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The linear and nonlinear (dc) electrical transport parallel to the walls of a quantum well, with a mag-
netic field B=Bz applied normal to its barriers, is considered for an electron-phonon system, using the
formalism of nonlinear response theory [Phys. Rev. B 40, 5632 (1989)] developed previously. The
structurally confined electron gas is assumed to interact with bulk phonons. Explicit expressions for
hot-electron magnetophonon resonances are obtained for polar-LO-phonon scattering by computing the
electric-field-dependent conductivity formula defined in the Ohm s-law form of a nonlinear electric
current. Certain values of the electric field induce transitions of the carriers between neighboring Lan-
dau levels and the maxima of the ordinary magnetophonon resonance at weak electric field evolve to
minima and vice versa. The conductivity (and hence the current) oscillates as a function of the magnetic
field with electric-field-induced resonances occurring in the hot-electron regime when Pe, =eL, where

co, and col are the cyclotron and effective phonon frequencies, respectively, and P is an integer. These
peak positions are shifted to the higher B side from the ordinary magnetophonon resonance peaks at
Pm, =~L, where ~L is the bare phonon frequency. The shift of the resonance peaks is proportional to I'.
Unlike the three-dimensional system, additional subsidiary resonance peaks are predicted even under
very weak electric fields whenever the interelectric subband transitions are allowed to take place for a
relevant energy separation between two subbands, leading to an additional oscillatory behavior. The
possibility of these interelectric transitions is also discussed. The dependence of the conductivity (or
current), energy relaxation rate, and Landau-level broadening on the electric and magnetic fields, the
thickness of the well, and the temperature is shown explicitly. Some of the results obtained here are in
accordance with those available in the literature.

I. INTRODUCTION

Since predicted by Gurevich and Firsov, ' the magneto-
phonon resonance (MPR) effect is a powerful spectro-
scopic tool to investigate transport properties of semicon-
ductors. The magnetophonon effect arises from the
resonant scattering of electrons quantized in Landau lev-
els by phonons whenever the phonon energy is equal to
an integral multiple of energy separations between two
Landau levels. For weak fields, this gives the ordinary
MPR condition as

A'toL =PAco, =PfieB/m ', P = 1,2, 3, . . . , (1.1)

where m' is a suitably defined effective mass of an elec-
tron and coL is usually the longitudinal-optic (LO) pho-
non frequency. This inelastic scattering by optic phonons
(the resonant phonon emission and/or absorption) acts
strongly to relax carrier momentum and hence leads to
changes in electron mobility, giving rise to a correspond-
ing oscillatory dependence of the electric current (or con-
ductivity) on applied magnetic field with period 1/B.
Therefore, the analysis of the oscillatory variations (e.g. ,
the amplitude of the oscillations, the broadening of the
resonance peaks due to the applied electric field as well as
the scattering, and their dependence on physical pararne-
ters) gives very important information on the relaxive
transport properties of semiconductors, such as carrier
relaxation mechanism (i.e., the energy gain and loss pro-
cesses), damping of the oscillations due to the electron-

phon on interaction, and intracollisional field effects
(ICFE) as well as on the phonon frequencies and band
structure (e.g., the effective mass m ').

The ordinary and hot-electron MPR effects have been
studied in considerable detail on three-dimensional (3D)
systems' ' from both experimental and theoretical
points of views. Unusual behavior of the MPR line shape
(e.g., conversion of MPR maxima into minima or split-
ting of the MPR peaks) in the conductivity component
cr„has been reported for n+-n -n+ GaAs structures,
when the relevant currents or electric fields exceed cer-
tain values. Hot-electron MPR behaviors in 3D systems
have been studied extensively and a new type of conduc-
tion (relaxation) mechanism ' has been proposed. Re-
cently there has, however, been a concerted attention
given to the lower-dimensional systems. The linear and
nonlinear transport properties of these systems have al-
ready been studied in a number of papers. %'armen-
bol, Peeters, and Devreese studied MPR effects in the
2D system (formed in a single heterojunction) theoretical-
ly in the framework of the momentum-balance equation.
Mori et al. ' also studied the same system using the
Kubo formula and the Fang-Howard trial function. Con-
cerning the hot-electron (nonlinear) MPR in quasi-2D
quantum-well (superlattice) structures, to the best of our
knowledge, we are not aware of theoretical work other
than that of Ref. 16 and are still at an initial stage both
experimentally and theoretically. It is therefore desired
to develop a theory which could analyze MPR effects in
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quasi-2D quantum-well structures, ranging from very
small (linear regime) to large electric fields (hot-electron
regime).

The purpose of the present paper is to develop a theory
of hot-electron MPR in quasi-2D semiconductor
quantum-well (so-called the HEMT-type) structures,
starting from the field-dependent conductivity formula
defined in the Ohm's-law form of the nonlinear current
density, and to study the physical trends of the MPR
effects in such structures. In order to obtain the analyti-
cal expression, we employ a simple model for a
quantum-well structure, but it leads to correct physical
trends of MPR effects of a quasi-2DEG (electron gas) in-

teracting with phonons in a quantum-well structure, as-
suming the interaction with polar LO phonons is the
dominant scattering mechanism. %'e evaluate the field-
dependent transverse magnetoconductivity o „,(F) for the
quasi-2DEG confined in the quantum-well structure sub-

jected to the crossed electric and magnetic fields, where a
magnetic field 8 (in the z direction) is perpendicular to
the barriers of the well and the electric field F (in the x
direction) is along the lateral direction of their wall.

Our results show an oscillatory behavior of the relaxa-
tion rate and hence the conductivity as a function of the
applied magnetic field with period 1/B, showing MPR
effects when co, i.(F)))1 is satisfied. Here r(F) is the
field-dependent relaxation time. By increasing the elec-
tric field, those MPR maxima given by Eq. (1.1) for ordi-
nary MPR in the conductivity (and hence electric
current) can convert into the minima and vice versa, as in
the case of 3D systems. ' The electric-field-induced
MPR (EFIMPR) in the hot-electron regime takes place
when the condition Pco, =~& is satisfied contrary to the
ordinary MPR condition (1.1). The EFIMPR peaks
shifted to the higher B side from the ordinary MPR
peaks are predicted. The "ordinary" and "hot electron"
refer to the linear-response regime (very small applied
electric field) and to the nonlinear, non-Ohinic regime
(large applied electric field), respectively. Splitting of the
MPR peaks (i.e., the appearance of subsidiary peaks) and
the additional oscillations, which are attributed to in-
terelectric subband scattering, are predicted in the con-
ductivity component a„„(F)(and hence the x component
of the electric current) even in the linear (weak field) as
well as the hot-electron (large electric field) regime when
the relevant subband-energy separations are available for
interelectric subband transitions. It is noted that the ori-
gin of these splittings in the MPR peaks in quasi-2D
quantum-well structures is due to the interelectric sub-
band scattering and is different from those in 3D sys-
tems, ' where splitting occurs only in the hot-electron
(high-field) regime and is due to the electric-field-induced
inter-Landau-level scattering by LO phonons. Finally,
the (field-dependent) relaxation rate is inversely propor-
tional to the thickness L, of the well, and the 1/L,
dependence of o„(F) (or the electri. c current density) is
predicted. The former result is in agreement with Refs.
13 and 17, whereas the latter result supports the finding
of Vasilopoulos, Charbonneau, and Van Vliet' for the
GaAs quantum well.

