreover, it should be emphasized that values obtained
theoretically in this paper are quite difficult, at this rno-
ment, to obtain experimentally.
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