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Effect of an impurity in a quantum resonator
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We present a numerical study of the influence of disorder on quantum-mechanical transmission by
considering the presence of an impurity in a T-shaped quantum-wire junction. The device is modeled as
an electron waveguide of finite cross section. Transmission and reflection probabilities are computed by
use of a waveguide-matching technique. The calculations show that the transmission of the two-
dimensional electron gas through the narrow-wide-narrow geometry can be both enhanced and

suppressed by the presence of a repulsive impurity potential. Although perfect transparency is not gen-

erally achieved with the presence of a single impurity, we find a 100~o modulation of conductance as one
device parameter is changed, which is robust against the scattering. If the impurity is located in the
narrow-wire region, a periodic oscillation appears in transmission due to multiple reflections between the
impurity and the stub region. %'e also examine an attractive scatterer.

As a result of advances in microfabrication technology,
it has become possible to observe quantum interference
phenomena in semiconductor microstructures. ' In
rnesoscopic systems, where the phase coherence length
I.

&
is larger than the sample size, the wave nature of an

electron needs to be taken into account. The conduc-
tance of a device can be modulated by changing the phase
of an electron wave instead of the amphtude. The phase
of the electron wave can be modified by changing the en-

ergy or by applying a magnetic field. Universal conduc-
tance fluctuations, the Aharonov-Bohm effect, ' and
nonlocal effects in electronic transport are clear manifes-
tations of this regime which cannot be described by clas-
sical transport theory. Recently, interest has been raised
in ballistic-transport properties of narrow channels. In
highly purified semiconductor materials, the elastic mean
free path I, of an electron can be over 10 pm and, hence,
the electron motion is ballistic. The electron wavelength
in semiconductors is longer than in metals and may be
comparable to the size of the sample. Hence, semicon-
ductor quantum wires can be viewed as electron
waveguides. In this regime, one can expect the analogs
of microwave or optical waveguides in semiconductor
nanostructures. A transistor action directly based on
the modulation by quantum-mechanical effect has been
proposed in the last few years. In small disordered
wires, the amplitude of the conductance fluctuations is on
the order of e /h and, thus, -0. 1%%uo in metals and
—10% in semiconductors. ' On the other hand, nearly
100% modulation may be possible in the ballistic re-
gime. This is a great advantage for device applications
since a large change in the transmission can be induced
by a small change in a sample parameter.

If there are no impurities within the device, resistance
arises only by scattering from geometrical features such
as an abrupt change in the width of the channel or a junc-
tion with external leads. However, we have to be careful
in the analysis to consider the inevitable presence of crys-
tal defects, residual impurities, and nonspecular bound-

ary scattering in real devices. "Since mesa fabrication by
use of ion-beam etching is one of the most used tech-
niques to delineate quantum structures, we can say that
the smaller the sample dimensions the more plausible the
presence of process-induced defects in the conduction
channel. The conductance of the phase-coherent struc-
ture has been recognized to be sensitive to an individual
impurity even if it is outside of the classical current
path. ' Gigantic quantum-mechanical oscillations of the
bend resistance R~ predicted in a rounded cross' ' are
suppressed by impurities. Experiments on R~ suggest
that we cannot avoid the scatterings from impurities even
if the sample dimensions are more than two orders of
magnitude smaller than /, . Agreement between the ex-
perimental observation and the numerical results can be
obtained by including some impurities in the calcula-
tion. ' ' The effect of sample imperfections on the con-
ductance quantization phenomena in a narrow constric-
tion, wide-narrow-wide (W-N-W} geometry, has been cal-
culated previous1y. ' ' The conductance of a ballistic-
point contact shows steps of 2e /h as the constriction is
widened. ' The quantization is strongly distorted by im-
purities in the orifice region and the plateaus disappear as
the scatterer gets strong. ' '

In this paper, we investigate the influence of the
scattering from a single 6-function impurity on transrnis-
sion properties of a quantum resonator. We consider a
three-port quantum transistor (N-W-N geometry) in
which one port is used as a remote gate to control the
transmission. The current in the device is controlled by
changing the boundary conditions, i.e., the length of the
stub region. The device was proposed by Datta and Sols
et al. We present numerical results to illustrate the vari-
ations of the interference pattern caused by the con-
sideration of an impurity.

