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The effect of inelastic scattering on quantum electron transport through double-barrier resonant-
tunneling structures with large cross-sectional areas is studied numerically using the approach based on
the nonequilibrium Green s-function formalism of Keldysh, Kadanoff, and Baym. The Markov assump-
tion is not made, and the energy coordinate is retained. This makes the inclusion of the phonon-energy
spectrum straightforward both conceptually and in practice. The electron-phonon interaction is treated
in the self-consistent first Born approximation (SCFBA). The Pauli exclusion principle is taken into ac-
count exactly within the SCFBA. The retention of the energy coordinate allows the calculation of a
number of quantities that give insight into the effect of inelastic scattering on electron transport: The
effect of inelastic scattering on the occupation of the energy levels, the density of states, the energy distri-
bution of the current density, and the power density is calculated from a quantum kinetic equation for
actual device structures under high bias.

I. INTRODUCTION

The treatment of inelastic scattering in quantum trans-
port is interesting from both a theoretical and a practical
point of view. From a practical perspective, the success
of the technology of molecular-beam epitaxy has allowed
the fabrication of layered semiconductor structures such
as double-barrier resonant-tunneling diodes (DBRTD's), '

superlattices, and hot-electron injection devices which
operate on quantum mechanical principles under high
bias. If one wishes to describe experiments on these
structures, such as photoluminescence measurements of
the occupation of resonant levels, or the valley current
of a DBRTD, a treatment of inelastic scattering is neces-
sary.

Theoretically, there have been many studies of the
effect of inelastic scattering on resonant tunneling.
The treatment of the elastic and inelastic scattering
ranges in various degrees of sophistication. As discussed
by Pevzner, Sols, and Hess' and Sols, ' it is relatively
easy to treat coherent elastic scattering from potential
barriers and device geometries exactly using numerical
methods while the inelastic scattering is treated in an ap-
proximation. Two approximations are commonly
used: ' (1) the inelastic scattering is confined to a finite
region of space, and (2) the inelastic scattering is treated
within the one-electron picture, i.e., the Pauli exclusion
principle is ignored.

The numerical approach that has been used to study
the effect of inelastic scattering on DBRTD's has been
based on a solution of the Wigner-Weyl transform of the
Liouville equation for the Wigner function. ' ' The in-
clusion of inelastic scattering in the above work has been
conceptually problematic. ' ' The exact forms for the
self-energy terms have recently been derived from a
Wigner-Weyl transformation of the general equations of
Keldysh, KadanofF', and Baym. ' However, in practice, a
relaxation-time approximation is used. '

The approach used in this work begins with the general
many-body, non-equilibrium Green's-function theory of
Keldysh, Kadanoff, and Baym, ' which we will refer to
as the KKB formalism. It is restricted to steady state.
The Pauli exclusion principle is rigorously included.
Three approximations are made.

(i) Electron-phonon interaction is treated in the self-
consistent first Born approximation, which means that
only one-phonon scattering is included, but it is included
exactly (to all orders in the language of perturbation
theory).

(ii) The phonons are modeled as a bath of independent
oscillators which interact with the electrons locally. This
corresponds to a simple model of deformation potential
dispersionless optical phonons with the potential felt by
the electrons proportional to the ionic displacement.

(iii) The phonon coordinates are traced out by assum-

ing that the phonons remain in equilibrium.

The phonons are not restricted to a finite region of space
but extend throughout the device and contacts from —~
to + ao in the case of a 1D (Ref. 24) simulation.

The fundamental quantity in the KKB formalism is the
two-time correlation function, G (r„t,;rz, t2). By per-
forming a Wigner transform on the time variables, we
can write the correlation function as G (r„r2',E, T),
where T =

—,'(t, +tz) and Elhi is the Fourier transform

variable corresponding to the time difference coordinate
( t, t z ). The —fundamental quantity in the Liouville
equation, the density matrix p(r&, r2, T), is obtained by
setting t, =t2 in G, which is equivalent to integrating
over energy, p(r, , rz, T)= J(dE/2n)G (r, r';E, T). .

The KKB formalism gives energy resolved informa-
tion. The retention of the energy coordinate makes the
inclusion of the phonon energy spectrum straightforward
both conceptually and in practice. It also allows the cal-
culation of a number of quantities which give insight into
the effect of inelastic scattering on quantum electron
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transport. The effect of transitions between levels can be
seen in the occupation of energy levels and in the energy
distribution of the current density. Knowing the mean
energy of the current density, the spatial distribution of
the power being dissipated by the electrons to the phonon
bath can be calculated throughout the device. Numerical
examples of all the above-mentioned quantities will be
presented in this paper.

