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Effects of rough boundaries on electron transport in tight-binding, quasi-one-dimensional (Q1D) and
quasi-2D (Q2D) channels are studied. The Q1D channels have uncorrelated edge roughness over a dis-
tance that is long compared with the width, and are connected to semi-infinite, perfect leads. The Q2D
channels have uncorrelated washboardlike edge roughness with translation symmetry perpendicular to
the current flow. The standard Green-function method is applied with high resolution to the Q1D sam-
ple while the leads are treated exactly by a Green-function extension theory [Phys. Rev. B 37, 9524
(1988)]. The extension theory also gives the density of states and Kubo-Greenwood conductance of the
Q2D case exactly in terms of Q1D results. Analytical results are presented for the conductance of or-
dered cases. In the Q1D case, it is found that edge roughness can create gaps in the spectrum and induce
strongly localized states, similar to states found in quantum percolation. No such gaps or isolated states
appear in the Q2D case. However, localized states with energies in the band continuum, but decoupled
from the current-carrying states, cause a reduction in conductance for Fermi energy in a certain range.
For comparison several Q1D models with periodic edge roughness are also studied.

Recent progress in the fabrication of quantum wells
and quantum wires has stimulated theoretical work on
the effects of geometry on ballistic electron transport.
The model calculations presented here are to assess the
effects of elastic scattering from boundary roughness on
conductance of quasi-one-dimensional (Q1D) quantum
wires or quasi-2D (Q2D) quantum wells. The focus of the
paper is on the effects of surface roughness, which are in-
terference effects controlled by geometry, on zero-field,
zero-temperature, dc conductance. We treat both the
Q1D case and a limited version of the Q2D case in which
the electron is confined to a layer of limited thickness but
which is of infinite extent in 2D.

A treatment of wave interference effects due to rough
interface scattering developed by TeSanovi¢, Jari¢, and
Maekawa' has been used by several authors.?™* In that
method surface roughness is transformed into a pseudo-
potential perturbation of the smooth-surface problem.
The strength of the pseudopotential is governed by
A=In[a /a(x)], where a is the unperturbed width of the
conducting channel and a(x) is the actual width which
fluctuates as a function of the position x; parallel to the
surface. Under certain simplifying assumptions' the con-
ductivity can be computed from the Kubo-Greenwood
formula in terms of the correlation {(w(q)w(—q)), where
w(q) is the Fourier transform of A(x;). This calculation
involves a further assumption in neglecting higher-order
correlations in surface roughness. *>

Different approximations are made in the work
presented here in which a standard nearest-neighbor
tight-binding Hamiltonian® 3 is used to represent surface
roughness. Model geometries are defined in Fig. 1. One
can think of the Hamiltonian as a discrete approximation
to the Schrédinger equation which should agree with the
wave mechanical treatment in the effective mass or long-
wavelength limit. Alternatively, discreteness of the mod-
el can represent true atomic granularity, which is impor-
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tant for narrow channels. Within this model the problem
of a Q1D strip with rough edges is solved exactly by the
method of Lee and Fisher.® The ordered, semi-infinite
leads are treated exactly by a Green-function extension
theory.!® In the Q2D case, one further model approxi-
mation is introduced. The surface roughness is assumed
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FIG. 1. Model geometries. (a)—(d) show diagonal elements of
the tight-binding Hamiltonian in real space. Circles represent
vertices in real space. Filled circles indicate missing atoms.
The random surface roughness is increased from left to right in
(@)—(c). (d) Ordered rough edge. (e) A schematic diagram of the
washboardlike model. Conductances are measured in the x
direction. The sample is extended to infinity in both the x and z
directions. The width in the y direction is about 10 layers.
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to have washboardlike translation symmetry along the
surface in the direction perpendicular to the current flow
as shown in Fig. 1(e). Thus the problem separates, and
results can be obtained via the extension theory. No per-
turbation expansion is made in the amplitude of surface
roughness and all orders of roughness correlation are tak-
en fully into account within the linear-response theory.
The current work is not primarily concerned with the
length scaling of conductance, but rather with the effects
on its energy variation due to surface conditions.