Consider a quantum-mechanical motion of a nonin-
teracting electron with Fermi energy EF=fi kF /2m in
the T-shaped resonator shown in Fig. 1. The waveguide
consists of a wide strip defined by ( —a & x
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4= gy (y)~ (x),
J

(4)

gv2/Dsin y (A e ' +B e ' ), —a&x&0,

II III IV
(Sa)

FIG. 1. Schematic of a T-shaped electron waveguide. A sin-

gle 5-function impurity is placed in the stub region. We assume
hard-wall square-well confinement. The transmission and
reAection probabilities are obtained by matching the wave func-
tion at the boundaries x = —a, 0, and L —a.

&L —a, 0 (y &D ) and two narrow semi-infinite strips
defined by (

—~ (x & —a, 0&y & W') and
(L —a &x & ~, 0&y & IV), which are connected to two
reservoirs at each end. We ignore inelastic scattering
throughout the device. Suppose the electron incident
from left in channel n is transmitted to channel m in the
right-hand side strip with the probability of T „or
reflected to channel m in the left-hand side strip with the
probability of R „.The two-terminal conductance,
which is the ratio of the transmitted current to the poten-
tial difference between two reservoirs, is evaluated using
the linear conductance formula'

g &2/D sin y (C e ' +D.e ' ), 0&x &L —a .
D J

J

(sb)

The sum over j includes evanescent modes for which the
wave vector q of the mode j is imaginary, and so we
have

q~ =QkF (j ~/—D)

for propagating modes (j m/D & kF. ) and

q3=i+(j ~/D) —kF

(6a)

(6b)

d'u, (x )

+q, u, (x)= gy, (x)u (x),
dx

(7)

where

for evanescent modes (j n/D )kF .). In the presence of a
scatterer, each mode in region II couples with all modes
in region III. Using the orthogonality property of the
sinusoidal functions g (y), we obtain from the Hamil-
tonian Eq. (3)

m, n

where the sum runs over the propagating modes of the
wire, since evanescent modes do not contribute to the
current in an infinite channel. In the absence of impuri-
ties the transmission probabilities can be estimated by
matching the wave function and the derivative at the N-
W boundaries x = —a and x =L —a. '

Consider now a single 5-function potential sited at
x =0.

XJ(y) V;(x,y»)x (3»d3
2m
f2

du3(x )

dx

du, (x)
dx x=o

=yr, u. (0), (9)

where

are the mode-coupling constants. Integrating Eq. (7)
once gives the boundary condition for the derivative of
wave function '

V, (x,y ) =y5(x )5(y —d ) . (2)

If the screening length is comparable to the wavelength,
such as the case in GaAs-A1„Ga& As, the long-range
nature of the scattering potential may need to be taken
into account. However, the essential features will be de-
scribed within an assumption of a short-range scatterer.
The Hamiltonian in the effective-mass approximation is

4my . j~dI = sin sinJm A2D

m~d
D

(10)

iq (c D) —iq (A —B)=Q r (A —+B ) .

