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Photoinduced resonant tunneling treated by an extended transfer Hamiltonian method
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A method, originally due to Heitler, is utilized to extend the transfer Hamiltonian description to reso-
nant tunneling for the purpose of calculating transition probabilities and general frequency response
characteristics of coupled systems. The scanning tunneling microscope (STM) is treated as an example
of a single barrier and an irradiated quantum well as an example of a double barrier. The saturation of
the contact resistance in the STM is easily derived and a simple physical explanation for the high-

frequency response of an irradiated double junction is presented. In the latter case, it is found that the
cutoff in the frequency response for high frequencies is limited by the optical properties of the outer elec-
trodes of the double barrier.

I. INTRODUCTION

One of the most useful schemes for calculating tunnel-
ing probabilities is based on the so-called transfer Hamil-
tonian formalism. ' Recently, the formalism has been dis-
cussed with a view to extending it to situations where
there are real intermediate states, such as in double bar-
riers. ' This problem is of current interest in resonant
tunneling through double-barrier structures, with or
without applied electromagnetic fields, and in the treat-
ment of the scanning tunneling microscope (STM). In
the present paper we will give a description of these pro-
cesses within an extended transfer Hamiltonian forrnal-
ism. The usual transfer Hamiltonian method yields a
divergent current for the case of resonant tunneling and
fails for the case of very small tip to sample distance in
the STM. This formalism is based on the scheme origi-
nally developed by Heitler many years ago. The formal-
ism is illustrated with two systems of interest in device
applications: the single barrier and the double barrier
shown schematically in Fig. 1. Basically the single bar-
rier has left states (L) and right states (8), and the dou-
ble barrier also has an intermediate state (I). A crucial
feature of the double barrier is a broadening of the inter-
mediate state due to its coupling with the continuum at
either side. This is of importance in the context of reso-
nant tunneling quantum wells which exhibit promising
characteristics for use in electronics as oscillators or
switching devices such as a negative-differential-resis-
tance (NDR) current-voltage relationship. The speed of
the device is of considerable importance, i.e., its intrinsic
time scales which are intimately connected to the
intermediate-state broadening.

A large part of this paper is devoted to a discussion of
a quantum well subjected to radiation. In a series of pa-
pers Sollner and co-workers " have used a resonant
tunneling diode to perform detection and mixing at fre-
quencies as high as 2.5 THz ( —60 fs), fundamental oscil-
lations at room temperature up to 200 GHz, ' and pi-

E

(a) (b)

FIG. 1. (a} The full potential V represents the case of a single
tunneling barrier. The potential VL of the left Hamiltonian is
indicated. Eigenfunctions of HL are confined to the left region
of space and are used to describe the electron prior to tunneling.
The potential V& of the right Hamiltonian is also shown.
Eigenfunctions of H& describe the electron after tunneling. (b)
The potential that describes the double barrier is shown
schematically. The resonant level has an energy EI as denoted
in the figure.

cosecond switching times. " The NDR of the double bar-
rier has also found its use in transistor applications. ' '
This is remarkable progress in a field which started some
twenty years ago with the pioneering superlattice work
by Tsu and Esaki, ' quickly utilizing the advantage of the
NDR properties exhibited by a double-barrier quantum-
well structure. ' Naturally this has also stimulated broad
theoretical activity in order to understand the fundamen-
tal time scales of a resonant tunneling device, ' ' '
apart from a general surge of interest in the concept of
"time of tunneling. "

In 1963 Tien and Gordon treated the case of tunnel-
ing under the influence of a photon Geld. They assumed
that the potential due to the photons could be represent-
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ed by V cos(cot ) where V is a spatially constant potential
on one side of the junction and is zero on the other side.
This simplified Harniltonian can then be solved exactly
and leads to the picture that a state of given energy devel-
ops sidebands at rnultiples of the photon energy. Tunnel-
ing takes place from a state of energy E on one side of the
junction to a state E+nAco on the other. This picture is
particularly useful for intense photon fields because it al-
lows an exact solution of multiphoton absorption or emis-
sion. We are interested in the case of relatively weak
photon fields and take the point of view that photoassist-
ed tunneling is a two-step process in which photoabsorp-
tion (or emission) can take place either prior to or subse-
quent to tunneling and the photon field is represented by
a potential of the form W(x, p)cos(cot) in the electrodes.
Thus the optical response of the electrodes determines
the maximum frequency at which the junction can
respond to the photons. Previous workers have as-
sumed such a potential to exist only in the barrier region,
but the electromagnetic penetration depth is much larger
than the barrier region and we assume the potential
affects the electrodes rather than the barrier. Finally, it
has been suggested' that the width of the resonant level

y determines the maximum response frequency. If
A~ & y, the electrons cannot follow the external field be-
cause y provides a measure of the time they spend in the
resonant level, R/y. This point of view will be discussed
later.

In Sec. II we introduce Heitler's scheme, within the
transfer Hamiltonian formalism, to calculate the current
through single and double barriers and develop the neces-
sary formalism to treat the case of an irradiated quantum
well. In Sec. III we discuss the Sollner experiment. The
paper is summarized in Sec. IV.