The paper is organized as follows. In Sec. II the model

system in quantum-well structures is clarified and the
field-dependent dc conductivity o, (F) formula defined
in the Ohm's-law form of nonlinear electric current is
presented. Field-induced relaxation processes and the in-
tracollisional field effects are discussed in connection with
the EFIMPR effects. In Sec. III the field-induced relaxa-
tion rate for bulk polar-LO-phonon scattering in the
quasi-2D quantum-well structure is evaluated, including
the effect of collision broadening of the Landau levels.
The magnetophonon resonances under high electric fields
(EFIMPR) as well as the ordinary MPR are discussed for
such a system, where the special attention is given to the
shift and splitting of the MPR peaks. Concluding re-
marks are given in Sec. IV. In the Appendix, the explicit
expression for the MPR broadening parameter is derived
for polar-LO-phonon scattering.

II. ELECTRIC-FIELD-DEPENDENT
MAGNETOCONDUCTIVITY FOR QUANTUM-WELL

STRUCTURES

A. Preliminaries: Model and basic formulas

%e consider the high-field transport of electron gas in
a quasi-two-dimensional quantum-wel1 structure, where a
static magnetic field 8 (~~z) and a dc electric field F(~~x )

are, respectively, applied perpendicularly to the barriers
of the potential well (such as realized in the hetero inter-
face) and along the lateral direction of their walls. For
the sake of simplicity, the quantum well is modeled by a
rectangular potential well of infinite depth and width L, .
Applying the effective-mass approximation for conduc-
tion electrons confined in the quantum well and taking
the z abscissa origin at one interface, the one-particle
Hamiltonian (h~) for such electrons subject to the
crossed electric (F) and magnetic (8) fields, its normal-
ized eigenfunctions (&r~A, ) ) and eigenvalues (Ei ), in the
Landau gauge of vector potential A, are respectively,
given by'

hF =(p+e A) l2m '+eFx, A=(O, Bx,O),

&r~l}=&r~N, n, k, &

=(2/L L, )'~ P~(x —xi )

Xexp(ik y)sin(k, z),

k, :=n~/L„n =1,2, 3, . . . ; N =0, 1,2, . . . ,

(2. 1)

(2.2)

(2.2a)

=(N +—,
' )A'co, +e„(k, ) fiVdk —m *

Vd /2, — (2.3)

e„(k, ):=iri k, /2m*=:eon, eo. =iti ir /2m*L, , (2.3')

where cu, :=e8/I * is the cyclotron frequency, I * is the
effective mass (assumed spherical) of a conduction elec-

P&(x ) = (1/2 ir' ~ i N! )
' exp( —x /21', )H&(x /lii ),

(2.2b)

F-).=E~„(ky )
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tron with the electric charge —e(e )0), and Pz(x —x&)
represents harmonic-oscillator wave functions, centered
at x =x&.= —1&(k +eF/%co, ). k is the wave vector in
the y direction. It is noted that the wave function in the z
direction is assumed to vanish at z=O and L, . Here
l~:=(fi/m *co, )' is the radius of the ground-state elec-
tron orbit in the (x,y) plane. N and n denote the Landau-
and subband-level indices, respectively. It should be not-
ed that the electron energy spectrum in the quasi-2D
quantum well is level quantized in the z direction and is
given as a function of L, . Vd(: =F/B) is the center drift
velocity of the electron. We shall occasionally designate
a set of quantum numbers (N, n, k~) by a greek letter A, .
A,+I will then indicate the state (¹l,n, k~). xz is the
center of cyclotron orbit corresponding to the particular
state (N, n, k~). The dimensions of the sample are as-
sumed to be 0:=L L„L,=:A0L„where A0 is the inter-
face area. In the following treatment, we assume the vi-
brational spectrum in the quasi-two-dimensional
quantum-well structure is identical with that in a bulk
material, i.e., that the phonons, to a first approximation,
are not affected by the presence of the quantum well. De-
viations from this bulk behavior, such as interface modes
or slab modes, are neglected. The electron-phonon in-
teraction Hamiltonian is then generally expressed by

h, „h= g [C(q)b e' ' +C'(q )be~' '], (2.4)

where bq and b& are, respectively, the creation and an-
nihilation operators for phonons with wave vector q.
C(q) denotes the Fourier component of the electron-
phonon coupling potential, the form of which depends on
the type of interaction.

For the calculations of the field-dependent conductivi-
ty component tr,„(F) [cf. Ref. 24, Eq. (3.18)] for the
quasi-2DEG system subjected to the crossed electric and
magnetic fields, we need the following matrix elements in

I

A, ', A.+1 N',¹1 (2.5')

)(A)exp(+iq. r)[A, ') [ =)J»(xq, +q„,xq )J

x (F„„.(+q, )f'n„„,,k, k kq
(2.6)

In Eq. (2.5), j„ is the x component of a single-electron
current operator and the Kronecker symbol (2.5')
expresses the selection rule, which arises during the in-
tegration of the matrix element with respect to y and z.
The overlap integrals J» and F„„.in Eq.(2.6) are, respec-
tively, defined as

J»'(xx +q
kiq„x

P~(x —xz)e " PN(x —xz )dx, (2.6a)

L. +i z
F„„.( q, ):=(2/L, ) J e ' is(nmnz/L, ).

0

Xsin(n'rtz/L, )dz . (2.6b)

~ J» (x&, +q„,xz ) ~
and ~F„„.(+q, )

~
are then, respective-

ly, given by

IJ»(x, , +q. ,x, )I'

l

=~JNpp(u)~ = e "u "[L~ "(u)]2, (2.7)
m'

with N„:= mi nIN, N] and N:=ma IxN, N'], where

u:=l~qj l2, qj:=(q„+q )'~

and LN (u) are Laguerre polynomials, and by

the representation (2.2):

[() ~j.~X') )'=(ei,~, W'2)'[(N+ i)n, ,+, +Nn. . .],
(2.5)

F (+ )~2 ~F (t)~2 sin(t) (m nn') t

[t [(m./2)(n —n'—)] ] [t [(m/2)(n—+n')] ]
(2 8)

where t:=L,q, /2. The derivation of the above expres-
sions proceeds as in the case of the usual Landau wave
functions when sin(k, z) in Eq. (2.2) is replaced by
exp(ik, z). It should be noted that the upper sin( ) is for n

and n' both even or both odd, the lower cos( ) is for one
of them even and the other odd; hence for interelectric
subband scattering (n'An), the term with cos( ) must be
taken in Eq. (2.8).