In the slice-recursion method of Lee and Fisher, Q1D
samples are divided into slices consisting of rows of
atoms. A Q1D sample region is connected to semi-
infinite Q1D leads, and then Green functions
G=[z—H] ! are calculated recursively, one slice at a
time, through G =g +gVG, where g contains the matrix
of Green functions for the region including up to the pre-
vious slice and also the disconnected slice. V represents
the connection between the slice and the completed re-
gion. The roughness disorder is embedded in the Hamil-
tonian matrix H, for the nth slice. In all models treated
below, the sample region is 80 atoms long and the leads
are infinite. The width of Q1D strips is 10 atoms.

To begin the slice-recursion process, Green functions
for the lead regions at each end are computed exactly.
This is possible because the Hamiltonian separates into
additive x and y components, thus the eigenfunctions fac-
tor into x- and y-dependent parts. Owing to this separa-
tion of variables, the Green functions are expressed as
convolutions involving Green functions for the x and y
directions separately. If Green functions are known for
two Hamiltonians H and K, defined on lattices V(H) and
YV(K), the extension theory in Ref. 10 gives Green func-
tions for any Hamiltonian H, in the product algebra of H
and K through convolution integrals. Likewise, in cer-
tain circumstances conductance of blocks or of whole de-
vices can also be obtained by convolution from conduc-
tance of lower-dimensional parts. Use is made below of
this convolution formula to obtain conductance of the
Q2D model of Fig. 1(e) from the Q1D resuits. A similar
formalism giving conductance via convolutions has been
developed by Bagwell!! using continuous wave functions
rather than discrete, tight-binding representation. The
two formalisms must agree in the long-wavelength limit.

Analytical forms of Q1D-strip Green functions or con-
ductance for ordered parts are obtained straightforward-
ly. These ordered cases therefore give both a convenient
reference for which exact results are known and starting
points from which the current response of the lead re-
gions is obtained.

For the study reported here, the zero-field dc conduc-
tance is found via the Kubo-Greenwood formula, Eq. (3)
in Ref. 9. The relation between the Kubo-Greenwood
formula and the Landauer-type approach'? using
transmission matrices for the two-probe, 1D case!® and
for higher dimensions'* and multiple-channel cases '* has
been investigated by other authors.

In the case of perfect order there are several exact re-
sults to which one can compare. In a 1D chain with di-
agonal energies O and off-diagonal energies + 1, the band
extends from —2 to +2. Since the density of states
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(DOS) exactly cancels the group velocity, it is well known
that the conductance is proportional to'?

I(E)=6(4—E?), (1)

where O(E) is the Heaviside step function. The mul-
tichannel conductance in a strip N sites wide can be
found, for example, by the methods of Ref. 10, namely

[(E)= [ T\(x)D(E—x)dx , @)

where D(E) is the total density of states of a chain of
length N, or

N
D(E)= 3 8(E—2cos[nm/(N+1)]), (3)

n=1

thus

N
[(E)= 3 ©(4—{E—2cos[nm/(N+1]}}) . @)

n=1

One can understand the result Eq. (4) [and in fact the
general formula Eq. (2)] in terms of the general result!?
that T, which is conductance in units of e?/A, equals the
number of channels or transverse modes available at Fer-
mi energy E.

As the width N — «, the conductance diverges pro-
portionally. Thus one must readjust the normalization by
using the 1D DOS per site,

D(E)=$(4—E2)*V29(4—E2), (5)
in Eq. (2). The resulting conductance for a perfect sheet
is

2—|E]|

1,1
_+_
sSin D)

> O(16—E? . (6)

NE)=

Thus the conductance in a perfect tight-binding model of
a 2D sheet, though it diverges as a function of sheet
width, has this characteristic dependence on Fermi ener-
gy E. Equations (4) and (6) are plotted in Figs. 2(a) and
2(b). The conductance obtained by He and Das Sarma®
using essentially the same numerical method as that used
below in this work also shows the shape defined by Eq. (4)
for the empty channel conductance as shown in Fig. 2(a).

The conductance spectra in Fig. 2 are symmetric with
respect to E =0 reflecting the bipartite symmetry of the
lattice Hamiltonian.'® The number of steps on each side
of the conductance curve in Fig. 2(a) is the same as the
number of sites in the transverse direction. The quan-
tized conductance steps have been a popular topic since
first discovered.!”!® A variety of different methods and
models have been used to compute ballistic transport
properties. 27 Regardless of the diversity of method,
these calculations are able to predict conductance steps
as a function of Fermi energy, wave number, or the width
of a channel constriction.

