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Nonlocal exchange effects on the bulk plasmon dispersion relation
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Starting from the action principle, a bulk plasmon dispersion relation is obtained. We work with

Slater determinants built of plane waves and consider a Hermitian generator of plasma oscillations (with

well-defined q momentum) S =ag PP, w—here Q =g, cos(q xi) is a time-even Hermitian generator,
P =9/, [p,'qsin(q. x, )+sin(q x, )p,'q] is a time-odd Hermitian generator, a(t) and P(t) are real

time-dependent functions, and 9 is a real normalization constant. If the parameters a and P are small,

the amplitude of the plasma oscillations generated by S is small. The quantum-mechanical action princi-

ple leads, in the harmonic approximation, to a quadratic Lagrangian L"'(a,P) from which the disper-

sion relation is obtained. The nonlocal expression of the exchange contribution is explicitly obtained.
The resulting bulk plasmon dispersion relation is related to the energy-weighted and cubic-energy-

weighted sum rules. Finally, we compare our results with the experimental data.

I. INTRODUCTION

A macroscopic description of the dynamics of a many-
body system is physically appealing and transparent be-
cause it allows a clear identification of the mechanism re-
sponsible for the collective properties of the system. The
standard fluid-dynamical approach' implicitly assumes
a specific averaging process over the intrinsic degrees of
freedom, which is achieved by focusing on the dynamics
of the lowest momenta of the distribution function. This
procedure leads, as is well known, to an intuitive dynami-
cal description in terms of density, current, pressure ten-
sor, etc.

It is the purpose of this paper to present an investiga-
tion of collective dynamics of the electron gas centered
on the description of the time evolution of the collective
degrees of freedom, which are characterized here by ap-
propriate macroscopic collective variables. We follow a
simple variational method' that has been developed and
successfully used to study excited states of heavy nuclei.
The method is based on the action principle applied to
the determination of the optimal time evolution of ap-
propriate generators of collective deviations from equilib-
rium.

A kind of averaging process over the dynamics of in-
trinsic degrees of freedom is implied by the use of restric-
tive operators that are constructed in such a way as to
provide an adequate description of the collective, macro-
copic degrees of freedom. The method preserves the im-
portant energy weighted sum rule, which is connected to
the dielectric-function sum rule. Therefore, the asymp-
totic behavior of the response function is exactly repro-
duced for large frequencies.

Recent experimental information on the plasma excita-
tions on nearly-free-electron-like materials ' has been
used to discuss different theoretical approaches that at-
tempt to match their predictions against the experimental

data within a few percent. It is especially convenient to
obtain a manageable analytical expression of the disper-
sion relation for the collective modes of the system in or-
der to use it in the usually involved calculations of several
spectroscopies.

In a recent paper, from an extended random-phase-
approximation (ERPA) sum-rule technique, a compact
expression for the dispersion relation of the electron-gas
modes was obtained. It can incorporate in an easy and
explicit way band-structure effects through a band
effective mass and an ionic dielectric constant. Exchange
and correlation effects were included through local ex-
pressions of Slater and Wigner types, respectively.

We assume the jellium model to represent the ionic
positive background. Inclusion of band effects can be
performed directly into our energy expansion (as was
done in Ref. 7) in order to compare our results with ex-
perimental data.

This paper is organized as follows. In Sec. II we make
a description of the method used and obtain the analyti-
cal expression for the dispersion relation. In Sec. III we
compare our numerical results with experimental data
and draw conclusions.

II. DESCRIPTION OF THE METHOD

We consider the quantum-mechanical Lagrangian

I.=i~&pl j & &glibly), —

where ~P ) is a Slater determinant that is related by means
of a unitary transformation to the Slater determinant of
plane waves

~ Po ), describing the ground state

~y ) (i/eR)s~y )

For small-amplitude deviations from the equilibrium
state, the Lagrangian L leads to the following harmonic
expression:
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We write the generator S as S=a(t)Q —p(t)P, where P
and Q are Hermitian operators of the type

g(x) = 4
189

76 4 71 2 x
15 2 20 20

36 4 x 61 4+ x — ln1—
80 80 2

and

Q = g cos(q X~ ),
J

P =J3$ [p, q sm(q. x, )+sm(q x, )P, q ] .
J

(4)

(5)

16 4
189x

x x x+2
ln

15 36 x —2

(13)

In Eq. (5), 8 stands for a normalization constant, which
we choose in such a way that

&y, l[P, Q]ly, &= —/e . (6)

Equation (6) implies that %=1/(Xq ), where X is the
number of free electrons. With this choice for X the vari-
ables a and P behave as canonical variables [see Eq. (14}].
An analogous approach has been followed in other fields
of physics with good results (see, for example, Refs. 1 —4).