Mode coupling is crucial when the magnitude of the wave
function is maximum at the position of an impurity. Sub-
stituting Eq. (S), we have

2 2u. +ay + V, (y)+ V, (x,y),
2m

(3) The continuity of the wave function requires

where V, (y ) represents a confining potential.
Throughout this paper we assume hard-wall confinement
along the guide aide walls, for simplicity. In order to
evaluate the transmission coefficients, we have to consid-
er the wave-matching problem at x =0. ' The wave func-
tion in the regions II (

—a (x & 0) and III
(0 & x & L —a ), where the scattering potential is zero, can
be given as an expansion in standing waves of the form

A -+B =C.+D- . (12)

We have solved for the transmitted and reflected wave
amplitudes using Eqs. (11) and (12) and the matching
equations at x = —a and x =L —a. We note that, as dis-

cussed by Sols et al. , L /W-1 and a single-mode regime
are desirable for transistor operation. In the following
calculations we take, unless otherwise noted, the size of
the stub to be L /W= 1.0 and D /W=1. 6 and the num-
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made sufficiently strong, so that we consider a relatively
strong potential to avoid a dependence on U. The impur-
ity is moved along the x axis in Fig. 3(a) with
d/W= l. 13, and along the y axis (a /W=0. 57) in Fig.
3(b). Note that the dips shift in energy depending on the
location of an impurity, but the nearly total reflection
still occurs. The probability distribution of wave func-
tion at the dip (kFW/~=1. 5) plotted in Fig. 4 shows
two peaks of probability inside the stub region. One can
see that the dips are insensitive to the impurity placed at
the node of the wave function (y/W-0. 6—0.g). On the
other hand, the dip moves higher in energy if the impuri-
ty is put at the peaks of the probability as shown in Fig.
3(b). The transmission property becomes independent of
U for large U, since the wave function vanishes at the po-
sition of the repulsive impurity. Increasing the number
of incident channels causes the interference pattern to be-
come aperiodic and, thus, the effect of the impurity is not
straightforward. However, one can see similar tendency.

In Fig. 5, the two-terminal conductance is plotted as a
function of D/W for kF W/m = 1.6. In the absence of an
impurity, the conductance reveals a periodic pattern of
100% modulation between perfect transparency and per-
fect opaqueness. The period is exactly A, /2, where A, is
the wavelength of the incident electron. If an impurity
is put in the stub region, we observe, in general, that (1)
maximum conductance is suppressed, (2) the dips occur
at larger D /W, and (3) the dips are not necessarily evenly
spaced and the period is slightly larger than k/2.

In contrast to a repulsive potential, an attractive poten-
tial induces quasibound states which split off from one of
the evanescent modes. We show in Fig. 6 the conduc-
tance for an attractive 6-function potential. The quan-
tum interference pattern is affected even when the poten-
tial is relatively weak. In Fig. 6(a), the impurity is locat-
ed at the same position as Fig. 3(a), i.e., the node of the
wave function at the resonance. Here again the dip at
kF 8 /m=1. 5 is almost independent of the impurity. We

observe that the standing wave pattern of the wave func-
tion corresponding to the dip is robust against this im-
purity. The probability at the position of the impurity
remains almost zero even if the potential is made more
attractive. The conductance of the attractive scatterer is
increased or decreased, depending on the strength of po-
tential. For an attractive scatterer the conductance can
be much smaller. With increasing strength, the conduc-
tance decreases and nearly total reflection occurs over a
wide range of energy when U- —5. Bagwell observed
the overall decrease of the conductance in a quasi-one-
dimensional wire with an attractive impurity and has dis-
cussed this in terms of the transmission resonances due to
quasibound states which move lower in energy as the
scatterer is made more attractive. ' The conductance in-
creases if the quasi-bound-state energy has moved below
the subband minimum as the strength of the scatterer is
further increased. Figure 6(b) shows the conductance
through an impurity with d /W= 1.13. Interestingly, for
this impurity, the overall decrease of the conductance is
not observed. If an impurity potential is repulsive, its
effect is always to move dips to higher energy. On the
other hand, an attractive potential moves the resonance
energies lower, reflecting the presence of the quasibound
states. The dips disappear when the energy aligns with
the bottom of the subbands. Additional narrow dips, cor-
responding to the quasibound states, appear immediately
below each subband threshold and move lower in energy
as the potential is made more attractive.