II. THEORY

A. Formalism

The transfer Hamiltonian method has served as an ex-
tremely valuable approach to tunneling problems. Rath-
er than solving the Schrodinger equation for the entire
tunneling junction it is only required to find solutions for
the left- and right-hand sides of the junction separately.
Furthermore, results are then expressed in terms of prop-
erties of the left- and right-hand sides of the junction
such as left- and right-hand side densities of states. In
this section we develop a multiple-scattering formalism
for the transfer Harniltonian method. This allows the
self-energy to be treated correctly to lowest order in the
electron tunneling probability with the result that the
probability for resonant tunneling in a heterojunction is
finite at resonance. The expression for the tunneling
probability is shown to be identical to that calculated by
the usual method of wave-function matching in the case
of a one-dimensional symmetric junction. It will be
shown that this method leads to a minimum tunneling
resistance h/2e for tunneling in a junction. Finally, the
case of an external field corresponding to light incident
on the junction is treated in this formalism.

The usual transfer Hamiltonian treatment of tunneling

through a barrier is as follows. Let the wave functions

yL governed by a Hamiltonian HL and energies ZL de-
scribe states localized to the left of a barrier and similarly

y~, H~, and Ez describe right-hand states. The total po-
tential V as well as the left and right potentials VL and

VR are shown in Fig. 1(a). The wave functions l yt I are
orthonormal as are [rpR ); however (rpt lqrR &%0. The
system wave function is

0= X ai(t)ttle
I

where

iEr r I—R E, r—/R
(la)

(lb)

At t =0 the electron is (say) in the particular left-hand
state yp so that at t=0

ao(0)=1,

a&(0)=b„(0)=0 (1%0) .

(2a)

(2b)

Use of Eqs. (1}and (2} in ifig=HQ, where H is the Ham-
iltonian that describes the entire system, yields to lowest
order in the overlap

r eb, = & 1(R l(H —Zo) lq o&e (3)

where
l bR l

is the probability the electron has tunneled to
the state R at the right-hand side of the barrier. It is well
known' that

(rtR (H &o)lpo& =~j 0R(zo} (4a)

where

afi %R
Joe zo

2
V'o

~fp
R (4b)

and zo is a point in the barrier.
The matrix element (yR l(H Eo) lrpo & is a—measure of

the overlap of yz and yo and is small. It is easily shown
that in the case of tunneling through a resonant barrier
Eq. (3) is generalized to

~~bR= &qRl(H —Eo)lqo&

&q R l(H —&o) lyt & &q tl(H —&o)leo&+
Eo El+i',

—i(E —E )t /A

where yz is the wave function describing the resonant
state in the barrier and EI is its energy. Near resonance
this expression becomes infinite as Eo—-EI. In order to
treat this case correctly it is necessary to include a self-

energy so that the energy denominator in Eq. (5) is re-

placed by Eo —EI —Xl and is not singular at resonance
since Im(XI }%0. This can be done in a straightforward
manner by applying a method developed by Heitler to
the transfer Hamiltonian method.

Let the wave functions describing the left system, reso-
nant state, and right system be denoted by y„, where two
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states are orthogonal only if they refer to the same sys-
tem. The potentials for these systems are shown
schematically in Fig. 1(b). The wave function describing
the electron is written as

where

X(E)= g Ho „(E)U„O(E)$(E E—„') .
nPO

(13b)

P(t) = g y„e " b„(t),

where P satisfies

iA =HP,~ a =
Bt

(7)

The probability of a transition from the state 0 to the
state n per unit time is

a~„o= I U„o(E„' ) I
5(E„'—Eo ) .

The quantity b„(t) can be obtained from Eq. (9a) through
the use of Eqs. (11)and (13).

and where H is the Hamiltonian for the entire system.
Use of Eqs. (6) and (7) yields

i&b, = g (s l(H E„)I
it—)b„e

—iiity b. &sin&e' '
nAs

A particle is placed in the state s =0 at t =0 by adding
a term iA'5, O5(t) to the right-hand side of Eq. (8) with the
boundary condition that for all n, b„(t)=0 for t (0.
Equation (8), including the added term, is solved by the
use of

8. Application to STM

This formalism is 6rst applied to the case of a single
tunnel junction where experiment shows a saturation.
We calculate the tunneling probability for repeated tun-
neling between the sides of the junction as described by
Eq. (12). Let ro be a final state on the right-hand side of
the barrier [see Fig. 1(a)] and lo the initial state of the
electron on the left. Equation (12) gives

U„ i (E)=H„' i (E)+ g H„' i(E)Ui i (E)g(E Et ), —
0

and

b„(t)= f dE G„o(E)e (9a)
Ui i (E)= +Hi, (E)U„ i (E)g(E E,') . —

(15a)

(15b)

ift5(t) = f dE e2'
to obtain

(9b)
Assuming no intracoupling, i.e., (a IH'Ib ) =0 if a and b
belong to the same side of the junction.