The general expression for the electric-field-dependent
dc conductivity o; .(F) (ij =x,y, z), which is defined in
the Ohm's-law form of nonlinear electric current density,
for an electron-phonon system has been derived in Ref.
24, assuming that phonons remain at thermal equilibrium
(a situation that can often be arranged). 5 This nonlinear
version of the conductivity formula (based on one-
particle resolvent superoperator theory) is reduced to the

Kubo formula for dc conductivity when limz Oo;i(F)
and is the basis for the present theory. When a uniform
electric field is applied in the x direction, the quasi-2D
version of the field-dependent transverse magnetoconduc-
tivity o„„(F)can be evaluated from Eq. (3.18) of Ref. 24.
After performing the sum over the A.2 state with the use
of Eq. (2.5), o „„(F)can be readily expressed in the repre-
sentation (2.2) as

2 2e i~co,o„„(F)= g (N+1)[f(Eg) —f(Eg+, )]Q

(2.9)

where the spectral density A & &+ &
is given by
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r„„+,(F)
~)., i.+i(F)=

[E&, E—&+h&, (F)] +[I & &,(F)]
periodic boundary conditions will be transformed into the
integral as

(2.9')
Lg(. )=

k 271

L /21& —eF /fi~
dk( ).—L /21 —eF /henx 8 C

(2.12)

It is noted that the quantities I and 6 play a role of the
width and the shift in the spectral line shape, respective-
ly, and depend on the strength of the applied electric and
magnetic fields. Equation (2.9) with (2.9 ) is valid ir-
respective of the strength of the electric field F as well as
the magnetic field B since the entire effect of the fields is
included in the eigenstate energies E& of the Hamiltonian
hF. As seen from Eq. (2.9'), if there is no collision (i.e.,

I,6~0), the spectral density and hence the conductivity
component (2.9) diverges as expected when the magnetic
field is absent. In the presence of collisions, assuming
I i i+ „b,i i+, ((fico, ( =Ez+, Ei—, ), which is usually
satisfied and which is in fact the condition to observe the
oscillatory behavior of electric-field-induced magnetopho-
non resonances as will be discussed in Sec. III, the field-
dependent transverse magnetoconductivity (2.9) for the
relaxive transport can then be approximated as

e 2(2
0' (F) g (N+1)[f(Ei ) f (E ii+)]

A co, Q

i. i.+i( ) . (2.10)

If Ace, I & z+„ the oscillatory structure of the spectral
density and hence of c»„(F) due to the EFIMPR dis-
solves. A spatially uniform distribution f (E) is strictly a
Fermi-Dirac distribution function, which can be replaced
by the Boltzmann distribution for nondegenerate serni-
conductors, viz. ,

(2.11)

where E»c„=(N+ ,')fico, +e„(k,), P,—:=I/kiiT, with kii

being Boltzmann's constant, T, the "hot-electron" tem-

perature, and g the Fermi energy. It should be noted that
Eq. (2.11) is independent of an applied electric field (in-

stead, which depends on the effective electron tempera-
tures T, in the hot-electron regime) and is spatially uni-

form (k independent) since we are considering a uniform
system. A field-dependent I is a measure of field-

induced electronic relaxation processes and the (field-

dependent) energy relaxation (or collision) time ~(F) can
be estimated from ~=A/I . Hereafter, I & & is referred to

1 2

as the relaxation rate associated with the states X, and A,2.
It should be noted that the field-dependent I is responsi-
ble for nonlinearities with respect to the electric field.
This field-induced electronic relaxation process is known
as the intracollisional field effect. The effect of the ap-
plied electric field on the relaxation (or collision) process-
es can therefore be studied theoretically by examining
I (F). Except for the Ohmic conduction it is not permis-
sible for hot-electron transport to expand it in powers of
F. The detailed derivation of this quantity and its general
expression in the lowest-order approximation for the
scattering processes can be seen in Ref. 24. Since
I

A, ) =
I N, n, k» ), the summation over A, means

gz=g~„k, where the one summation over k» with

The upper and lower limits are obtained from the facts
that electrons should be within the crystal dimensions in
the x direction, i.e., —L, /2~x ~L„/2 and that the
functions (t iv(x —xi„) are centered at xi = —

lii ( k»
+eF/Aco, ). Here L„ is assumed to be much larger than
lz. It is noted that in the high-field regime, the energy
gained between collisions (intercollisional field effect) and
that gained during each collision (ICFE) are both impor-
tant; the former effect is entered through the energy
difference terms whereas the latter through I (F) via the
eigenstate energies E& of the Hamiltonian h» in the
energy-conserving 5 functions in I as will be shown ex-
plicitly in Sec. II B. Although these effects due to the ap-
plied electric field are seen implicitly in Eq. (2.9) with Eq.
(2.9'), we defer the discussion of the field-induced relaxa-
tion (or collision) processes for the specific interactions
until Sec. III. Equation (2.9) with I' evaluated from Eq.
(2.13) in Sec. IIB is strictly valid when the scatterers
(phonons) remain at equilibrium. As an approximation,
however, it could be used for the case when phonons are
not at equilibrium, i.e., for not too strong electric field.
Finally, we note that the field-dependent (transverse mag-
neto) conductivity cr„„(F) is, as seen from Eqs. (2.9) or
(2.10), related to the relaxation rate I i i, +,(F) and hence
the collisional (relaxive) conduction process is associated
with the electronic transition between the states A, and
A, +1 in the scattering (collision) processes. In other
words, electric currents are induced by those electrons
which hop successively between magnetically and quan-
tum mechanically localized states by absorbing the field
energy during collision (phonon emission and/or absorp-
tion) processes as a direct consequence of their interac-
tion with phonons, leading to changes in the electron mo-
bility. Accordingly the electronic transport properties
(e.g. , electronic relaxation processes, ICFE, ordinary and
hot-electron magnetophonon resonances, etc.) in the
quasi-2D quantum-well structures can be studied by ex-
amining the behavior of I as a function of relevant physi-
cal parameters introduced in the theory.