II. STEADY-STATE KKB FORMALISM

There has been much work based on the KKB formal-
ism and there have been several excellent reviews (see
Ref. [26—28] and references therein). Our concern is
with steady-state transport in mesoscopic systems. In
steady state, the coupled nonequilbrium Green's function
equations take on a relatively simple form which provides
a good starting point for a general, quantum-mechanical
treatment of electron-phonon and electron-electron in-
teractions in mesoscopic structures far from equilibrium.
We summarize below a steady-state version of the KKB
formalism that is the starting point of this work.

We do not make the gradient expansion since poten-
tials in mesoscopic systems vary rapidly in space. In
steady state, it is assumed that there is no dependence on
the center-of-mass time (t+t')/2 and we Fourier trans-
form the relative time coordinate to energy E. The nota-
tion and definitions for the Green's functions and self-
energies correspond to that found in Ref. 29. The equa-
tions for the retarded Green's function G and the corre-
lation functions G are

[E —Ho(r}]G"(r,r';E)
—fdr&X"(r, r&)G (r&, r', E)=5(r—r'), (1)

G (r, r', E)=fdr, dr2G"(r, r, ;E)

III. POINT SCATTERER MODEL

In this work (following Ref. 29) we use a model for
which the in-scattering and out-scattering functions
X (r, r', E) and X (r, r', E) are proportional to 5 func-
tions in space. This leads to a simplification of the trans-
port equations as described in the following section. The
physical model is described by the following three Hamil-
tonians. The electrons are described by the one-
electron effective-mass Hamiltonian

Ho= +V( )
2m

(6)

where V includes the linear potential drop and the
conduction-band discontinuities. Magnetic fields are
neglected in this work ( A=O). Dephasing is assumed to
be caused by a reservoir of independent oscillators (main-
tained in thermodynamic equilibrium) described by

Hii= gf'ico (ata +—,') . (7)

The electrons are assumed to interact with the bath
through a 5 potential

I (r, r', E)=—i(X (r, r', E) —X (r, r', E)) .

X depends on the type of interaction being considered.
Once X and X are specified, (1)—(5) plus the equations
for X become the closed set of equations that need to be
solved.

The systems we consider are those with boundary con-
ditions (an applied bias) that have been fixed for a long
time. However, there is some evidence from numerical
simulations that such systems may not reach steady
state '; Coulomb charging effects can result in high-
frequency oscillations in the current for a fixed applied
voltage. Under such circumstances, the steady-state
equations cannot be used.

XX~(r„r2,E)G (r', rz, E) . (2) H'= g U5(r —r )(a +a ) . (8)

Since we are only concerned with steady state, a bound-
ary term has been dropped from (2) which depends on the
time at which the interaction is adiabatically turned on.
We write the retarded self-energy X as

X"(r, r', E)=cr(r, r', E)—i I (r, r', E)
(3)

1 p i dE' I (r, r', E')
E E~ &F (4)

I is given by the sum of the in-scattering function X
and the out-scattering function X

where o =(X +X")/2 and —iI /2=(X —X")/2. In
(3), o is the Hermitian part of X, and iI /2 is the anti-
Hermitian part of X . If we Fourier transform the rela-
tive coordinate r —r' to k, o. and iI /2 become, respec-
tively, the real and imaginary parts of X (R,k;E), where
R is the center-of-mass coordinate (r+r')/2. The Her-
mitian part of X is the Hilbert transform of the anti-
Hermitian part plus a term Xzz due to the singular part
of X from the Hartree-Fock diagrams:

Assuming a continuum of modes, the sum over m be-
comes an integral g ~f dr f d(fico)JO(r;fico), where Jo
is the density of oscillator modes. One is free to choose
the energy spectrum Jo(A'co) of the oscillators. In this
work, we have used three different models.

(i) Elastic phase breaking: Jo(A'co) -5(co).
(ii) Einstein phonon: Jo(fico) -5(co+coo), ficoo= 36 meV.
(iii) Debye phonon: Jo(fico)-co e(coD —

~co~ }, ficoD =20
meV.

This allows comparisons between simple elastic phase
breaking and inelastic scattering where transitions be-
tween energy levels are present. When we model inelastic
scattering, both the Debye and Einstein oscillators are in-
cluded. The Debye oscillators allow for small energy
transitions and close the energy gap that would otherwise
occur in X at low temperatures.