In order to solve for U, I assume that
07 0

(E E,')G, o(E)= g—H,'„(E)G„O(E)+5,0,
nXs

where

E,'=&slHls)

(10a)

(lob)

H„',(E)=(H ),
independent of r and I. Then

U„ i,(E)= U"(E),

Ut i,(E)=U (E),

(16)

(17a)

(17b)

and

H...(E)=&sl(H —E)lit & . (10c)
independent of r and l. Use of Eqs. (16) and (17) in Eq.
(15) yields

Note that E,' differs from E, because the basis states do
not diagonalize the total Hamiltonian. The difference is
only second order in the wave-function overlap.

For sAO, define

'G, o(E)= U, o(E)GOO(E)g(E E,'), —

where

UR(E)
1 —l&H'&I'G (E)G (E) '

where

Gt. (E)= g g(E E/'), G„(E)=gg(E —E„')—
(18a)

(18b)

g(E) = (1 lb)
are the left-hand side and right-hand side Green's func-
tions, respectively.

The total current is
This choice of sign for the term iE will ensure b„(t)=0
for t (0. Use of Eq. (1 la) in Eq. (10a) gives for sAO

U, o(E)=H,'(E)+ g H,'„(E)U„O(E)((E E„') . —
I(V)=2e g co,

10,r0

n&s, O

(12)
g I

U'(E„', )I'5(E '
iE;, ),

I0, r0

(19a)

For the case s =0 Eqs. (10a) and (1 la) yield

Goo(E)=1/[E Eo X(E)] (13a)
where the sums over Io and ro are restricted by the bias
V. For small voltage the total current is
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4v, ' ~'I (H' & I'pi p~I( V)=
Il —I(H')I Gr Ggl

where

Use of Eq. (24) in Eq. (23}yields
(19b)

Hr, o(E)
1 —g(E E—r )yr(E )

(25a)

1
p, =—ImG;, i=(L,R) . 9 )

where

I(V) is a maximum when I(K'}I satisfies I(H'}I
X

I Gz I I Gz I

= 1 in which case Eq. (19) gives

2VeI(V)= ' [(1+5',)'"(1+5',)'"+1—5,5, ]-',

y, (E)= g IKI'r(E)I'PE Ei—)
1%0

+ g IH, r(E)I g(E E„—);

and finally use of Eq. (25) in Eq. (22} gives

(25b)

where

(20a) HR, r (E )Hr, o(E )
Uz, o(E ) =Hrr, o(E )+ —y

(26)

5,. =ReG;/ImG;, i =L,R . (20b)

C. Application to resonant tunneling

I( V) takes its maximum value when the barrier is sym-
metric in which case Gr =Grt and I( V)= (2e /h ) V cor-
responding to a minimum resistance of h/2e . In addi-
tion, it can be shown that the maximum in I( V) occurs
when the transmission coefficient is unity. This can only
occur if the scanning tunneling microscope makes con-
tact with the sample as opposed to a very small distance
from the sample predicted in Ref. 39.

Equation (26) can be compared to Eq. (5); the main
difference is the appearance of the self-energy of the in-
termediate state yl, which prevents URO from being
singular at resonance. Near resonance, the first term in
Eq. (26) can be neglected compared to the second, and us-

ing Eq. (9) for brr(t) we get for the transition rate
corr o=lim, „(d/dt)lb'(t)I,

2~ IHr'i, r(Eo)l IHr'o(Eo)l
ore, o= z

'

z 5(Eo Err ), —(27a)
«z Er }'+y—'

where neglecting energy shifts gives yl = —i y, y
=XR+ri. :

We continue by applying the formalism to the case of a
heterojunction. Let I denote a state localized to the left
of the heterojunction, r to the right, and a single state I in
the well [see Fig. 1(b)). We require Urto which is ob-
tained from Eq. (12),

UR, o(E ) =Hrr, o(E )+Hrr, r(E ) Uro(E )g(E Er)—
+ g Hr'r „(E) U„o(E )g(E E„')—

re(R, O]

yL(Eo)=~ X IHr', t(Eo}I 5(Eo
1%0

yR (Eo }='rr X IHr', .(Eo }I 5(Eo

Near resonance, Eq. (27a) becomes

ore, o=
&

IHir, r(Eo)l IHro(Eo}l

(27b)

(27c)

+ g Hr'r I(E)Ui, o(E)k(E EI ) . —
1%(R,O)

(21)

We are only interested in "nearest-neighbor" coupling;
no intra- or two-step jumps [leading to E,'=E, in Eq.
(10b)]. Therefore we only keep terms that are lowest or-
der in the overlap A,

—= (llI ) —(IIr )-e, where 2d is
the total width of the tunneling barriers and A' E /
2m = Uo —E, where Uo is the barrier height. This results
in

X 5(Eo Err )5(Err Er )

and the total probability current j is

JR(Er )JL(EI }J:X orrt, o
o, g JR(EI)+JL(EI)

where

(28)

(29a)

(29b)J'r. (Er ) =
& g I

Hr', i «r ) I'5«r EI)—
I

UR, o(E)=Hrr, o(E)+Hrr r(E)Uro(E)((E E—
where Ur o(E ) is given by Eq. (12) as

(22)
is the probability current for tunneling from the left-hand
side of a junction to the intermediate state I. Similarly,

Ur, o(E)=Hr, o+ X Hr, I(E) I,o(E)g(E EI)—
1&0

+ g Hr „(E)U„o(E)((E E„) . —

To lowest order in the overlap k one finds

U, o( E ) =HI r ( E ) Ur o(E )((E Er ), —

U„o(E)=H„'r(E) Ur o(E)((E Er ) . —

(23)

(24a)

(24b)

jr'(Er)= g IH,'„(E,)l'5(E, E„) . —
R I (29c)

From Eq. (29a) it follows that 1/j=1/jr +1/jz for a
double-barrier model. This result was obtained earlier by
Payne using a single-barrier model plus current conser-
vation.