One can stack sheets together to find the functional
form of conductance along a perfect Q2D channel of
infinite length and width and having a thickness of N
sites. Thus I'|(E) in Eq. (2) is supplied by the sheet result
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I'(E) in Eq. (6) and D (E) for a chain of N sites is sup-
plied by Eq. (3). The result for a channel of width N is

rE= 3 Ly Lger |22EZE]
Z |y tgsin 2
XO6(16—(E—E,)%), (7
where
. nmw
E,=2cos N1 J .

Again the limiting case N — oo requires readjusting the
normalization. One can use the 1D chain conductance
Eq. (1) and the 2D DOS per site

(2)
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FIG. 2. Q1D conductance in ordered models. The Fermi en-
ergy E is measured in terms of the off-diagonal H matrix ele-
ment. Units of conductance I' are e?/h. (a)-(c) Analytical re-
sults, Egs. (4), (6), and (7), for dc conductance as a function of
Fermi energy E. (a) Q1D with a finite width N =10. The value
of ' at E=0is N. (b) perfect sheet. The height is normalized
to 1. (¢) Q2D sheet with 3D thickness N =10. (d) Numerical dc
conductance for a QID strip with constriction. Length is
L =80 and constriction width N,=6 in channel of width
N,=10.
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4 4—|E| 2
D(E)= O(16—E?) , (8)
T4+ |E|) | 4+|E]

where K is the complete elliptic integral of the first kind,
or else one can use the 2D conductance Eq. (6) and the
1D DOS per site from Eq. (5). The conductance curve
for I'(E) given by Eq. (7) is shown in Fig. 2(c).

When conductance is computed from tight-binding
Green functions, as it is for the rough channel treated in
this work, the damping parameter 7 must be handled
carefully. It should be noted that if a transmission for-
malism were used in which wave amplitudes are comput-
ed rather than Green functions, then no such damping
would be necessary since the system is infinite. Spectral
properties are derived from Green functions by adding a
small imaginary part to make the energy variable
z=FE+in complex. The computation becomes singular
in the limit 7— O which is of physical interest. So a small
finite 7 is retained. For all data shown in this paper the
resolution is fixed by dividing the entire spectrum into
8192 points, and 7 is set to the same as the step size.
Thus the resolution should in all cases be less than the
width of the lines used in drawing the curves.

Roughness is introduced by making the diagonal ener-
gies on certain randomly chosen edge sites very large
compared to the off-diagonal elements as illustrated by
the black dots in Fig. 1. This is equivalent to removing
sites at random. The random perturbation is uncorrelat-
ed along the channel direction. If second-layer roughness
is included, the second-layer sites adjacent to edge sites
may also be void as determined by a conditional probabil-
ity, given that the adjacent first-layer site is void.

Numerical dc conductance I'(E) for a Q1D strip with
constriction is shown in Fig. 2(d) where the two outer
rows of sites on each side of the 81 column sample region
are essentially removed by making diagonal elements
very large, hence the sample region is narrower than the
leads. The overall shape of the conductance curve resem-
bles the ordered Q1D strip case in Fig. 2(a) except that
the number of steps is reduced to six, which is the num-
ber of rows of remaining sites. The sharp conductance
steps are rounded somewhat and rapid oscillations are in-
troduced, as has been discussed by several authors.'®?’
The physical origin of the rapid oscillations is well under-
stood. This structure in T'(E) is due to an open-pipe
standing-wave condition in which the length of the con-
stricted channel, corrected for end effects, is an integer
nurr119ber of electron half wavelengths at the Fermi ener-
gy.

Charge-density contours inside the Q1D strip in Figs.
3(a)-3(c) are computed by integrating the local densities
of states (LDOS) projected on each site over the energy
range —4 <E < —3 from perfect channel in Fig. 3(a) to
moderate roughness. One sees a region of charge de-
pletion where electrons are repelled as the disorder in-
creases. Features in the charge density in Figs. 3(a) and
3(b) correspond to individual voids. Level contours for
LDOS at E =0 at each site are shown in Figs. 3(d) and
3(e). Figure 3(d) shows a standing-wave localized state at
E =0 induced by a single missing atom at the edge where
the arrow in the figure indicates the position of the miss-
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FIG. 3.