When the Einstein spectrum is used, the local oscilla-
tor model corresponds precisely to a simple model for
dispersionless deformation potential optical phonons
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(DPOP's). This is shown as follows. The potential felt by
the electrons due to the phonons for DPOP's is

(9)

E —H0(r) —o(r. ;E)+i G (r, r';E)
2i.](r;E)

=5(r —r'), (12)

Then D =(H,„(r,t)H, (r', t')) is

D (r, , rz, irtco)=M (2ir)5(r, —rz)

X [ iN(co0)+1]5(co+co0)

+N(coa)5(co —co0)], (10)

1

r~(r;E)

X N0( r; E %co)f—( r; E fico —),

1 A', ~G (r, r';E)~f(r;E = lr
N0(r;E) 2ir i. (r', E)

f d(%co)F(r, fico)
277

(13)

(14a)

where N is the Bose-Einstein factor. This is precisely the
form of D when using the Einstein spectrum in the lo-
cal oscillator model [compare Eq. (A8a) in Ref. 29].

f d(%co)F(r, Aco)NQ(r; E +fico)
1 2~

r„r;E
X [1 f(r;E—+A'co)], (14b)

IV. STEADY-STATE KKB FORMALISM
APPLIED TO POINT SCATTERERS

X '(r „ri;E ) = i 5—(r, —r2),r~(r„E)

and

(ri rz, E)=+i . 5(rir„ri,'E

X (r, , rz, E)= rc(r&, E) i — 5(ri —r~),2i] r, ;E)

where 1/~„is the electron outscattering rate, 1/~ is the
hole outscattering rate, 1/w& is the total dephasing rate,
and o. is the real part of X .

Only the diagonal elements of G are needed to calcu-
late the self-energies because of the local nature of the in-
teraction. With the above identities and definitions, the
coupled equations for G, the diagonal elements of G
X, and X take the following forms, respectively:

We introduce a few identities and one definition. We
need the identities for the electron density per unit energy
n(r;E)=( i/2i—r)G (r, r;E) the hole density
p(r;E) (i/2n)G (r, r;.E), and the local density of states
Nz(rE)=n(r;E)+p(r;E)= —I/nImG (r. ,r;E). We
define the nonequilibrium occupation factor as
f (r;E)=n(r, E)/NQ(r, E). At equilibrium, f (r;E) is
simply the Fermi-Dirac factor.

In this work, the self-energies for the electron-phonon
interaction are evaluated in the self-consistent Born ap-
proximation,

X (r, r';E)= fdE'G (r, r', E E')D (r, r—', E')

where

D (r, r', E)=fd(t t')e' "—
X(H'(r, t)H'(r', t')) .

Since, in our model, the electron-phonon interaction is lo-
cal, the corresponding self-energies, in the self-consistent
first Born approximation (SCFBA), are local. We write
the self-energies as

1

r~(r;E)
1 1

i (rE) r„(rE) (15)

Substituting (14a) into (13) gives a homogeneous integral
equation for the occupation factor,

f (r;E)= f dr' f dE'~G (r, r';E)l'F(r', E')
NQ(r;E )

XN0(r', E E')f(r', E —E') . —
(16)

A. Boundary conditions

Two boundary conditions have to be specified, one for
G" in Eq. (12) and one for f(r;E) in Eq. (16). We take
these up one by one.

We use open-ended boundary conditions for
G "(r,r', E) to simulate perfectly absorbing contacts. G"
is calculated numerically using a finite-difference solution
to (12) (which is formally equivalent to the tight-binding
model) on a finite lattice and extended analytically to
+~. This is similar to the asymptotic scattering
boundary conditions used by other researchers to calcu-
late a transmission coefficient. However, there is a
subtle difference. Usually, the boundary regions are ideal
leads with no scattering of any kind extending to
where, presumably, there is an ideal reservoir which is
the contact. By contrast, inelastic scattering is included
throughout our boundary regions from —~ to + ~. In
our model, the entire boundary region acts as the contact;
we do not conceptually divide up the region into an ideal
lead and an ideal reservoir.

The integral equation for f (r;E) is solved subject to
the boundary condition that in the contacts

f(r;E)=f0(E —p, ) with rHcontact i

where f0 is the Fermi-Dirac factor. This is similar in

So far, in practice, we have ignored the real part of X".
In (14), F is a known function consisting of a strength U,
the density of oscillator modes J0, and the Bose-Einstein
factor N:

N(co), co) 0
F(r, &co) = U'J, (r, lcol) X N(~~)

~
)+1, co(0 .
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spirit to the boundary condition imposed on the electro-
static potential, and the chemical potentials when solving
the drift-difFusion equation. Note that we specify the
energy distribution rather than the momentum distribu-
tion. Usually, it is the incident momentum distribution
that is specified as an equilibrium distribution, both in
semiclassical and quantum transport. ' Despite
this difference, in the limit of long ~&, we find remarkable
agreement between simulations based on our approach
and simulations from SEQUAL Refs. (34 and 44—46) based
on the Tsu-Esaki approach, ' which assumes phase
coherent transport and specifies the incident flux at the
boundaries. We also find, for a ballistic wire with M
propagating subbands at low temperature and low bias, a
conductance of (2e /h )M. It thus appears that specify-
ing the equilibrium boundary conditions in terms of the
energy distribution rather than the incident momentum
distribution makes no significant difference to the result.
It will be noted that since inelastic scattering is included
throughout our boundary regions, energy and momentum
are independent variables related through the spectral
function. Consequently, it is somewhat more complicat-
ed to impose a boundary condition on the momentum
distribution.