Equation (27a) can be evaluated for the case of a sym-
metric barrier shown in Fig. 1(b). The transmission
coefficient can, of course, be evaluated directly by match-
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ing wave functions in this simple example and is given
by2

given by Eq. (25b) is equal to X(E) in Eq. (31b) and that
the resonant tunnel current calculated from Eq. (27a) is
the same as that calculated by use of the transmission
coefficient, Eq. (31a). The total current can easily be put
in the form of Eq. (29a). Thus the transfer Hamiltonian
method gives an identical result to that obtained by the
usual quantum-mechanical calculation for the case of res-
onance tunneling to order e

16~4k 4 —4Kd

iT(k)i = (K +k )
—+—b,k(K+k )

2K' —k' —2Kd

g 2+ k 2

4E k
E +k

D. Application to photoinduced resonant tunneling

In the case where the heterojunction is exposed to an
external electromagnetic field the coupling is of the form
2W(x, p)cos(cot ) and it is treated by generalizing Eq. (8)
to

(30a)

where the energy of the incident plane wave is
E =iii k l2m, K =[(2m /fi2)( Up E)]'~—is the wave
number in the barrier where Uo is the barrier height,
hk =k —kr is the distance from resonance where the res-
onant energy is Et =Pi kt l2m and is determined by

i fib, = g H,
' „(E„)b„e

+2+ W, „b„e ' " cos(cot)
(K —kt )sin(kta )+2kJK cos(kta ) =0 (30b)

i' g—(sin )b„e ' " +ifi5, o5(t), (32a)where a is the width of the well. Use of the relationship
E Et -—(fi—Im )kt b,k in Eq. (30a) gives nXs

where
IT(k)I'=

[E Et —X„—(E ) ] +Xt
(31a)

(32b)

and the last term on the right-hand side of Eq. (32a) en-
sures that an electron is present in the state 0 at time
t =0.

Following the same steps as in Sec. II C (see the Ap-
pendix) the transition probability for going from an initial
state 0 on the left to a final state R on the right can be
written as a golden rule:

where

A kr
X(E)=— 2Ek 2Kd

(K —ik )
28 (31b)

a 1—+—
2 K

and

R, p(ER )=
~ [ IfR, p(ER )I 5(ER Ep)E k~(E)=41X(E)l'

(K+k )
(31c)

+[igR o(ER )i 5(ER —Eo+fico)In Eq. (31) terms of higher order than e d have been
neglected where d is the width of each barrier.

Applying the transfer Hamiltonian formalism de-
scribed above to the symmetric barrier, one finds that yl

I

+(co~—to)]], (33a)

with

fR,o(E)=fR,o(E)+ XfR, i(E)Wi, i Wi, PE Ei4(E

+ g WR „W„„f„'~'(E)g(E E„)g(E tp E„)+(t—p—~ —to)— (33b)

where the terms within the large parentheses in Eq. (33b)
represent a renormalization of the first term and are
caused by photon absorption and emission:

Equation (33) is represented in a graphic form in Fig. 2.
The first term fR o is the tunneling term arrived at earlier.
fR p includes a renormalization of f„' o due to Photon
emission and reabsorption. g„o corresponds to photon-
assisted tunneling in which a photon is either emitted or
absorbed prior to or subsequent to tunneling.

In deriving Eq. (33) we have allowed for absorption
only in the electrodes. This is based on the following ob-
servation. In semiconductors with a typical doping, the
energy scale for the electron gas created by the doping is
in the 10—100-meV range. This corresponds to very long

H„' t(E )Ht o(E )
fR,o(E)=

&—EI-rr (33c)

where H'(E ) is defined in Eq. (10c) and

gR o(E)= Q WR „f„'()'(E+fico)$(E+Acp E„)—
+ gfR, I(E)~l,pNE Ei) .

I

(33d)

PHOTOINDUCED RESONANT TUNNELING TREATED BY AN. . .
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penetration depths, much larger than the tiny extension
of the well region. It is therefore possible to neglect the
part of the absorption which has only to do with the well.
This picture is in contrast to Ref. 35, which stressed the
importance of the coupling of the well with the incoming
light. In our picture absorption in the bulk electrodes
outside of the well creates electron-hole pairs which a
bias sweeps through the system and collects in the form
of an I-V characteristic. The only influence of the well is
to give an energy-selective constriction to electron trans-
port via the resonant level. We thus conclude that any
intrinsic high-frequency cutoff of such a system is also re-
lated to the optical properties of the electrodes, which in
reality often means the optical properties of bulk n-type
doped GaAs.