Level contours of charge density presented for
several values of surface roughness. (a)-(c) LDOS is integrated
between —4 and —3. As random surface roughness increases,
charge is forced away from the vacancies. (d) Electron is scat-
tered at a single void indicated by the arrow. (e) Another void
is introduced at the opposite side of the sample.
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ing atom. The amplitude continues to reflect from edge
to edge along the channel. The combined effect of two
vacant sites on opposite sides is shown in Fig. 3(e). The
precise nature of such E =0 states, which also occur in
quantum percolation studies on a square lattice, is dis-
cussed below.

Figure 4 shows the total densities of states and dc con-
ductance of a Q1D strip as a function of Fermi energy
and surface roughness. p is the probability that a void
occurs at a given site at an edge. The roughness reaches
a maximum when p=0.5 since this is between the
smooth channel and the constriction case. p =0.5 on the
edge sites and also there is a conditional probability of 0.5
on the second layer in Fig. 4(c) where localized states ap-
pear to result at E=0. The sharp peak in the average
DOS per site corresponds to zero conductance at E =0,
and a gap opens in the conductance around E =0 as the
number of rough layers increases to two. The average
DOS per site in the central portion of the sample is com-
puted at fixed energy by summing the local DOS at each
active site within the central 81 slices of the sample re-
gion and then dividing by the number of active sites.
Thus the area under each DOS curve in Fig. 4 is normal-
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FIG. 4. Density of states and dc conductance of a Q1D strip as a function of Fermi energy and surface roughness. The units of
Fermi energy E are the off-diagonal H matrix element V. Units of conductance T are e?/h. (a) p=0.02, (b) p=0.1, and (c) p=0.5

with second-layer conditional probability 0.5.
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ized to 1. The area under the E =0 peak is 0.5% in Fig.
4(b) and 2.0% in Fig. 4(c). The peaks are reproducible
using different random roughness configurations. Note
also that the effects of edge roughness are much more
pronounced near the center of the band as opposed to the
band edges. We shall return to this point.

In order to compare against the standard perturbation
technique, we computed Green functions within the aver-
age propagator approximation.® For simplicity, we took
the case of maximum disorder (p =0.5) with roughness
involving only the outermost rows. For a finite barrier
potential 3, the perturbation on each edge site is divided
into a constant 13 and a randomly fluctuating part with
zero mean value. When the Born expansion for the
Green functions is averaged over disorder, the noncancel-
ing terms each contain only successive scatterings from
the same edge site for some collection of edge sites. Since
the distribution of site potentials is not Gaussian, it is a
further approximation that we have also dropped higher
than second cumulants from the averaged series expan-
sion.” Finally, we performed a Dyson summation over
all scattering events with self-energy consisting of dia-
grams with two successive scatterings from one site on
the top layer or one site on the bottom layer. The infinite
summation thus consists of all combinations of any num-
ber of such top- and bottom-layer scattering pairs. Ex-
cept for the transformation to a pseudopotential, this cal-
culation is in a spirit very similar to that of the method of
Ref. 1. The resulting Green functions are well behaved
as B—co. The DOS computed this way is a smooth
curve showing neither the gap nor the peak on the DOS
at E=0. That no isolated E =0 peak results should not
be surprising, since to include the effect of localized states
requires including diagrams with any arbitrary number of
coherent scatterings from the same site, which we have
not done. If one wants to obtain evidence of well-
localized states, then averaging over edge configurations
is probably not the right thing to do.?® It is less clear
why the average propagator does not reproduce the gap
around E =0.

Since gaps in the spectrum could be induced by period-
ic edge perturbations representing Fourier components of
the spatial variation of random roughness, it is interest-
ing to consider the case of ordered periodic edges. We
have computed the band structure of several Q1D chan-
nels with periodic rough edges. In each case, the width
alternates from a maximum N, to a minimum N, so that
the period of variation is two atomic distances [see Fig.
1(d)]. Corresponding to edge roughness involving one or
two outer layers we have chosen N,=N,—2 or
N, =N, —4, preserving reflection symmetry of the chan-
nel.

First consider the case N, =5 with N, =3. There are
five bands with even reflection symmetry, including one
with £ =0, and three with odd, including another E =0
band [Fig. 5(a)]. The dispersion formulas for the E#0
even bands are

(1+128¢%)'72

E(k)== |(5/2)+4c*+ 5

, 9
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where ¢ =cos(k) with k the wave number (atomic spac-
ing =1). For the E+0 odd bands,

E(k)=%(1+4c%)1? . (10)

Thus, the overall bandwidth is w=2[(13+Vv129)/2]'/?
=6.980 and there is a direct gap of width A,
=1(15/2)"=1.369 containing the E=0 states. The
latter have zero mobility and do not contribute to the
conductance. Wave amplitudes on the sites at the edge
decrease rapidly for E close to the band extremes.