The concept of an ideal reservoir ' has received
much attention in the field of electron transport in elec-
tron waveguide structures since it is implicit but funda-
mental to the Landauer conductance formula ' and mul-

tiprobe current formula ' which have proven so suc-
cessful in modeling mesoscopic phenomena. An ideal
reservoir acts as a blackbody for electrons which can be
characterized by two properties.

(i) Every electron incident on the reservoir is absorbed.
(ii) The reservoir emits electrons according to an equi-

librium thermal distribution.

The boundary conditions on 6 and f (r;E) are con-
sistent with the two properties listed above. The open-
ended boundary conditions on 6 ensure property (i).
Property (ii} is satisfied since we impose equilibrium
statistics over the contact region.

The imposition of equilibrium statistics in the contacts
gives rise to a contact resistance in the form of a discon-
tinuity in the electrochemical potential at the device-
contact interface in the linear-response theory, and, for
the nonlinear theory presented here, a discontinuity in

f (z;E) at the device-contact interface. If we simulate a
ballistic wire, the occupation factor calculated for the
wire will be the average of the occupation factors in the
contacts f (E)=—,'[fo(E —pc )+fo(E—pc )], where

pc is the electrochemical potential in the left (right)
L (R)

contact. The contact resistance, which appears as a
discontinuity in f (z;E), is a natural result of making the
voltage and current measurements between two equilibri-
um regions. It must appear if we are to find the two-
terminal conductance of (2e /h )M for a ballistic wire.

An interesting property of the equilibrium boundary
condition is that, while current is conserved in the device,
it is not conserved in the contacts. If there is scattering
throughout the contact regions, then the contacts must

be in equilibrium far from the device. Thus no current
flows deep inside the contacts, although current flows
from the contacts into (or out of) the device. The current
density decays exponentially away from the device with a
decay length L&=v~&. If scattering is present in the
boundary region adjacent to the device, then the same
lack of current conservation occurs for the incident equi-
librium flux boundary condition used in the Wigner func-
tion and Monte Carlo simulations and the Dirichlet
boundary conditions used at Ohmic contacts in drift
diffusion analysis. For example, in a drift diffusion
analysis it is common to assume a constant electrochemi-
cal potential p at the contacts. Thus the current density
(J= —OVp) is zero inside the contacts although a
current flows at the device contact interface. Further dis-
cussion of the boundary conditions can be found in Refs.
29 and 33.

In summary, we consider the boundary regions as pro-
viding boundary conditions on the "interesting" region,
the device. The boundary regions act as ideal reservoirs.
We find the correct contact resistance of 2e /h per mode.
We find excellent agreement with the results from
SEXUAL, which uses the incident equilibrium flux bound-
ary condition. Current is conserved in the device, but not
in the boundary regions. This condition is inherent in
equilibrium boundary conditions with inelastic scattering
present throughout the boundary region.

B. Current density and current continuity

It is important that the continuity equation

f dE V J(r,E)=0 (18)

be satisfied. Mahan has proven that the continuity equa-
tion is satisfied for any self-energy which can be written
as X (x,x')=g(x, x')6 (x,x'), where x=(r, t) and g is a
symmetric function which satisfies g(x, x')=g(x', x).
This is true of the self-consistent first Born treatment of
the electron-phonon interaction. We have, however, ig-
nored the real part of X in solving the coupled equations
(12)—(15). We show below that (18) still holds in our for-
mulation of the coupled equations, (12)—(15).

Starting with Eqs. (17) and (12), we can show that

V.J(r,E)= ~—
e ' ~(rE)

n(r;E)
r„(r;E) (19)

In equilibrium, (19) is a statement of detailed balance and

Equations (12)—(15) are solved iteratively. After con-
vergence, the of-diagonal elements of 6 can be calcu-

R (~Rlated from the general equation 6 =6 X 6 and
then the current density J(r;E}is calculated from

J(r;E)= lim [(V—V')6 (r, r';E)]
—eA

4am* r' r

$2
, f, [G" (r, r', E)VG (r, r', E)

4mm' r~ r';E

—6"(r,r', E)VG (r, r', E)] .

(17)
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is equal to zero at each energy. This can be seen after
noting that, in equilibrium,

and

fo(E)
i.&(r;E) i. (r;E)

(20)

1 —fo(E)
~~(r; E)

1

i.„(r;E) (21)

Away from equilibrium, we must check that the quan-
tity fdEV J(r;E) is zero. We write I/r„and I/r in

(19) using (14), so that (19) integrated over energy be-
comes

tegral over r' into two parts as described in Ref. 55. We
define the coherent current as that part of total current
which traverses the device from one contact to the other
without suffering a dephasing event. For a two contact
device with contacts C, and C2 sandwiching the "device"
with r in contact C&, the integral in (23) would be broken
up as follows.