In the following section Eq. (33) is used to evaluate the
current through an irradiated heterojunction. It will be
seen that fit p(E) in Eq. (33b) represents a renormaliza-
tion of fz o(E), the first term on the right-hand side of
Eq. (33b).

III. EXTENDED TRANSFER
HAMILTONIAN METHOD

APPLIED TO THE SOLLNER EXPERIMENT

A. Experimental parameters

Before using the full transfer Hamiltonian method to
describe the irradiated junction we shall review the
specific energies characterizing the Sollner experiment.

Sollner et al. demonstrated that a biased quantum
well in the presence of radiation (2.5 THz) shows a
current response which correlates well with a simple
small-signal circuit theory analysis. The quantum well
used has the structure shown schematically in Fig. 1(b).
To assign the various energies, conclusions from the
analysis of Goldman, Tsui, and Cunningham have been
used. The energy of the intermediate state EI has been
calculated from a well with infinitely thick walls and the
Fermi energy EF of the electrodes is determined from the
doping density. The results are EI =78 meV and EF =53
meV using the parameters of the Sollner construction and
an effective mass of 0.067m, for the GaAs material.
From a perturbation analysis of the level width y we esti-
mate it to be approximately 1 meV. However, the
effective width y,~, including other broadening mecha-
nisms such as rough barriers, is around 10-20 meV. This
is obtained by comparing the Sollner experiment with a
theoretical calculation in which y is estimated from the
dc I-V characteristic. y is thus of the same magnitude as
the frequency used in the experiment, 10 meV, which in
turn is about a factor of 5 smaller than EF. For later use,
the bulk plasma frequency co of the electron gas in the
electrodes is 39 meV based on a doping density of
10 /m, an effective mass as above, and a background
dielectric function of 12.7. However, both Ez and co are

(0)
fR O m X ~ X

0 I R

(o)
RO fR0

s 0
~X ~X

I I R

+ ~X ~X
0 I r R

gR, O
~ X X

0 i I R

+ ~ X X ~
0 I r R

very sensitive to the doping level which is usually only
given to one significant figure. It should, furthermore, be
noticed that for a symmetric barrier we need to apply a
voltage of 2X(78—53) meV =50 meV to bring the inter-
mediate state into resonance with the left electrode. At
this bias the right electrode Fermi energy is almost below
the bottom of the left well, hence it is not necessary to
worry about the availability of final states in the tunnel-

ing process.

B. Theory of photoassisted tunneling

In device physics it is appropriate to calculate the
current jp ( =Ip /2 2 being the cross-sectional area)
which flows through the junction. For the sake of simpli-
city the junction is assumed to be spatially symmetric.
Since jo is obtained by an energy integration over co~ o,

1Jo=2e—g rod o
O, R

(34a)

the first part of Eq. (33a) gives the traditional result for
the dc I-V characteristic of the junction, ' ' which we

reproduce in order to show the physical ingredients that
enter our description. Using the first term in Eq. (33a)
for cpz p with fa o replaced by fz p gives

FIG. 2. The processes described in Eqs. (33b)—(33d) are
shown diagrammatically. fz' p corresponds to an electron on the
left-hand side of the junction in the state 0 tunneling to the reso-
nant level I and then to the state R on the right. fz p consists of
fz p plus a term that describes emission and reabsorption of a

photon followed by tunneling as well as a term where emission
and reabsorption occur after tunneling. The terms in f~ p in Eq.
(33b) indicated by (co~ —co) involve absorption followed by re-

emission before or after tunneling. The diagrams shown for gz 0

correspond to tunneling followed by emission of a photon and

photon emission followed by tunneling. Terms with (co~ —co)

involve photon absorption rather than emission.

I. HR I( q )Hl, o(Eq )

Eq EI rl
(34b)
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(35a)

where L is the quantization length of the electrodes and where the momentum parallel to the junction interface, k~I, is
conserved due to translational invariance, and p(q) is the perpendicular momentum in the initial (final) state.
EI =EI —eV/2, where EI is the position of the intermediate state before a bias is applied. The effect of using the renor-
malized term fz p rather than fz' p will be discussed at the end of this section.

Within the transfer Hamiltonian formalism we can relate HI Q to the transmission coeScient T of the barrier, viz. ,

'1
IHI pI

= pkIT(E ),
2m* La

where kr is defined by

A kI
EQI

2m
(35b)

and a is the well width. In what follows we assume the infinite barrier result kt =qr/a. This leads to a more transparent
form for jQ,

2 EF EF E
dE 'dE dE 5(E —E ),

2qr'fi' p ' p ' r '
ii

' (E Et—)'+1' (36a)

where yl has been approximated by its imaginary part

y =Et T/qr and y is assumed to be energy independent
over the range of integration. Simplifying Eq. (36a} fur-
ther yields

2 EF

p
t' F i' (E —E )2+@2

dE (EF E)— (36b)

The integration in Eq. (36b} can be performed exactly
leading to a well-known result (see e.g., Refs. 20, 32, and
41), which we do not reproduce since its detailed form
will not be used in our discussion.