The E =0 states always appear when N, is odd and
N,=N,—2. The general pattern of wave amplitudes is
illustrated by the case N, =7,N, =5 depicted at k =0 in
Fig. 6. The even E =0 state in such models bare close re-
lation to the localized states in the random model which
give the E =0 peak.

In an infinite 2D square lattice, there are E =0 solu-
tions to the tight-binding Schrodinger equation, each
consisting of a diagonal chain of sites with wave ampli-

15 -1 0.5 0.5 1 s k
o B (6)

FIG. 5. Energy band for Q1D ordered rough edge. (a) Max-
imum width N,=5 and minimum width N,=3. (b) N,=7,
N,=5. There are N, even states and N, odd states. Both mod-
els have one even and one odd E =0 solution. These flat E =0
bands are not shown.
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+1 @ ® ® ® ® ® ® while the central gap (which is always direct) has width
-1 000000000000 06OO Ay=0.731. There is also a new\,/ﬂﬂy n?}'zrow, indirect

ap extending from E=[(11—V65)/2] =1.212 at
*1 ©600 000060060600 iio to E=gl.220 at finite k. The width is thus
-1 000060000060060 (a.) A;=0.008, which is small but nonzero. The bipartite
+1 000 ®0®0®0608e symmetry E——FE locates a corresponding gap in the
-1 00606060606 000 lower half of the spectrum.
+y1 ® ® ® ® ® ® ® The bands for cases N,=5,N,=3 and N,=7,N,=5
described above are shown in Fig. 5. For contrast, it is
interesting to consider cases not in the sequence
+3 ® © 6 © o o6 o N,=N,—2forodd N,,.
2 0000060 0B6B06BOD0BGO For the N,=6,N,=4 case, w=7.317. As expected,
+1 OO0O0O®0O®OB®OB®O® there are no E =0 states. There is a rather narrow gap of
0 0000000000000 (b) w1dt1-1 A;=0.198 centered at E =0. The outer gaps are
relatively larger. The upper one extends from
-1 ©00006060©0606°06 E=[(3=V5)/2]"2=0.618 to E=1, so the width is
+2 0 ®0B®0®0®0®06O0 A,=0.382. These outer gaps are indirect, as before.
-3 © © 6] © (S) (©] o The case N, =7,N, =3 with two-layer edge roughness

FIG. 6. Wave amplitudes for E =0 states of an ordered Q1D
model with N,=7,N,=5 at k=0. (a) Even state, (b) odd state.
Numbers at the left column are the amplitudes.

tudes alternating between +1 and —1. Since all such
chain states are degenerate, they can be chosen in any
combination. When there are missing sites or finite boun-
daries, an alternating chain state can terminate at a site
with only two neighbors. At an edge, chain state can
reflect. The reflection and termination are illustrated in
Fig. 7. This phenomenon explains the charge-density
contours shown for E =0 in Figs. 3(d) and 3(e).

The even E =0 states shown in Fig. 6(a) can be visual-
ized as consisting of an array of chain states. When dis-
order is introduced in the edge roughness, a chain state
can still exist, provided that it originates at a state with
two neighbors, reflects zero or more times, and ter-
minates at another two-neighbor site. These states are
strictly localized. Though such states are geometrically
forbidden in the ordered models with N, even or
N, N, —2, they can be induced by disorder.

As N, becomes larger while remaining within the fami-
ly N,=N,—2 with N, odd, the gap about E =0 becomes
narrower and other gaps are formed. For example, when
N,=17,N, =S5, the width of the spectrum is w=7.512

®®0O0OO0OO0OO0OO0O0O0D0O0O0OO0OO
006000000000 O0
O00®OOO0OO0OO0OOOO0OO
O000BBOOOO0OO0OO0O®
O0000®O0O00O0OB O
O0000D0O0DO0O0O0O®OO
O0O00000®OOBOOOo

FIG. 7. Amplitude pattern for the diagonal chain state with
E =0, showing termination and reflection. The black dot is a
missing atom. Reflection can be thought of as a combination of
two chains canceling so as to satisfy edge boundary condition.

has no central gap at all. The band dispersion for odd-
symmetry states is

E=%[1+2c2+(1+4cH)12])2 | (11)

so that E—O0O for the inner pair of odd bands as
k — =+ /2. The overall bandwidth is w =6.993. There is
an indirect outer gap extending  from
E=(3—V5)!2=0.874 to E=[(79+V97)/64]'"
=1.178, thus having width A;=0.304. Of course there
is also the gap corresponding to it by E— —E.