The coherent current is obtained by only
integrating r' in (23) over contact Cz. Since r' is con-
strained to C2, we use (20) to write 1/i~(r';E) in (23) as

fo(E —pc ) /i &(r'; E ). Then the coherent current is
2

given by

eR f d, ~G (r, r', E)~

—f dE V J(r;E)1

e

=fdE fdE'[F(r;E E')n(r;E—')p(r;E)

X(fo(E—pc )

fo« I
—c, ) j . —(24)

F(r;E'—E)p(r;—E')n(r;E) j .

(22)

The right-hand side of (22) is antisymmetric under inter-
change of E and E' and is thus equal to zero. Thus the
divergence of the current in the device is zero. Numeri-
cally, we find that the current is conserved throughout
the device to within a few percent.

C. Terminal current

The total current flowing at each energy is obtained by
integrating J(r;E) over a cross section of the device.
Choosing the cross section to be the device contact inter-
face, we can use the divergence theorem to convert the
surface integral into a volume integral over the contact
since there is no current flowing out the back of the con-
tact at +~. We can then write the terminal current in
an alternate form

I, = dE dr dr'2' r](r~E)

fo(E —
Vc, )

X
1

i~(r', E)

(23)

D. Coherent and incoherent components of the current

The coherent and incoherent contributions to the total
current can be calculated from (23) by breaking up the in-

We have checked numerically that Eq. (23) gives the
same result for the terminal current as obtained by in-
tegrating the current density over a cross section of the
device.

Assuming translational invariance, the 3D quantities in
Eqs. (13), (17), and (23) are reduced to 1D quantities by
projecting onto the transverse eigenstates and averaging
over the cross section. The details are described in Ap-
pendix A. Details of the numerical solution of Eqs.
(12)—(15) are given in Appendix B.

If we write a transmission coeScient as

T(E)=f dr f dr%i ' ', , (25)c, c, r~(r;E)~~(r', E) '

(24) takes the form of the well-known tunneling formu-
40, 41

I oh t ,
' fdE T—(E)ufo(E I c, ) fo(E I c, ) l

(26)

At first it may seem surprising that the inelastic-
scattering times in the contacts enter the expression for
the transmission coefficient T(E). We show in Appendix
C that the factors of ~& cancel after performing the in-

tegral in (25) and that the transmission coefficient takes
the same form as that obtained by Fisher and Lee for
coherent transport across the device (see Appendix C).
However, this does not mean that the coherent com-
ponent of the current is unaffected by inelastic scattering
within the device. The quantity ~G"(r, r', E)~ in (25) is
defined by (12), which includes an imaginary potential
proportional to the dephasing rate if&/2r~ If the deph. as-
ing rate is increased in the device,

~
G

~
in (25) is de-

creased and thus T(E) is decreased.
The incoherent component of the terminal current at

C, is due to that part of the flux that has suffered a de-

phasing event in the device. Thus the incoherent com-
ponent is obtained by restricting the integral over r in
(23) to the device region. Note that if dephasing is absent
in the device, I/v& and I/i in (23) will be zero in the de-
vice, and the incoherent component will be zero. As
mentioned earlier, the coherent current is obtained by in-

tegrating r' in (23) over Cz. Also, it can be shown that
the contribution from integrating r over C, gives zero.
The sum of the coherent and incoherent components of
the current thus add up to the total current as they must.

E. Elastic phase breaking

Elastic phase breaking scattering occurs when the den-
sity of oscillator modes Jo(fico) is proportional to 5(fico).
In this instance, I /i. &(r;E ) ~ Xo (r;E). Since the
scattering is elastic, current is conserved at each energy,
V J(r;E)=0, VE. .
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1 f(r E)
~ (r;E) r&(r;E)

(27)

If we set r& constant, then we use (27) to calculate w~ in
place of Eq. (14), and thus ensure current conservation.
Examples will be given below of the use of a constant ~&
to simulate dephasing without inelastic transitions.

F. Energy current and power dissipation

The energy current JE is

Jz(r)= f dE EJN(r;E), (28)

where J~ is the particle current. Note that JE is the
total-energy current, not the kinetic-energy current JE,'
E =Ek+E, (r) where EI, is the kinetic energy and E,(r)
is the potential energy. The power density P(r) due to
loss of energy from the electrons to the phonon bath is

P(r)= —V Jz(r) . (29)

Again, note that in Boltzmann transport theory this is al-
ways written as the sum of two terms, a term due to the
kinetic energy and a term due to the potential energy,

For purposes of comparison, it is convenient to have
the capability of using a constant ~& independent of posi-
tion and energy that is not calculated self-consistently so
that 1/~& is not proportional to No. However, we must
ensure that current continuity is preserved. Since

1 p(r E) n(r E)
e r (r;E} ~„(r;E)

current conservation can be ensured if
n (r; E)lr„(r;E)=P (r; E ) l~~ {r;E ). Dividing both sides
by No(r;E) and regrouping gives

as J~=Jz —JMJ~, where JM is the electrochemical poten-
tial. From the definition of pJ, J&=J&(pJ—p), and
from the definition of the Peltier coefficient (in 1D),
n =J& /Jz =p J —p. Also, in 1D, the power density is
proportional to the slope of pJ ..
P (z) = dJ—E Idz = —J~ d pJ ldz. For this reason, the
concept of pJ is useful for understanding the location and
intensity of power dissipation in devices.