B. Field-induced relaxation processes
and intracollisional field eft'ect

In order to evaluate the field-dependent transverse
magnetoconductivity (2.9) or (2.10), it is necessary to cal-
culate the field-dependent relaxation rate
r(F) [ =Pi/~(F) ], which is a measure of the electronic re-
laxation due to the collisions between an electron and
phonons including the effect of electric fields during each
collision (ICFE). In this section, the general expression
for the quasi-two-dimensional version of the relaxation
rate I i i (F) is explicitly given for any electron-phonon

1' 2

coupling within the first-order Born approximation of the
scattering processes. When an electron gains the energy
from the field during each collision process (ICFE), the
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relaxation rate I"& z associated with the electronic tran-
I' 2

sitions between the states
I

A, , ) and
I

A, 2 ), accompanied by
the absorption or emission of a phonon, is generally given

by taking the imaginary part of the Geld-dependent irre-
ducible electron self-energy [cf. Ref. 24, Eq. (3.17a)].
Within the first-order Born approximation in the scatter-

ing processes, the general form of the field-dependent I
for an electron-phonon system is given by Eq. (3.19a) of
Ref. 24. Using the representation given by Eq. (2.2), the
quasi-2D version of this quantity associated with the elec-
tronic transition between the states IA, &) and IA,z) can be
evaluated as

r, , (F)= ', y y IC(q)l'IJ, „(a)l'IF„„(q,)l'[(N, +1)5[E „(k„)—E, „(k„—q, )
—e~, ]

B q N3 n3

+N 5[Et' „(ki ) E~ „—(k2 +q )+ficoq]]

+, g g l«q) 'IJ~ (»I'IF. . (q, )l'[(N +1)5[E . (k —
q ) E„(k—)+&~ ]

B q N3 n3

+Nq5[Etv „( k(y +qy) E~ „—(k2 )
—%co ]], (2.13)

where the summation over the intermediate states k3y
has already been carried out by using the relation (2.12).
It should be noted that the relaxation rate I z z (F) is as-

sociated with the electronic transitions between the states
IA, , ) and IA,z) due to the electric-field-induced inelastic
scattering in the collision processes. Here N is the equi-
librium distribution function for a phonon with mornen-
tum fiq and energy Ace:

Nq = [exp(gaia)q) —1] (2.14)

III. MAGNETOPHONON RESONANCES
UNDER HIGH ELECTRIC FIELDS

The general expression (2.13) for the field-dependent
relaxation rate in the quasi-two-dimensional version will

where P:=1/k Tawith T being the (lattice) temperature.
It should be noted that the 5 functions in Eq. (2.13) ex-
press the law of energy conservation in one-phonon col-
lision (absorption and emission) processes, where the
effect of the electric field (ICFE) is entered exactly
through the exact eigenstate energy Ez of an electron [cf.
Eq. (2.3)]. The strict energy-conserving 5 functions in

Eq. (2.13) imply that when the electron undergoes a col-
lision by absorbing the energy from the field, its energy
can only change by an amount equal to the energy of a
phonon involved in the transitions. This in fact leads to
electric-field-induced magnetophonon resonances, where-

by %to, » I (F) [or to, r(F)» 1] is satisfied. In other
words, the EFIMPR in the quasi-2D quantum-well struc-
ture is due essentially to the eLectric field indu-ced i-nter

Landau level (inelasti-c resonant phonon) scattering analo-
gous to the bulk situations studied by Mori et al. If we
neglect the field dependence (F~O) in Eq. (2.13), this
reduces to the usual case where collisions are instantane-
ous and the result exhibits the usual phonon emission and
absorption processes seen in the imaginary part of the
lowest-order irreducible electron self-energy obtained
from the Green's function approach, giving rise to the
ordinary MPR for the Ohmic (weak-field) case, ' where
the ICFE is not effective.

I

be used to evaluate I & &+,(F) for a specific electron-
phonon interaction, explicitly. In this paper, we consider
the scattering of electrons by polar LO phonons. For the
scattering by randomly distributed impurities, an expres-
sion for the impurity collision time ~(F) ( =R/I ) is sim-

ply obtained from Eq. (2.13) by discarding the factors Nq
and Nq+1, discarding the phonon energy fun in the ar-
gument of the 5 functions, and also replacingIC(q)l by
N; I V(q)l, where V(q) is the Fourier component of the
scattering potential and N; is the number of impurities.
%e shall consider the impurity effect to the field-induced
relaxation processes and the effect of screening in a quan-
tum well elsewhere.

A. Polar optical-mode phonon scattering

The Fourier component of the interaction potential
C(q) for polar-LO-phonon scattering may be given by
the Frohlich interaction potential

real(firoL )
~

Dl«q)l'=
Q(2m')' q Qq

D

Q(qf+q, )
(3.1)

Here D is the constant of the polar interaction; a is the
dimensionless (polaron) coupling constant given by

e I*
CX =

4M 2%coL

1/2
1

Kp
(3.1')

where Kp and K are the static and high-frequency dielec-
tric constants of the material, respectively. %'e assume
that the phonons are those in a bulk (i.e., three-
dimensional) and those that are dispersionless (i.e.,

Acoq AcoL const, where ~L is the polar-LO-phonon fre-
quency).

Let us proceed with the evaluation of I z z+, (F) for the
polar-LO-phonon scattering. Using the interaction po-
tential given by Eq. (3.1) in Eq. (2.13), the quasi-2D ver-
sion of the relaxation rate I & &+& for polar-LO-phonon
scattering can be written as
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Aoa
I z, +,(F)= g f dq„ f dq I„„,(qj )~JNN(u)~ [(NO+1)5[(N N—' 1—)A'co, +fico„„f—iVdq f—icoL]

2(2m. ) ls N „
+

NO 5[(N N—' 1—)fico, +fico„„+fcVd q» + ficoL ] ]

+
3 z g f dq„ f dq l„„(qi)~JNN(u)~ [(No+1)5[(N' N——1)%co, fico—„„.+fiVdq +fico~]

2(2m. ) lii N„

+NO5[(N' N —1—)fico, fico„—„fi—V„q fico—L ]],
(3.2)

where co„„:=(n —n' )eo/A, No is the polar-LO-phonon distribution function given by Eq. (2.14) with co =coI, and

I„„(q~)is given by

IF..(q, ) f'
1„„(qj):=f, dq,

q, +q~

1+ 1

[(n n') ir +q—IL, ] [(n +n') ir +qjL, ]
(3.3)

and

&nn': = qi L, [1+ exp( qj L, )]— 32~2 2 I2

[(n n') n—+qiL, ][(n+n') ir +qiL, ] [[(n n') ir —+qjL, ]+(1+5„„)[(n.+n') ir +qjL, ]]
(3.3')

In the above expression, the upper sign has to be taken if
n and n' are both even or both odd, and the lower sign if
n is odd and n' is even or vice versa. To derive Eq. (3.2),
we have transformed the sum over q into the integral
form in a usual way. It should be noted that N' and n'
indicate intermediate Landau and subband states, respec-
tively. Equation (3.2) is a basis for further calculations of
the field-induced relaxation rate 1 & z+, (F) (for polar-
LO-phonon scattering) in the quasi-2D quantum-well
structure.