Next, we place an impurity in the narrow wire (region
I). We now have a parameter b, which represents the dis-
tance along the x direction between the impurity and the
interface between regions I and II. We have calculated
D/8' dependence of the conductance for fixed energies.
We find that the dips are not affected by the impurity in

1.0

0

0.1

0.2
0.3
04
O.5

0.6
0.7
0.8
0.9

1-
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

y/W

04

OJ

O
CO

O~

0.8 =-

0.4—

0.0
1.0 2.0

D/W
FIG. 4. Probability distribution of wave function in the stub

region with kF W/m = 1.5. The brighter the reflection, the
larger the probability. We consider a perfect waveguide with
the dimensions D/W=1. 6 and L/W=1. 0. The stub region
shown is connected to two semi-infinite wires (0&y/W& 1) at
x / W =0 and x /W = 1. The electron moving in the positive
direction of the x axis with this energy is perfectly reflected in
the stub region.

FIG. 5. Two-terminal conductance as a function of D/W for
kFW/sr=1. 6. In the absence of an impurity (solid line), the
period corresponds to one-half of the wavelength of the incident
electron. The period is slightly increased if an impurity
(a/W=0. 4, d/W=0. 4, U=50) is put in the stub region (dot-
ted line). For the dashed line an impurity is put in the narrow
wire region (b/W=0. 4, d/W=0. 54, U=50).
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the wire as shown by the dashed line in Fig. 5. The only
effect is to suppress the maximum of the conductance.
The conductance is no longer unity if there is an impuri-
ty. In Fig. 7(a) the conductance is plotted as a function
of kF W/m-. One can see an oscillation due to successive
resonances between the 5-function barrier and the stub
resonator. The b/8' dependence of the conductance
also reveals the oscillation and the period corresponds to
integer multiples of one-half of the wavelength. For
kFR'/~) 2 the oscillation shows beat structure, since
two propagating modes, which have different wave-

lengths, are available in the wire. The oscillation also
occurs for an attractive scatterer as shown in Fig. 7(b).
The conductance again shows an overall decrease when
U- —5. This is still observed even if D/8'=1, indicat-
ing that this behavior arises from the presence of an at-
tractive impurity in a quasi-one-dimensional wire.

In conclusion, we have considered the electron
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FIG. 7. Oscillation due to multiple reflections occurs if an
impurity is located in the wire region. (a) Dotted line shows
two-terminal conductance through a single repulsive scatterer
in the wire with b/W=5. 3 and d/W=0. 58. For the dashed
line the impurity is located at the interface between regions I
and II (b =0) with d/8'=0. 58. The strength of the potential
considered is U= 15. The solid line shows the conductance of a
perfect electron waveguide. (b) Conductance calculated for an
attractive scatterer in the wire. The strength of the potential
considered is —1, —3, —5, and —10 from the bottom to the
top. For clarity, curves for U= —3, —5, and —10, are o6'set by
e /h, 2e /h, and 2. 5e /h, respectively. Overall decrease of the
conductance occurs when U- —5.

kF W/&

FIG. 6. Two-terminal conductance for an attractive 5-
function impurity in the stub region. (a) The solid, dotted,
dashed, and dash-dotted lines: U= —1, —3, —5, and —10, re-
spectively. The impurity is located at a / W =0.57 and
d/W=0. 68. Nearly total reflection is observed over a wide
range of energy if U- —5. (b) The dotted and dashed lines are
conductance for U= —1 and —3, respectively. The impurity is
located at a/W=0. 57 and d/W=1. 13. For this location the
resonance results in narrow dips. The solid line is the conduc-
tance of a perfect electron waveguide.
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transmission through a T-shaped quantum resonator con-
taining a single 6-function impurity. The e6'ect of the im-

purity on coherent electron transmission is to increase or
decrease the conductance. Almost complete transmission
is destroyed, while the opaqueness at dips is stable against
a single 6-function impurity. However, the positions of
the dips are moved by the impurity. Quantum-
mechanical multiple scattering between the impurity and

the stub causes an oscillation in the conductance when
the impurity is present in the wire. For an attractive
scatterer, new dips appear, due to the presence of quasi-
bound states in the channel.