V. RESULTS AND DISCUSSIQN

The effect of phonon scattering in a simple double-
barrier device and in a double-barrier device with an
emitter quasibound state will be analyzed. Inelastic
scattering will be compared to simple energy broadening
such as that obtained from the Breit-Wigner formula.
The coherent and incoherent components of the total
current will be calculated. By considering the local den-
sity of states No(z; E), the nonequilibrium occupation of
the energy levels f (z;E}, the energy spectrum of the
current density J(z;E), and the consequent quantities,
the mean energy of the current density pJ and the power
density P(z) throughout the device, we will obtain a clear
picture of the effect of the electron-phonon scattering on
the electron transport.

A. Device description

The first device that is modeled is a simple double bar-
rier resonant-tunneling diode. The conduction band for
the device is shown in Fig. 1. The temperature is 77 K.
A constant effective mass of 0.067 is used. The barrier-
well conduction-band discontinuity is 220 meV. A linear
potential drop is applied. The electrostatic potential is
not calculated self-consistently. The lattice constant for
the spatial grid is 5 A.

P(r)= —V.Jz (r)+C(r) J(r) (30)

B. Comparison with coherent transport
[cf. Eq. (7.39) of Ref. 57]. The derivation of (30) from
(29) is trivial, but will be shown here since working with
total energy is unusual and has caused confusion.
Rewrite (28) as

Fig. 2 shows a comparison of I-V characteristics. The
dashed hne is the output of the program sEQUAL,

Jz(r)= fdE„[[E,(r)+E„]J~(r;E„)]
=E,(r) JN(r) +zJ(r)

and take the divergence to obtain (30).

G. Mean energy of the current

The mean energy of the current p& is defined in 1D as

3

m
3 O

CD
O

OI
O
0

f dE EJ(z;E)

fdE J{z;E)
(31)

For low bias, the heat current is defined in the usual way

5 10 15 20 25 30
I

35 (nm)

FIG. 1. Conduction-band profile of simple double-barrier
resonant-tunneling diode considered in Figs. 2—8. T=77 K,
m*=0.067mo, hE, =220 meV, a =5 A.
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FIG. 2. Comparison of the results of simulator based on the
Keldysh formalism (KKB) with the results of sEQUAL which as-

sumes phase-coherent transport. A constant v& of 10 ps is used

in the KKB simulator.

FIG. 3. Comparison of inelastic scattering, elastic phase-

breaking scattering, and phase-coherent transport (SEQUAL).

For the solid curve, both Debye and Einstein oscillators are
present. For the long-dashed curve, only elastic phase breaking

is present; in the well, ~& =0.46 ps.

which is based on Eq. (26) and assumes phase-coherent
transport from contact to contact. Furthermore, the
boundary conditions in SEQUAL are specified by an equi-
librium incident momentum distribution. The solid line
is the output from our quantum kinetic equation solver,
labeled KKB, with the phase relaxation time set equal to
a constant value, independent of position and energy, of
10 ps. The imaginary term in Eq. (12) is 0.033 meV. This
is a factor of 20 smaller than the smallest energy scale in

the problem, which is the resonance width. Thus we are
approximating a pure-state retarded Green's function
G =(E Hc+i5) —', by letting the infinitesimal imagi-

nary term i 5 become nonzero but small. In this limit, the
current is essentially given by (24), which is identical to
(26). Thus, in this limit, we would expect the two simula-

tors to give the same result. Figure 2 shows that this is

indeed the case.
The two simulators not only differ in their theoretical

basis, but they also differ in their numerical approach.
SEQUA. L solves for the transmission coefficient T(E) using
a scattering matrix approach. The potential is discretized
into a series of steps and the plane-wave eigenstates of
each step are matched at the step boundaries. Thus the
dispersion relation is parabolic for all energies above the
conduction band. The KKB solver uses finite difference
to solve (12), which is equivalent to tight binding, so
that the dispersion relation is E =(fi /ma )[1—cos(ka) j.
The infIection point of the tight-binding band, using the
lattice constant and effective mass stated above, occurs at
E =4.5 eV. At high applied voltages, when the electrons
come through the resonance high into the tight-binding
band of the collector, one mould expect a difference in the
predictions of the two simulators.