The evaluation of I in Eq. (3.2) involves the further in-
tegrations either with respect to q~ (or u) and 8 in the cy-
lindrical coordinates, or to q and q in the Cartesian
coordinates. The q~ dependence of the matrix element
means that we have to take full account of directional

I

dependence implicit in the energy conserving 5 functions
in Eq. (3.2). The integral over q can be done immediate-

ly, but the resulting integral over q„must be done sepa-
rately for each N and N', and is very difficult to evaluate
analytically. To simplify the calculations, we replace
iiiVdq (as is often done' ) in the argument of the 5 func-
tions by the potential-energy difference eFhx across the
spatial extent hx of a Landau state, where b,x is a con-
stant of the order of the magnetic length lz. This ap-
proximation is equivalent to assuming an effective pho-
non momentum as Aq =eBhx. It is then convenient to
evaluate I in the cylindrical coordinates: the integral
over the q space in Eq. (3.2) can be reduced to the in-
tegrals with respect to 8 and qj (or u }, where the 8 in-
tegration gives 2'. Therefore, Eq. (3.2) takes the form

I,(F)=—g f du I„„.(qj)~JNN(u)~ [(N +1)5[(N' N+1)co, co„„—+co*]+—N 5[(N' N+1}co, co„„—co ]]— —
o

+—g f d»„, (qj )IJNN (u)l'[(No+1)5[(N' N 1)co,—co—„„+—co& ]
AN, , o

+NO5[(N' N —1)co, —co„„—col ]], — (3.4)

where 4:= ADD/8' ls, coL (:=coL +eFhx lfi) is an effective phonon frequency, and the exact overlap integral l„„.(qj )

is given by Eq. (3.3). Now that the directional dependence implicit in the 5 functions in Eq. (3.2) is suppressed by intro-
ducing the effective phonon frequency as seen in Eq. (3.4), the integral over q~ (and hence u) can be easily evaluated
analytically for the electronic transport in the (x,y) plane. If N' is very large, we may approximate N'+1=N'. Setting
N' N= P in the em—ission t—erm and N' N=P in the absor—ption term, Eq. (3.4) can be written in a simple form:

I z z+,(F)= g f du I„„.(q~)[~JNN ~(u)~ (No+1)5( Pco, co„„+coL)—— .
„,p o

+ IJN N+ p(u) l
No5(+P~c ~nn ~i* }l . (3.5)
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In this paper, we shall consider the transport in the (x,y)
plane, i.e., only the case for large q~ since the electric
field is in the x direction, we expect the largest contribu-
tion to the current comes from the processes involving
large momentum transfer in the x direction, i.e., those
processes with larger q and consequently large q~ and
small q, . In this case, the exact expression I„„(qi) given

by Eq. (3.3) reduces to the result of Vasilopoulos, Char-
bonneau, and Van Vliet

I„„(qi) = 2
(2+5„.„)

q ii.,
(3.6)

for qi ))q, . Substituting Eq. (3.6) into Eq. (3.5) and not-

icing that' '

J ~)J~)v+p(u)~ u 'du =1/P, P =1,2, 3, . . . (3.7)
0

we obtain Eq. (3.5) associated with the transport in the
(x,y) plane as

I,(F)=3A' g (2N +1)5(P—(o'/()), )/P

+2A' g g I [(N()+1)5(P (tot—a)„„)—/co, )+N()5(P (co—t +a)„„)/(o,}]/P}, (3.8)
n'(An) P

where A': = (m lt) /L, Aco, )A, which has a dimension of energy. Applying Poisson's summation formula for the sum g~
in Eq. (3.8), we obtain

(2N() + 1)
I i i,(F}=3A' 1+2 g cos(2nsx)

X s=I

1VO+ 1 oo

+2A' g 1+2 g cos[2nsx(1 —y)] + 1+2 g cos[2msx (1+y)]
n (Wn) 'y s =1 x I+y

(3.9)

8p
= [8()+{m 'hx /A )F]/P,

B~+=8 +m *co„„./(eP), (n'An)

(3.10a)

(3.10b)

where 80(:=m*(oL /e) is the fundamental field for the
ordinary MPR. It is very interesting to point out that ad-
ditional EFIMPR peaks (subsidiary peaks) would appear
at BI—, on both sides of the EFIMPR peaks at B~ whenev-
er the interelectric (nonresonant) virtual subband transi-
tions {n ~n ') can take place for the relevant energy sepa-
ration between subbands. These subsidiary peaks are
characteristics to the quasi-2DEG system in the
quantum-we11 structure. It should be noted that the ori-
gin of the appearance of the subsidiary peaks in the

where x:=(oL /to, and y:=conn /(oL. As seen from Eq.
(3.9), the oscillatory inverse relaxation time I/r(:=I /)rt)

shows the singular behavior, which is traced back to the
5-function singularities as seen in Eq. (3.8). Therefore,
the electric-field-dependent transverse magnetoconduc-
tivity (2.10) shows the resonant behaviors: electric-field-
induced magnetophonon resonances at Pm, =coL and at
Pto, =ts)t +to„„(P is an integer). Those resonances in-

volving the terms co„„., which arise from the interelectric
virtual subband transitions between n and n', reflect the
subband structure. The relaxation rate for polar-LO-
phonon scattering diverges whenever the above condi-
tions are satisfied. These divergences are physically attri-
buted to the hybrid quantization of the electron energy
spectrum: the appearance of Landau levels due to the
presence of a magnetic field and of electronic subbands
associated with quantum-well structures. The above con-
ditions for the EFIMPR give the resonance magnetic
fields (i.e., the EFIMPR peak positions at) Bp, Bp, and

Bp ..