The operator H =T+ V stands for the Hamiltonian of
an electron gas in a uniform positive background (jellium
model), and T and V are, respectively,

2 2QL' '= —'(pa —pa)—
2M 2

where

rC=&y, l[P, [II,P]]ly, &,

(14)

(15)

We remark that the calculation of the exchange term is
lengthy but analytical. We note that the expression g(x)
has already been presented in the literature in Ref. 8 in
the context of the asymptotic behavior of the response
function in the high-frequency limit. As we will see later,
it is related to the cubic energy weighted sum rule com-
puted with the operator Q. Therefore, the Lagrangian (3)
may be written as follows:

PJ
2m

(7) and

2

V=+ +QU(x )+W,
l (j xl XJ j

(8)

where U(x ) is the potential due to the uniform positive
density distribution and 8' is the electrostatic energy of
the positive background (e being the electronic charge).
The term W plays no role in the Lagrangian (3), and

g U(x ) is canceled with the zero-momentum scattering
component of the first term in the right-hand side (rhs) of
Eq. (8).

We find the following expressions (from now on, we use
atomic units: e =m =A'=1). For the kinetic contribu-
tion, the nonzero terms are

(16)

/3= a/M (17)

and

a = pIC, — (18)

or, equivalently,

P+ /3=0,
M

for which the harmonic frequency oscillation is

(19)

Arbitrary variations of a and p lead, respectively, to the
following equations:

and

(9)

(10)

co~ =&E/M,

or, explicitly,

3co2=co2+3kF2q +4'q4+ kF((x),
277

(20)

(21)

where kF=(3m no)'~ is the Fermi momentum and no is
the constant ground-state electronic density. For the
Coulomb contribution, the direct term (D} is

where co =4vrno is the plasma frequency. Equation (21)
is the main result in this paper. In order to allow for
comparison with other results in the literature, we con-
sider the expansion of the exchange contribution only up
to q order, obtaining for co the following expression:

Nq

and the exchange term (E) is
3, 1kF

Cd —6) + k~
s

+ egg (22)

& col [P [ V P] ]4o & =,' P },
Nq

where x =q/kF and

(12)
which agrees up to the order q with the result presented
in Eq. (3.19) of Ref. 9. Our result for the plasmon disper-
sion relation differs from the result of Ferrell' based on
the many-body theory. The magnitude of the coefficient
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of q of the noninteracting contribution is not repro-
duced, although the correct sign is obtained. The
discrepancy is due to the fact that our approach does not
take into account the dynamics of the intrinsic degrees of
freedom. It is, however, remarkable that the coefficient
of q is correctly reproduced on the basis of the collective
dynamics. We also observed that the exchange contribu-
tion to the q coefficient in Eq. (22) is less negative than
that obtained using a local-density approximation for the
exchange.

III. DISCUSSION AND CONCLUSION

24

22

2()

18

Sum rules" are useful tools to investigate collective
dynamical properties of many-body systems. The present
model satisfies the m& sum rule for the operators Q and
P. Since P is proportional to IH, Q], the model also
satisfies the sum rule m 3 for the operator Q, so that the
high-frequency asymptotic behavior of the response func-
tion is exactly reproduced. Therefore (see Ref. 12),

16

2
q-'(3 ')

m3/m, =co2

with

(23) FIG. 1. Bulk dispersion relation for aluminum (r, =2.07) ob-
tained from Eq. (26) compared with experimental data from
Ref. 6.

N 2

m, =~~I&qIQlo&I = (24)

and

m3 =~,' I & q I Q Io & I

—'q k +—'q +co + k g(x)
Q2 3

4 ' 2m
(25)

where (q I Q I 0 & is the transition matrix element of Q be-
tween the ground state IO & and the plasmon state Iq &.

In Fig. 1, to compare with available experimental data
for aluminum, we have used a modified dispersion rela-
tion equation, given by

2

CO

kF
q + q + ~2+ k3((x)

4 3
4m* m*a

(26)
where band effects are included through a band-efFective
electronic mass m * and a dielectric constant e that mod-
els the polarizability of the ionic positive background un-
der the assumption that the inner-shell energies of the
positive ions are far from the energy values of the plasma
oscillations, which is the case for aluminum. We use

a=1.05 and m*=1.045 a.u. , obtained from the calculat-
ed shifts of the plasmon energies at q =0 due to the inho-
mogeneity and core polarization effects, made by Sturm
in Ref. 13. There is good agreement with experimental
value (differences of less than 4%) even for values of q
higher than the cutoff value q, =1.4 A (q, =co~/kz),
over which Landau damping takes place and the plasma
oscillations degenerate into electron-hole excitations.

We conclude that the nonlocality in the exchange in-
teraction can be adequately included in the dispersion re-
lation of plasma oscillations for nearly-free-electron met-
als within a still manageable expression that can incorpo-
rate in an easy way band-structure effects and that repro-
duces experimental data quite well for small values of r,
(the radius of the sphere that includes a unit electronic
charge).
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