C. Elastic phase breaking versus inelastic scattering

In Fig. 3, the effect of inelastic scattering is compared
to elastic energy broadening. For the solid line, both De-
bye and Einstein oscillators are present. The strengths of
the two scattering mechanisms are chosen such that at
5k~ T+R~o above the Fermi energy in the emitter, the
scattering rate, associated with the retarded self-energy

1/~o due to optical phonons is —10' s ' and the scatter-
ing rate due to the Debye oscillators is —10' s '. At
nondegenerate energies, the rate 1/~& should be similar
to that calculated from Fermi's golden rule. The rate
1/~& is calculated self-consistently with 6 and, there-
fore, is position and energy dependent and decreases with
decreasing energy.

At peak current, between the barriers, ~& varies with

energy from 0.53 ps at the bottom of the resonance to
0.07 ps one optical phonon energy above the bottom of
the resonance. To compare with elastic phase breaking,
using a constant r&, we have calculated an average ~& us-

ing the energy distribution of the current density as a
weighting factor. That is

fdE r&(zo,'E )J (zo, E)
(r,(z, )) =

dE J zo;E

where zo is the point in the center of the well. The value
for ( v.&(zo) ) is 0.46 ps. At the node in the emitter con-
tact at the contact-device interface (r&) =0.8 ps.

For the long-dashed line in Fig. 2, ~& is set to a con-
stant 0.46 ps in the resonance region and 0.8 ps in the
contacts. As described previously, this results in elastic
phase breaking. Thus the energy broadening is roughly
the same for the two different simulations; however, in
one case there is inelastic scattering present; in the other
case, there is not. Also, replotted from Fig. 2 is the result
from sEQUAL (dotted line).

Comparing the inelastic and elastic I- V characteristics,
the shape of the linear and peak part of the I-V curves is
the same for both cases. The difference between the two
curves lies in the magnitude of the valley current. When
there is inelastic scattering present, the valley current is
slightly larger because electrons can enter the well at high
energy and inelastically scatter down into the resonance
thus enhancing the current. For both curves, the peak
current is slightly less than and the valley current is more
than the result from SEQUAL.
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D. Coherent versus sequential tunneling
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Since Luryi first introduced the alternative explanation
of the I-V characteristic of a DBRTD based on the
sequential tunneling picture, there has been interest in
determining the fraction of the total current that is
coherent and incoherent. ' For the I-V curve of Fig. 3
with inelastic scattering present, we have plotted the
coherent and incoherent components [Fig. 4(a)]. Initial-
ly, before the peak current is reached, the coherent part
is the larger. For the valley current, the incoherent com-
ponent is larger. This is due to electrons scattering down
from their injected energy into the resonance. Past the
valley current, the coherent component again becomes
larger.

We compare this to Fig. 4(b) in which the elastic curve
of Fig. 3 is replotted along with its coherent and in-
coherent components. For this simulation ~ is kept
fixed as described above so that it does not vary with
voltage. The current is evently split between its coherent
and incoherent components.

A Breit-Wigner analysis indicates that the ratios of the
coherent and incoherent components of the current are
inversely related to the intrinsic time and the phase-

We estimate the intrinsic time using the relation
fi/r;„„;„„,=LE, where hE is the full width at half max-
imum of No(zo;E)=( —I/m. )lmG (zo, zo,'E) at the well

center at a bias of 135 mV (peak current) with r =10 ps.

At peak current, for Fig. 5(b), I„h„,„,/I;„„h„,„,=0.99
and (r&}/r;„„;„„,=1.0. Thus, if we use a constant time
for ~&, we find good agreement with the prediction of a
Breit-Wigner analysis.

E. Scattering rates: Energy and bias dependence
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The energy and bias dependence of ~&, and the inter-
relationship between the nonequilibrium occupation fac-
tor f, the 3D density of states No, and the inelastic-
scattering time ~& in the self-consistent first Born approx-
imation are demonstrated in Figs. 5(a) and 5(b). Figures
5(a) and 5(b) are overlays of cross sections taken in posi-
tion at the well center for the above three quantities plot-
ted versus total energy occurring at the peak current and
valley current, respectively, of Fig. 3. The quantities cor-
respond to the simulation with inelastic scattering
present. The scale for v.

&
is on the left axis. The scale for

No is the right axis. The scale for f is not shown, but
runs linearly from 0 to 1. Note that Xo is the 3D density
of states which contains all transverse energies. We now
discuss the inter-relationships between the three quanti-
ties.

The feature in r& at point 8 in Figs. 5(a) and 5(b) is due
to the turn on of optical-phonon emission. Point B lies
one optical-phonon energy above the resonance bottom.

0-
0 100 200 300

Applied Voltage (mV}
400

FIG. 4. Coherent and incoherent components of the total
current. The (a) solid and (b) dashed curves of Fig. 3 are replot-
ted. The coherent (long dash) and incoherent (dot) components
are shown.