The authors wish to thank Q. Li and K. Yano for help-
ful discussions. This work was supported by the Office of
Naval Research.

'Y. Imry, Directions of Condensed Matter Physics, edited by G.
Grinstein and E. Mazenko (World Scientific, Singapore,
1986), p. 101.

S. Washburn and R. A. Webb, Adv. Phys. 35, 375 (1986).
W. J. Skocpol, P. M. Mankiewich, R. E. Howard, L. D. Jack-

el, D. M. Tennant, and A. D. Stone, Phys. Rev. Lett. 56,
2865 (1986).

4K. Ishibashi, Y. Takagaki, K. Gamo, S. Namba, S. Ishida, K.
Murase, Y. Aoyagi, and M. Kawabe, Solid State Commun.
64, 573 (1987).

5A. Benoit, C. P. Umbach, R. B. Laibowitz, and R. A. Webb,
Phys. Rev. Lett. 58, 2343 (1987); W. J. Skocpol, P. M. Mank-
iewich, R. E. Howard, L. D. Jackel, D. M. Tennant, and A.
D. Stone, ibid. 58, 2347 (1987).

G. Timp, H. U. Baranger, P. de Vegvar, J. E. Cunningham, R.
E. Howard, R. Behringer, and P. M. Mankiewich, Phys. Rev.
Lett. 60, 2081 (1988).

7Analogies in Optics and Microelectronics, edited by W. van
Haeringen and D. Lenstra (Kluwer, Dordrecht, 1990).

S. Datta, Superlatt. Microstruct. 6, 83 (1989).
F. Sols, M. Macucci, U. Ravaioli, and K. Hess, Appl. Phys.

Lett. 54, 350 (1989);J. Appl. Phys. 66, 3892 (1989).
' P. A. Lee, A. D. Stone, and H. Fukuyama, Phys. Rev. B 35,

1039 (1987).
'T. J. Thornton, M. L. Roukes, A. S. Scherer, and B.P. van der

Gaag, Phys. Rev. Lett. 63, 2128 (1989); M. L. Roukes, A.
Scherer, and B.P. Van der Gaag, ibid. 64, 1154 (1990).

' K. S. Rails, W. J. Skocpol, L. D. Jackel, R. E. Howard, L. A.
Fetter, R. W. Epworth, and D. M. Tennant, Phys. Rev. Lett.
52, 228 (1984).
R. Behringer, G. Timp, H. U. Baranger, and J. E. Cunning-
ham, Phys. Rev. Lett. 66, 930 (1991).
Y. Takagaki and D. K. Ferry, Phys. Rev. B 44, 8399 (1991).

' T. Kakuta, Y. Takagaki, K. Gamo, S. Namba, S. Takaoka,
and K. Murase, Phys. Rev. B 43, 14321 (1991).

' D. van der Marel and E. G. Haanappel, Phys. Rev. B 39, 7811
(1989).

' C. S. Chu and R. S. Sorbello, Phys. Rev. B 40, 5941 (1989).
' B.J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Wil-

liamson, L. P. Kouwenhoven, D. van der Marel, and C. T.
Foxon, Phys. Rev. Lett. 60, 848 (1988); D. A. Wharam, T. J.
Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost,
D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C.
Jones, J. Phys. C 21, L209 (1988).

' R. Landauer, IBM J. Res. Dev. 1, 233 (1957); D. S. Fisher and
P. A. Lee, Phys. Rev. B 23, 6851 (1981).

"S.Das Sarma and F. Stern, Phys. Rev. B 32, 8442 (1985).
P. F. Bagwell, Phys. Rev. B 41, 10 354 (1990).
A. Kumar and P. F. .Bagwell, Solid State Commun. 75, 949
(1990).