As general trends one finds that as the width N, in-
creases, the gaps become narrower and their number in-
creases. Also, the wave amplitudes at edge sites for states
with E near tw /2 becomes very small, as may be seen
also for the perfectly ordered channel. Thus states near
the outer band edges become less sensitive to changes in
the boundary roughness for two reasons. One is that they
have little amplitude at the boundary, and the other is
that the spatial variation is such that they sense only
slowly varying components of the roughness. The latter
point is most clear from the fact that E— * 1w requires
k—0. This is the effective-mass limit.

DOS and Kubo-Greenwood conductance for an or-
dered model with (N,,N,)=(10,6) and (11,9) are shown
in Fig. 8. Note that as expected from the above argu-
ment the roughness has less influence near the band ex-
trema. A similar trend is somewhat less pronounced for
the random cases in Fig. 4. Narrow gaps in Fig. 8, which
show up as dips in the conductance, are not completely
resolved in the figure. The area under the E =0 peak in
the normalized DOS in Fig. 8(b) is 6.0%.

As mentioned above, the localized E =0 chain states
occur also in the quantum percolation problem? in
which a tight-binding Hamiltonian, with nearest-
neighbor matrix entries +1 and diagonal entries either 0
or barrier potential 3, is constructed on a square or cubic
lattice. For such a model, Kirkpatrick and Eggarter®
found several kinds of localized, molecular states, includ-
ing the E =0 chain states described here. They found
that a finite fraction (depending upon the active site con-
centration) of the total number of eigenstates were of this
type. Thus, in their model, there is a 8-function peak at
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FIG. 8. Densities of states and dc conductance of a Q1D strip with ordered rough edges as depicted in Fig. 1(d) as a function of
Fermi energy for two surface roughness conditions. The units of Fermi energy E are the off-diagonal H matrix element. Units of
conductance T are e?>/h. Energy band for a Q1D ordered rough edge for cases. (a) N,=10,N,=6, (b) N,=11, N,=9. Note the
gaps, some of which appear only as dips in the conductance. The E =0 peak in the DOS of (b) represents a finite area and extends or-

ders of magnitude above the rest of the spectrum.

E =0 in the average DOS which accounts for a finite
area. This is similar to what is found in the current work
where the chain states are induced by edge roughness. It
has recently been proven®! that in the quantum percola-
tion model the set of energies of localized molecular
states is actually dense in the spectrum. The proof given
in Ref. 31 cannot be applied, however, to the rough-
channel models when edge roughness is restricted to a
few outer rows of atoms.

It is also shown in Ref. 30 that a dip develops in the
DOS in the region about £ =0 which contains the peak
due to chain states. The dip indicates a depletion of oth-
er states and becomes more pronounced as the concentra-
tion of barrier sites increases or as the concentration of
active sites decreases below the percolation threshold.
The DOS in the dips appears to go smoothly to zero as
E —0, in the quantum percolation case. Also, as mea-
sured by sensitivity to boundary conditions at the edge of
a finite sample, states in the central dip near E =0 for
that model appear to be localized.

In the current work we find for the Q1D ribbons with
random rough edges only a slight indication of a decrease
in the DOS near the E=0 peak. There is, however, a
very well defined mobility gap about E =0, the width of
which increases with increasing disorder or decreasing
channel width. Regarding channel width, the mobility
gap behaves rather differently depending upon whether
the width N, is odd or even. We suspect that the cause
or the nature of the gap (or gaps) in the Q1D models with
random rough edges studied here may be slightly
different from what is in the percolation case since it may
have something to do with residual periodicity. That is,
gaps might be induced by Fourier components of the
edge roughness.