Thus the transfer Hamiltonian formalism gives the
main features of the static I-V characteristics of a
quantum-well tpnpeling barrier with resonant transmis-
sion. Equation (36b) gives the resonant contribution to
the current. Incorporating a term Hit p in Eq. (33c}
would produce the traditional Ohmic background
current through the junction.

Before calculating the second part of Eq. (33a) we first
study the case of photon absorption in one of the elec-

trodes. The energy absorbed per unit time by electrons
which reach the tunneling barrier without scattering in a
distance l is given by

S=-'Re d'r j.E'e
2

(37)

With j=oE, o bein~ the conductivity and assuming E
has the form Epte '~ where 5 is the penetration depth,

AEQUI)
epe2(co) It I' (38a)

and

2 1r= —+—,
i

(38b)

where A is the cross-sectional area of the sample and e2 is
the imaginary part of the dielectric function. Calculating
5 with the transfer Hamiltonian method involves transi-
tions from a state (k

~~,p } to a state (k~~, q ) where k~~ is the
momentum parallel to the barrier; thus

6='fico g co& p=4qr Aco fd k
~ f dp f dq I

W—
I 5(E E— fico}, — —

Q, R
2

(39)

where 8' is the electron-photon matrix element and de-
scribes intraelectrode absorption.

In order to (i) simulate intraband absorption taking
place in the doped GaAs electrode, and (ii) to ensure that
b, ~0 when I ~ ao as in Eq. (38), define Wp such that

the electron density in the electrode, Eq. (39), yields

2' A 8'Qn

and therefore the choice

(41a)

Wp(co)f dqILWq&I 5(Eq Ez fico)= (40)
WQ=

4n
(41b)

and with
reproduces Eq. (38). Because Wp is proportional to ez it
is small at frequencies greater than the plasma frequency.
This characteristic cutofF frequency only depends on the
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doping density of the electron gas. We therefore antici-
pate an upper cutoff in the response of an irradiated dou-
ble barrier around 40 meV (or 10 THz) based on a doping
of 10 /m due to the electromagnetic response properties
of the electrodes. This result is consistent with the experi-
mental findings in Ref. 7 where a THz response from an
irradiated double barrier is observed.

Consider the first term in Eq. (33d) which describes the
two tunneling events and absorption/emission in the
right electrode,

HI, o(Eo }
g~

= g Wa „Hz 1(Ep )g(Ep E„) ' . (42)
Eo EI rl

g W~ „H„'1(Eo)g(Ep—E„)=— W H'I(Ep),
pA'

(43}

where p (q) denotes the initial (final) -state momentum
perpendicular to the junction. Inserting this into Eq.
(34a) for the current we can write

The term in large parentheses contains all transitions be-
tween the intermediate state and the right-hand side, a
photon event, and a tunneling event. Evaluating the ex-
pression in large parentheses in Eq. (42) gives

16~ fd k fdpL fdqL
A'

j]
' (2m. ) ir ir 2m '

m*, I'kl'T'(Ep}
~LWq p ~

5(E Ep+co—)+(co~—cp),
L a pfi ' (E Ei) +—y

(44a)

X +El /E
np(ip)

+(ro~ —co),
n

(44b)

where El is the energy of the resonant state when V=O
and where we have introduced a dimensionless ratio for
the photoexcitation probability through no(co):

4n Wp(co)
no(ro) =

AI Ui
(45)

where vl=fikl/m*. no represents the number of elec-

where we have included the other frequency part in Eq.
(33a) and used Eq. (35) to express H' in terms of the
transmission factor T. Carrying out the energy integra-
tions in Eq. (44a) and making use of Eq. (40) for the elec-
tromagnetic coupling yields

2 EF
j&

= dE (EF E)—
2ir iri p (E EI) +—

trons that are photoexcited and then are available for
tunneling.

An inspection of Eq. (44b) shows that if e V ((~EP the
factor QEI /E is close to unity and the current can be
expressed in terms of the dc I-V characteristic jo in Eq.
(36b) as

no(ro)
j,( V, co) =2jo( V)

n
(46)

where the factor of 2 is due to equal contributions from cu

and —co. This result can be understood in a simple way;
jp( V) electrons fiow through the junction as in the dc
case and they are photoexcited with probability np(co)/n
when they reach the right-hand side. Because no(co)
~ e2(co), there will be no photocurrent measured if there
is no absorption/emission in the right electrode.

The next contribution in Eq. (33d) which corresponds
to an absorption/emission event in the left electrode and
two tunneling events gives a contribution j2 to the total
current

4
16m.efd2k 1 fd L fd L

2 " (2ir) ir ir 2m*

2
1 m'

L2a2 qg2

q kiT (Eq)
X ~LW p ~

5(E E+co)+(co~——co),lI (E E )2+ 2' (47a)

Again, since the factor under the square root is almost
unity when eV «El, j2 can be written in terms of jo to
obtain

no(co)
j~( V, co}=[jp( V+2a))+ jo( V —2')]

n
(48)+(co~ —co) . (47b)

which we rewrite as
2 E

dE (E E)—
o ~ [E (EI fico)] +y- —

np(co)
X+El /E

n
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The factors of 2 in Eq. (48) arise because the resonant lev-
el is displaced by an amount V/2 in a symmetric barrier.