3DEG system ' and the quasi-2DEG system studied
here is not the same. The subsidiary peaks in the 3DEG
system ' appear only in the high-Geld regime whereas
those in the quasi-2DEG system in the quantum-well
structure would appear in both the low- and high-field re-
gimes and are due to the interelectric subband scattering
(i.e., interelectric nonresonant Uirtual subband transitions).
Note that within the approximation made for phonon
momentum, the EFIMPR peak positions (B~ and Bt*, )

are shifted from the ordinary MPR peaks at
Bp(:=8&/P) for a low-field (Ohmic) case by
m'bxF/6=m *F/(eBolti ), where l~ is the cyclotron

0 0
radius at the magnetic field Bo. The effect of electric
fields in the scattering processes (ICFE) in the quasi-2D
quantum-well structure is, therefore, to shift the ordinary
MPR peak positions to higher magnetic fields. It should
be noted that the amplitudes of these peaks depend
strongly on (lattice) temperature via the phonon occupa-
tion number No. It is evident from Eqs. (3.10a) and
(3.10b) that the shift of these resonance peaks from the
ordinary MPR peaks is proportional to the electric field

The unpleasant divergences in I [Eq. (3.9}]due to the
5-function singularities (associated with the complete
quantization of the electron energy spectrum [cf. Eq.
(2.3)] in the presence of a magnetic field) indicate the
deficiency of the present theory. These divergences may
be removed by including higher-order electron-phonon
scattering terms. The simplest way to avoid the diver-
gences is that each 5 function in Eq. {3.8) is approximated
by Lorentzians of field-induced width and shift zero by
introducing a width parameter y, . Employing this
collision-broadening model, ' ' ' Eq. (3.8) is then ex-
pressed by
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cc

I q;, +~(F)=3A'(2NO+1) 1+2 g e ' ' cos(2irsx)
x +(y, /iiico, )

+2A'(N, +1} y
„(~„) x (1—y) +(y, /fico, )'

—2 $(y2/f7 )' cos[2irsx(1 —y)]

x (1+y) —2m-s(y 3/ficg, )+2A'No 1+2 g e ' ' cos[2irsx(1+y)]
x (1+y) +(y3/A'co, )

(3.11)

sinh(2ira )
a )Q.

cosh(2ira ) —cos(2irb) ' (3.12)

The exponential factors play a role of the effect of field-
induced-collision damping due to the combined effect of
scatterings (or collisions) and electric fields (ICFE). If
broadening (i.e., the width parameter y, ) is not included,—2ms(y, . /Ace )
the damping factors e ' ' (i = 1, 2, and 3), do not
appear in Eq. (3.11) [cf. Eq. (3.9)], and the I diverges in
the EFIMPR as we have seen in Eq. (3.9). It should be
noted that as seen in Eq. (3.11), the additional oscillatory
structure [the second and third terms in Eq. (3.11)]due to
interelectric subband transitions could be seen in the
quasi-2D quantum-well structure. It is interesting to
note that the relaxation rate (3.11) depends explicitly on
the number of the occupied subband n, but not on the
Landau level index N.

The oscillatory (nonlinear) electric current density
(J, )/0 can be evaluated from (J, ) IA=u'„'„'(F)F by
making use of Eqs. (2.10) and (3.11). Here J( =gk j'"I}is
the total current operator. Noting that Eq. (3.11) and the
Fermi distribution functions in Eq. (2.10) do not explicit-
ly depend on k, cr„''„'(F) in Eq. (2.10) can be expressed as

2
osc( F)—

277fl Q7 L

X g(N+1)[f „(k,) —f, „(k,)]l (F),
N, n

(3.13)

where we have carried out the one summation with
respect to k in gi by making use of Eq. (2.12). Provided
that bx is independent of N and that the f's in Eq. (3.13)
are replaced by the Boltzmann distribution (2.11) for non-
degenerate semiconductors, we can further perform the
sum over N (if N is large) by writing
QNe = —(c}/c}a)ge and summing the geometric
series. We obtain Eq. (3.13) for nondegenerate semicon-
ductors as

2e exp(a)
4irfi co,L,sinh(a/2)

where the quantities in the large parentheses can be fur-
ther calculated by applying

%(a,b):=1+2 g e "cos(2irsb)
s=1

where a:=I3,fico, and I'(F) is given by Eq. (3.11).
seen from Eq. (3.13'), the amplitude of c»„'„"(F) has a
significant dependence on electron concentration as well
as the electron and lattice temperature. We conclude
that Eq. (3.13) [or Eq. (3.13') for nondegenerate semicon-
ductors] with Eq. (3.11) gives a general description of the
high-field magnetophonon oscillations in the quasi-2D
quantum-well structure but no simple general formula ex-
ists for the damping factors y; (i = 1,2,3}.

It is seen from Eq. (3.11) that the relaxation rate I for
polar-LO-phonon scattering is proportional to A', which
is inversely proportional to the crystal dimension in the z
direction, i.e., the thickness of the quantum well L, .
Therefore the oscillatory relaxation rate I is inversely
proportional to the thickness of the well, while the field-
dependent transverse magnetoconductivity (3.13) and the
electric current density vary as 1/L, . These results agree
with the theoretical findings obtained from the different
approach. ' ' It should be noted that Eq. (3.11) is tied to
the approximation RV&q» =eFhx (bx =le ), and is strict-
ly valid for the case q~ &&q, . The major contribution to
I z i+i(F) and hence cr'„,"(F) comes from the process in-
volving small momentum transfer along the magnetic
field. It should be noted that the oscillation in Eq. (3.11)
[and hence in Eq. (3.13) or Eq. (3.13'}] is damped at
strong electric fields since the y's are generally dependent
on the field strength F (see the Appendix).

1. Narrow wells

Let us consider the case where the well width L, is so
small that the energy separation between adjacent sub-
band levels is very large and hence no interelectric sub-
band transition between the levels e„and e„can take
place by varying the magnetic or electric field. We as-
sume the case where only intraelectric subband transi-
tions (n ~n '=n } are allowed to take place. In this case,
co„„.=O (i.e., y=O) and Eq. (3.11) is siinplified consider-
ably. Noting that y, =y (i=1, 2, and 3) for n'=n, Eq.
(3.11)can be written as

I i i+i(F) 3A (2ND+1)
& 2

0 x
x + ( y /A'co, )

X g exp[P, (g —n eo)]I (F), (3.13') (3.14)
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where %(y /fico„x) is given by Eq. (3.12). Here the reso-
nance width y may be given by Eq. (A2) for small
broadening of the Landau levels. (See the Appendix for
the simple derivation of an explicit expression for y. )

Therefore, those subsidiary EFIMPR peaks (due to the
interelectric subband transitions) do not appear in this
case. Equation (3.14) shows that the period of the oscilla-
tions is given under the condition of coI /co, =P (i.e.,
x =P}. Evidently, if the broadening is not included [i.e.,
y~0 in Eq. (3.14)], I' and hence I/r diverge at the reso-
nance [i.e., the EFIMPR at Bt, given by Eq. (3.10a)]. For
vanishingly small electric field (i.e., F~O), Eq. (3.14)
leads to the ordinary MPR at co& =Pm, for woo, »1, and
is identical with the result of Vasilopoulos, ' who applied
the same model for the linear (weak field} case. For
cot =Pco, the cosine factor in Eq. (3.14) [cf. Eq. (3.12}]be-
comes cos(2nseFEX/fico, ). Hence, by varying the elec-
tric field at the same magnetic field, the ordinary MPR
maxima (at cot =Pco, } in the conductivity can evolve to
minima and vice versa. This behavior as well as the shift-
ing of the resonant peaks with increasing electric field is
in agreement with the result of Vasilopoulos, Charbon-
neau, and Van Vliet' for GaAs quantum wells and has
been observed in polar materials.