Conductance results presented thus far apply to Q1D
models. The conductance of the Q2D model pictured in
Fig. 1(e) with minimal surface roughness (p =0.02) and
the maximum first- and second-layer roughness are
presented in Figs. 9(a) and 9(b), respectively. These have
been computed by convolution from Q1D results. The

Q2D Conductance

5.47 (a)
0.02
0'00 T T T T T L 1
-6 -4 -2 0 2 4 6
432 (D) p = 0.5/0.5
0'00 ¥ T T T T T
-6 -4 -2 0 2 4 6

FIG. 9. Conductance for Q2D channels with thickness
N=10. The units of Fermi energy E are the off-diagonal H ma-
trix element. Units of conductance I are e?/h. (a) Nearly per-
fectly ordered case (p =0.02). (b) Maximum random roughness
at the outer layers.
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conductance is obtained using Q1D conductance for I',
and the analytical 1D DOS for D, in Eq. (2). The effects
of such washboard roughness in the Q2D model on either
the DOS or the conductance are not dramatic. Much of
the structure has washed out in convolution.

There are also localized states in the Q2D channel with
wave functions having diagonal chainlike variation in
Q1D and traveling-wave-like behavior in the z direction.
Thus they carry no current along the channel. These
have energies distributed continuously between —2 and
+2 and account for a decrease in conductance within
this energy range. If a fully 2D surface roughness were
included, rather than washboard roughness, which is
translation symmetric along the z axis, then other kinds
of localized states would appear. For example, there
would again be a peak in the Q2D DOS at E =0 caused
by states with nonzero amplitudes of alternating *+1 in a
line along a cubic diagonal. It might be expected that, in
analogy with the case of quantum percolation, there
would also be a depletion of other states in the energy
range near £ =0. The conductance would again be ex-
pected to have a gap about E =0, as in the Q1D case.

In summary, we have presented a study of surface
roughness on transport in narrow tight-binding channels.
As a starting point, Egs. (1)-(8) give results for perfectly
ordered cases against which one can compare. These for-
mulas follow from Eq. (1), which expresses conductance
across a section of a perfect 1D chain, which is in turn at-
tached to perfect leads, in the limit —0. It is possible
to retain a finite 7.3 The result of doing so is to intro-
duce a small, constant optical potential which makes
eigenstates decay slowly in time. While one might imag-
ine this represents some realistic inelastic effect, it is com-
pletely ad hoc.

We believe that Eq. (6), which is the N — oo limit of
Eq. (4) divided by the width ¥, has not been published be-
fore. The order of limits it represents is first L — oo, then
n—0, and finally N-—>o. The sheet conductance
diverges in such a way that the shape function in Eq. (6),
which has been appropriately rescaled, remains finite.
The ordered channel results are thus obtained naturally
from the extension formulas.

The results for models with edge roughness show that
the effects are weak near the band extrema where the
DOS and conductance do not vary remarkably from the
perfect channel case. This is the effective-mass limit in
which the theory of Ref. 1 applies well.

On the other hand, spectral features near the middle of
the band are strongly disrupted with the appearance of
gaps and, at least at E=0, of highly localized states.
These features are adequately well understood. There is a

6875

surprising correlation between the cases of random and
periodic edge roughness.

One must note that the interesting features in the mid-
dle of the band occur where the intrinsic granularity be-
comes important and where the continuum wave inter-
pretation breaks down. Also, these features, particularly
the E =0 peak, are not robust with respect to small
changes in the model. For example, we have seen that
the existence of the E =0 states in the ordered rough
edge case depends on the relation N,=N,—2 with N,
odd. Random models are more robust, but the charac-
teristics of the midband spectral or conductance features
would be quite different on a triangular lattice or in the
case of a realistic tight-binding model. One would not
therefore be able to apply the current results directly to
an actual thin channel. What is learned, however, is that
roughness can cause relatively dramatic changes in con-
ductance in the center of the band including the intro-
duction of gaps and strongly localized states.

To apply the predictions to experimental results at all,
it would be necessary to look at cases with good trans-
verse confinement. The characteristic length scale for
roughness should also be relatively small. In the QID
case it would seem that these conditions are best met in
quantum wires fabricated either by a substrate step tech-
nique*® or else by molecular-beam epitaxy onto a surface
misoriented by a few degrees from a main crystallo-
graphic direction.?® It would not be reasonable to com-
pare the current models to cases where the conducting
channel is constrained laterally by a depletion region, as
in split-gate wires, where potential fluctuations resulting
from charge accumulation occur on a longer length
scale.®® Similarly, in the Q2D case, the calculations
would seem most applicable to narrow quantum wells de-
posited by molecular-beam epitaxy or to ultrathin crystal
layers. 3
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