Combining the contributions to the current given by
Eqs. (46) and (48) yields

is the Fermi velocity. X, is given by

o)E
2A~

(51b)

no(co)
j( V, co) = [2jo( V)+jo( V+2')+ jo( V —2')] .

n

(49)

The result for j(V, to) given in Eq. (49) is easily under-
stood. The first term represents tunneling from left to
right followed by either photoemission or photoabsorp-
tion. jo( V) describes the tunneling process and no( co) /n

is the probability of emission or absorption. The second
term corresponds to emission of a photon with probabili-
ty no(to)/n followed by tunneling given by the term
jo( V+ 2' ). For a symmetric barrier a potential of
strength V lowers the resonant level at energy EJ by V/2.
In our model an energy loss cu prior to tunneling has the
same effect as applying an additional bias of strength 2'
so the tunneling current is proportional to jo(V+2~o).
Similarly, photon absorption prior to tunneling is
equivalent to decreasing the bias V by an amount 2' and
this gives the third term jo( V —2').

In addition to the photoinduced current j( V, co) there
is the dc current jo(V) derived from fz o. The infiuence
of the electromagnetic field changes the magnitude of
jo( V). This is apparent by the appearance of ftt 0 rather
than f~ o in Eq. (33a). Using the full contribution fR 0 re-
sults in a current jo( V)(1 4nz/n )—as shown in the Ap-
pendix and leads to a total current through the irradiated
and biased junction

jz( V, co)=jo(V)+P[j o( V+2')
+jo( V —2') —2jo( V)], (Soa)

—,'eoEO2 =Piton (50b)

where n is the number of photons per unit volume and
~

t
~

is the transmission factor for light penetration of the
junction electrodes. Use of Eqs. (41b), (45), and (50b)
yields

cn e2/t /

P =4~
vFn I A,

(50c)

where k is the wavelength of the light.
Equation (50c) for P can be understood as follows. P

can be estimated from the ratio of photoassisted current
to the normal current

X,lP—
nuF

(Sla)

which is obtained by including the contribution given by
Eq. (49). An equation of the same form as (50a) has been
used by Wingreen to fit the data of Sollner et al. The
quantity P =no(to) In is the ratio of photoexcited current
to "normal" current. P is evaluated by use of

where E is the field in the junction and o.
&

is the real part
of the conductivity. E is related to the number of pho-
tons incident on the junction per unit volume by

,' e&—'=&ton~
I
t I' (5 lc)

where ~t ~
is the transmission factor for light in the elec-

trodes, t =2/(1+&e) where e is the dielectric function of
the electrodes. Use of Eqs. (slb) and (5lc) in Eq. (51a)
yields Eq. (50c) for the case 1 «5, which is the case in
Ref. 7.

In the case that jo varies slowly in the energy ranges
from V —2co to V+2co, Eq. (50a) gives

j r( V, co) =jo(V)+4Pto z jo( V), (52)

in agreement with the small-signal analysis as discussed
below.

I( V, to) = g J„(a)IO V+
fg = Qo

(53)

where the coupling strength is a—:eu/%to. Expanding
Eq. (53) where Io is slowly varying over the scale of to

yields the small-signal result discussed above. Thus those
equations are relevant to the experimental results report-
ed by Sollner et al.

In the limit a « 1, Eq. (53) takes the same form as Eq.
(50a) with P replaced by a /4. The ratio of these factors
ean be written as

C. Small-signal analysis

Let I~(V) be the (known) dc I Vchara-cteristic. If we
modulate V with a small potential v coscot representing an
external microwave field we can expand Io( V+0 costot)
around V. The time-averaged change in the current
response is EI=—I—Io= —,'v Io, where Io is the second
derivative of Io at the working point. This means that
the extra current is proportional to the second derivative
of the static I-V characteristic. Sollner's experimental re-
sults are similar in form to the second derivative and
demonstrate a response at high frequency.

Assuming that the applied field can be represented as a
varying potential difference between the left- and right-
hand sides of the junction, Tien and Gordon have given
a general treatment for an irradiated Josephson junction
which is also valid for other diodelike systems in the pres-
ence of an external potential. They demonstrated that in
the presence of a microwave field v coscot, one can solve
exactly for the wave function and density of states in the
presence of the radiation which gives the following form
for the current in terms of the original dc-characteristic
Io( V):

where X, is the rate at which electrons are photoexcited
per unit volume, l is the electron m.ean free path, and uF

r = ,'a /P =(dIdo)—
where d is a fictitiou barrier thickness defined by

(S4a)
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(54b)
mally be quite different depending on the experimental
conditions.

and

do=2/A'/m co, (54c)

where m is the effective mass of the electrodes and the
relations e2=(1/cow)(co /co) and l =Ur;r have been used.
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IV. SUMMARY

An extended transfer Hamiltonian method capable of
treating resonant tunneling junctions has been presented.
This was required because the expression for the resonant
tunneling current as derived by the usual transfer Hamil-
tonian method is divergent. Our results for the current in
the presence of a photon field are expressed in terms of
the current in the absence of photons and are similar in
form to those of Ref. 37, which used a spatially constant
potential to describe the coupling of the electrons to the
photons. We give an expression for the coupling strength
in Eq. (50c). The ratio of the coupling strengths for the
two approaches is given by Eq. (54). In the experiment of
Sollner et al. the ratio is of order unity, but it will nor-