2. 8'ide urells

When the thickness L, of the well increases, the energy
separation between subbands e„and e„becomes closer.
Therefore, various (virtual) transitions from n to any n'
could take place by varying the electric field. In this
case, we have to take into account all possible interelec-
tric subband transitions (n~n'). This means that we
have to sum over the possible intermediate states n' in

Eq. (3.11). The second and third terms in Eq. (3.11) are
difficul to evaluate analytically for all n'(An). For an
estimate of the contribution of these terms arising from
the intersubband transitions, we shall however take into
account only those transitions (n~n'=n+1) to the
neighboring subbands e„+, in addition to the intra-
subband transitions (n~n'=n) within the subband e„.
In this case, we can evaluate the result (3.14) plus two ad-
ditional terms corresponding to an upward (n'=n+1)
and a downward (n'=n —1}transition. These additional
terms arising from the interelectric subband transitions
(n ~n'=n + 1) are not the same because the subband en-

ergy spectrum e„ is proportional to n and is not equidis-
tant. Corresponding to Eq. (3.14) for a narrow well, we
obtain from Eq. (3.11} the expression of the field-

dependent oscillatory relaxation rate for a wide well as

I g i+i(F) 3A (2No+ 1 )
( cot /co, ) + ( y /fico, )

+2A'(No+1) g
~ (co& /co, )'+(y/fico, )'

(coi /co, ) +(y/fico, )
(3.15)

where the functional -form of 4 is given by Eq. (3.12},
co& =cot +.. (1+2n)eo/fi, co2 =cot —

(. 1+2n }eolfi, and y
may be given by Eq. (A2). It is interesting to point out
that unlike the case for a narrow well, Eq. (3.15}exhibits
additional complexity of oscillations due to the interelec-
tric subband transitions characterized by the energy sepa-
ration between the bottom of each pair of subbands. For
simplicity, we have again assumed the same y for the
field-induced collisional damping in the additional associ-
ated terms. The interelectric subband transitions
(scattering) between the subband e„and e„+, could be
seen by studying the behavior of the EFIMPR extrema
by varying the electric field while keeping magnetic field
constant. The possibility of these transitions between the
mell levels e„ is likely to be realized in wide wells

(L, ~ 1 pm) (Ref. 16) at very strong magnetic fields such
that co„„.((co,. The subsidiary (EFIMPR) peaks could
appear at Pco, =co,* (i = 1 and 2). It should be noted that
these subsidiary peaks and additional oscillations in Eq.
(3.15) are attributed to the interelectric subband scatter-
ing inherent in a quasi-2DEG system formed in the
quantum-well structure. At Pco, =cot, the factors cos( )

in Eq. (3.15) [cf. Eq. (3.12)] become cos(2rtseFhx/fico, )

for the first term and cosI2irs[eFhx+(1+2n)eo]/
fico, J and cos I 2irs f eFbx —(1+2n )eo] /fico, ] for the
second and the third terms, respectively. Therefore,

starting from an ordinary magnetophonon extremum cor-
responding to F=O, and increasing the electric field F
while keeping the magnetic field constant, an additional
oscillatory behavior of the extremum amplitudes due to
the interelectric subband transitions or the conversion of
the MPR maxima into minima and vice versa could be
seen at very strong magnetic fields such that co„„+&«co, .
Although the present theory supports the results of Ref.
16, to check the validity of the present results, it would
be desirable to perform experiments similar to those of
Eaves et al. for thickness less than 1 pm. Finally, we
should notice that the oscillation in the relaxation rate
[(3.14) or (3.15)] is damped at strong electric fields since

y, as given by Eq. (A2), is roughly proportional to the
field strength F and the oscillatory conductivity is further
damped by T, via the electron distribution function.

IV. CONCLUDING REMARKS

In this paper we have presented a theory of hot-
electron MPR and investigated the ordinary (linear) and
hot-electron (nonlinear) MPR effects in a HEMT-type
structure, where a quasi-2DEG formed in an infinitely

deep quantum well is subjected to a magnetic field (B~~t)
applied perpendicularly to the barriers. The electric-
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field-dependent conductivity formula cr (F), which is
defined in the Ohm's-law form of electric current, is the
basis for the present theory. In the limit of high magnet-
ic fields, where ~co, ))1 is satisfied for small broadening
of the Landau levels, the field-dependent transverse mag-
netoconductivity o „(F) is directly proportional to the
energy relaxation rate I i i+,(F) associated with the elec-
tronic transitions between the states k and A. +1. Thus
the behavior of 0„„(F)is essentially determined by the
behavior of I i i+,(F). This relaxation rate of the quasi-
2DEG formed in the quantum-well structure was evalu-
ated within the lowest-order approximation of the col-
lision processes for polar-LO-phonon scattering and its
behavior (relaxive transport process) was discussed in
connection with hot-electron MPR effects.

We found that the I i i+, (F) is inversely proportional
to the thickness of the layers L, and hence that cr„(F)
has a 1/L, dependence. These results agree with the
theoretical results' ' obtained from the different ap-
proach to the same model system although the theoreti-
cal result of Ref. 14 shows a 1/L, dependence on a„„(0).
The relaxation rate I & i+,(F) for polar-LO-phonon
scattering shows the quasi-2D EFIMPR at
Pei, =cor*,cur'+co„„. in the hot-electron (nonlinear) regime
and the quasi-2D ordinary MPR at Pro, =co&,co&+~« in
a weak electric field limit. Here P is an integer. It should
be noted that subsidiary peaks could appear if interelec-
tric subband transitions (n ~n') take place for a relevant
energy separation (co„„.AO) between two subbands e„and
e„. These divergences are traced back to the 5-function
singularity of the density of states. In order to obtain the
finite results for I i i+,(F) and hence 0, (F), we have in-

troduced collision broadening of the Landau levels in the
manner of replacing the 6 functions in I i i, +,(F) by
Lorentzians with broadening (damping) parameters y.
The amplitudes of such resonances are therefore ex-
pressed in terms of the width parameter y of the Landau
levels, and cr„„(F) [ ~I i i+&(F)] shows oscillatory be-
haviors. Using the analytical expression for o „(F) [Eq.
(3.13) with Eq. (3.11)] describing the EFIMPR, quasi-2D
EFIMPR are calculated, whereby a straightforward ap-
plication of the collision-broadening parameter y of Lan-
dau levels, the amplitude of such resonances are calculat-
ed in terms of the width of the Landau levels. We have
obtained the explicit expression of the resonance width y
[cf. Eq. (A2)]. To check the theoretical results, the oscil-
lations in the variation of the relaxation rate and hence of
the field-dependent transverse magnetoconductivity as a
function of magnetic field should be manifested in the
resistivity measurements in the presence of magnetic
field for a quasi-2DEG formed in a quantum-well struc-
ture. It is noted that our result for I i z+, (F) and hence
o,„(F) in the nonlin. ear case is tied to the approximation
A'Vzq =eFb,x (b,x =lii). This led to the additional struc-
ture in the EFIMPR, which depends on the strength of
the applied electric field.

In conclusion, we have developed a theory of hot-
electron MPR and derived the analytical expression
describing the MPR effects of quasi-2DEG formed in

quantum-well structures, ranging from very small (linear
regime) to large electric fields (nonlinear regime). It is
hoped that the predictions made by the present theory
will need more experimental verifications in the future.
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APPENDIX

X, ",coth
(irx) +(iry/fico, )

(A 1)

To obtain the self-consistent equation (A 1) for y, we have
approximated I i i+ &

on the left-hand side of Eq. (3.14) as

y, assuming the width parameters y, to be the same for
all associate states. In this way the value of I & &+, on the
left-hand side of Eq. (3.14) was made self-consistent with
I i i+, =y. It should be noted that Eqs. (3.14) and (Al)
are independent of N provided Ax is independent of N,
and are strictly valid for the case q~))q, . The self-
consistent solution of Eq. (A 1) determines the resonance
width y [=I (F)], from which we can theoretically esti-
mate the field-induced resonant relaxation time r(F) due
to the polar-LO-phonon scattering and the ICFE in a
quasi-2D quantum-well structure. Equation (Al) deter-
mines the field-dependent resonance width y(F) associat-
ed with the transitions between N and N +1 through Eq.
(3.14). For cry « fico„we may approximate cothX = 1/X
and Eq. (A 1) gives the approximate result for the field-
induced resonance width (i.e., the EFIMPR width):

1/2S[(S'+4')'"—S]
2

Aco
277

(A2)

where K:=(3ir/Amor*)A'(2NO+1) and 5:=ironer*/co, . It is
noted that this broadening associated with Landau level
N and N+1 is due essentially to the inter-Landau-level
scattering between N and N + 1, where the electric-field-
induced inelastic phonon scattering is taking place. As
seen from Eq. (A2), the resonance width y is influenced
by the strength of the applied electric field F as well as
the lattice temperature (via No). Finally, we note that
this result for y(F) [ =A'/i. (F)] could be used to estimate
the high-field mobility of the quasi-2DEG confined in
quantum-well structures through p(F) =er(F) /m *.

An expression for the resonance width y introduced in
Eqs. (3.14) and (3.15) is given explicitly. For the
EFIMPR at co~ =Pro„ ip(y /fico„x) in Eq. (3.14) is equal
to coth( iry/fico, ) and Eq. (3.14) takes the form

A'= 3 (2NO+ I )
AN Aco



45 THEORY OF HOT-ELECTRON MAGNETOPHONON RESONANCE. . . 6741

V. L. Gurevich and Y. A. Firsov, Zh. Eksp. Teor. Fiz. 40, 198
(1961) [Sov. Phys. JETP 13, 137 (1961)].

P. G. Harper, J. W. Hodby, and R. A. Stradling, Rep. Prog.
Phys. 36, 1 (1973).

~R. J. Nicholas, Prog. Quantum Electron. 10, 1 (1985).
4C. Hamaguchi and N. Mori, Physica 8 164, 85 (1990).
5J. R. Barker, J. Phys. C 6, 2663 (1973).
N. Mori, N. Nakamura, K. Taniguchi, and C. Hamaguchi, J.

Phys. Soc. Jpn. 57, 205 (1988).
7L. Eaves, P. S. S. Guimaraes, J. C. Partal, T. P. Pearsall, and

G. Hill, Phys. Rev. Lett. 53, 608 (1984); J. Phys. C 17, 6177
(1984).

~J. R. Barker, J. Phys. C 5, 1657 (1972).
~P. %armenbol, F. M. Peeters, and J. T. Devreese, Phys. Rev. B

39, 7821 (1989);37, 4694 (1988).
N. Mori, H. Murata, K. Taniguchi, and C. Hamaguchi, Phys.
Rev. B 38, 7622 (1988).
D. R. Leadly, M. A. Brummell, R. J. Nicholas, J. J. Harris,
and C. T. Foxon, Solid State Electron. 31, 781 (1988).
J. R. Barker, Solid State Electron. 21, 197 (1978).

' M. Prasad and M. Singh, Phys. Rev. B 29, 4803 {1984).
' M. P. Chaubey and C. M. Van Vliet, Phys. Rev. B 33, 5617

(1986).
P. Vasilopoulos, Phys. Rev. B 33, 8587 (1986).

I P. Vasilopoulos, M. Charbonneau, and C. M. Van Vliet, Phys.
Rev. B 35, 1334 (1987).
B.K. Ridley, J. Phys. C 15, 5899 (1982).
P. J. Price, Ann. Phys. (N.Y.) 133, 217 (1981).
A. J. Hoden and B.T. Debney, Physica 134B, 132 (1985).
A. Isihara and L. Smrcka, Solid State Commun. 60, 469
(1986).
A. Isihara, H. Havlova, and L. Smrcka, J. Phys. C 21, 645
(1988).

V. K. Arora and H. N. Spector, J. Appl. Phys. 54, 831 (1983).
D. K. Ferry, Surf. Sci. 75, 86 (1976).

24A. Suzuki, Phys. Rev. B 40, 5632 (1989).
~58. R. Nag, Electron Transport in Compound Semiconductors

(Springer-Verlag, Berlin, 1980); G. P. Sprivastava, The Phys-
ics ofPhonons (Hilger, Bristol, 1990).

z61. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series,
and Products (Academic, New York, 1965).
R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957); A. Suzuki and D.
Dunn, Phys. Rev. A 25, 2247 (1982).

2sR. F. Wallis and M. Balkanski, Many Body A-spect of Solid
State Spectroscopy (North-Holland, Amsterdam, 1986), Chap.
7.

2~J. M. Ziman, Principles of the Theory of Solids (Cambridge
University Press, Cambridge, 1972), p. 319.