APPENDIX

In this appendix, Eq. (33) is derived from Eq. (32). Use
of Eq. (9) in Eq. (32) yields

(E E, )—G, o(E)

= g H,'„(E)G„o(E)
nAs

+ g W, „[G„o(E+co)+G„o(E—co) j+5,o,

(Al)

where G„o(E) is defined by Eq. (9a). Defining U„o(E) by
Eq. (1 la) then leads to

U, o(E ) —H,
'

(oE ) —g H,
' „(E) U„o(E)((E E„) Go o—(E )

nAs, o

W, o+ g W, „U„o(E+co)g(E+co E„) Go o—(E+co)+(co~—co)
nAO

Equation (A2) shows that Goo(E) is coupled to Goo(E+co) through W. For s =0, Eq. (Al) yields

E Eo QH—o „(E—) U„o(E )g(E E„) Go o(E—)
nWO

(A2)

=1+ Wo o+ g Wo „U„o(E+co)g(E+or E„) Go o(E—+co)+(co~ —co), (A3)
nWO

which replaces Eq. (13a)
Define

t, (oE+co)=W, o+ g W, „U„o(E+co)
n%0

X g(E+co E„) . —

Equation (A2) yields

UR, o(E ) =Hrc, o(E )+HR, r(E ) Ur o(E g'(E E—
6++ trc o(E+co) +(co~ —co)
Go, o

(A4)

(A5)

Ur o( E ) =Hr' o (E )+ g Hr' t ( E ) UI (E )g( E EI)—
1%0

+ QHr „(E)U„o(E)g(E E„)—
G++ tr o(E+co) +(co~ —co)
Go, o

(A7)

as well as

conserved wave number k~~, which we do not write out
explicitly.

Again using Eq. (A2),

where

G+ =Goo(E+co) .

In what follows, translational invariance parallel to the
junction dictates that all quantities are a function of the

U„o(E)=H,'r(E) Ur o(E)g(E Er)—
G++ t„o(E+co) +(co—+ —co)

0,0

and
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UI p(E ) =Ht r(E ) Ur p(E )g(E Er )

G++ tt o(E+co) +(co—+ —co)
0,0

(A9)

where H1'0 and H,'0 have been neglected because we in-
clude only nearest-neighbor hopping. Use of Eq. (25b)
for the intermediate-state self-energy in Eqs. (A7) —(A9)
gives

G+
Ur p(E)= Hr'p(E)+ g Hr't(E) t to(E+ co) +(co~ co—) g(E Et)—

1%0 Go, o

G++ g Hr „(E) t„p(E+co) +(co~ co—) g(E E„)—
Go, o

G++ tr o(E+co) +(co~ —co)
0,0

and therefore to lowest order in 8'

Urt p (E )Gp p (E ) =frt p( E )G p p (E )

Hr o(E)+ ' g Wrt „H„.r(E+co)g(E+Aco E„)Gop—(E+fico)+(co~ co)—E+

(A10)

where

+ ' g Hr' t(E) Wt ok(E E, )Go—o(E+fico)+(co~ co)—
I 7 I 1%0

(Al la)

Hrt, r(E )Hr, o(E }
fz, o(E ) E EI y

Hz, r(E )+ +Hi't(E)Wt t. Wt. og(E Et)g(E+co—Ei )+(co~— co)—
I I

Hr, o (E)+ g Wrt „.W„„H„'r(E)g(E E„)g(E+c—o E„)+(co~—co)— (Al lb)
T, l' I VI

The first term in frt p is independent of W, while the second and third terms are 0( W }. The transition probability
co„o involves the square of frt o and to lowest order this produces terms 0( W ) and 0( W ). The term that is 0( W )

must be kept because the second and third terms in Eq. (Al la) give terms that are 0( W ). Use of Eq. (Al 1) in Eq. (14)
yields the final result, Eq. (33). There is an additional term in Eq. (Al lb) that has been neglected. This term involves
photon absorption (or emission) on the left followed by photon emission (or absorption) on the right of the barrier.
When calculating the total current this term is canceled by the cross term obtained from ~gz p(E) ~

in Eq. (33d).
Finally, it will be shown how the photon corrections to fz'o change the ordinary dc current. Using Eq. (43) and

Ert —Er —Ep the correction terms in Eq. (A 1 lb) can be written as

H& r(Ert )Ht, p(Ert )
&R,o(E } fz, o(E }=

E E
' g I Wt, pl PEo+co Et')

R I I
H' (E„)Hrt r(Ert )

R I VI y'

where E„=Rp /2m *. Use of Eqs. (40) and (45) in Eq. (A12) yields

—2im *L
A/2

—2im *L
+(co~—co),

A/2
(A12)

[fg p(E)) =(f~ p(E)( 1— (A13}

to lowest order in W, which demonstrates that jp in Eq. (34b) should be multiplied by a factor 1 4no ln These c—on-.
siderations yield Eq. (50).
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