FIG. 5. Overlay of flzo,'E), No(zo;E), and ry(zo;F) at (a)
peak current 135 mV and (b) valley current 225 mV. zo is the
fixed point in the center of the well. The scale for f is not
shown, but runs linearly from 0 to 1. E„is the energy of the
bottom of the resonance.
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In Fig. 5(a), there is a corresponding feature in f which
will be studied more closely in Fig. 6. At point A, one
optical-phonon energy below the resonance, there are
prominent features in all of the quantities. There is a
peak and precipitous dropoff' in the occupation factor f.
This is the result of electrons scattering down from the
resonance to fill the exponentially vanishing states below
the resonance. A bump in the density of states also
occurs, and there is a sharp decrease in ~&. In the KKB
theory, this decrease in ~& is formally associated with the
emission of phonons by holes (in the conduction band).
The small features at points C and D in ~& correspond to
one Debye cutoff energy, 20 meV, below and above the
resonance.

in Fig. S(b), the conduction band in the emitter is
above the level of the resonance and the resonance is
24k& T above the Fermi energy of the collector. Thus the
small occupation of the resonance level -0.03 is due to
inelastically scattered electrons from the emitter. Since
the occupation is negligible, Fermi s golden rule should
be a good approximation to the scattering time ~&. This
is correct above the resonance. Below the resonance, the
scattering time is dominated by the hole scattering rate,
1/~ as discussed below.

The sudden increase in 1/r& at point A is not due to
absorption of optical phonons by electrons. 1/~& is the
imaginary part of X and it is the sum of the electron
out-scattering rate 1/~„and the hole outscattering rate
1/~ . This results from the proper treatment of the Pauli
exclusion principle built into the KKB formalism. For
dispersionless optical phonons, the calculation of 1/r
and 1/~„is particularly simple:

1 ~ N(coo)No(E +ficoo)[1 f (E +ficoo)—]r„(E)
+ [N (coo)+ 1]No(E —A'coo) [1 f(E fico() ) ],— —

(32a)

1
0 0 0~ N(ro )N (E —fico )f (E—A'ai )0

+[N(coo)+1]No(E+firoo)f(E+ficoo) . (32b)

N is the Bose-Einstein factor, No is the electron density of
states, f is the electron occupation factor, and A'coo is the
optical-phonon energy. The position coordinate r has
been suppressed. In (32), letting E be the energy of point
A, one finds that the second term of (32b) is the largest.
This represents the emission of optical phonons by holes,
which is identical to the emission of optical phonons by
electrons one optical-phonon energy above point A. At
point B, the second term in (32a) dominates, which
represents the emission of optical phonons by electrons.

The slight increase in ~& after point A is due to the de-
crease in f (E) above the resonance. Point C occurs one
Debye cutoff energy below the resonance. The Debye os-
cillators cannot start contributing to the rate 1/~& until
the energy is within a Debye cutoff of the resonance. The
increase in 1/~& between the points A and 8 is due to the
Debye oscillators. At energies higher than the resonant

F. Nonequilibrium distribution function

Inelastic scattering affects the equilibration of energy
levels in the resonance. We demonstrate this in Fig. 6.
In Fig. 6, we plot the occupation factor in the center of
the well at peak current for the inelastic and elastic I-V
curves of Fig. 3, the KKB curve from Fig. 2, now labeled
"Coherent, " and the tail of a Fermi-Dirac function with
a Fermi energy 4 meV below the resonance and a temper-
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FIG. 6. f (E) at the well center at peak current (135 mV) for
the three cases of inelastic scattering, elastic phase-breaking
scattering (from Fig. 3), and coherent transport (from solid
curve, Fig. 2). The tail of a Fermi-Dirac function with a Fermi
energy 4 meV below the resonance and a temperature of 205 K
is also plotted (Feq). The arrow lies at the energy of the bottom
of the resonance, 10 meV.

energy, the scattering due to the Debye oscillators is
dominated by emission by electrons. Above point 8, ~& is
determined by the second term in (32a). No(E fic—oo) is
constant, f(E —fichu) is negligible; thus r& becomes a
constant. Contrasting with point B in Fig. 5(a), r& is not
constant, but decreasing since f (E fir—oo) is not negligi-
ble.

Thus, at energies above resonance, when f (E firuo—)

can be ignored, ~& is given by the same terms as found in
Fermi's golden rule. However, there is a difference.
Fermi's golden rule treats the one-phonon interaction to
first order, while the SCFBA treats the one-phonon in-
teraction to all orders. Thus, in the SCFBA, the density
of states is affected by the scattering rate. This effect is
seen at point A in Fig. 5(a) and point B in Figs. 5(a) and
5(b) [there is a slight decrease in No(E) with increasing

energy].
To summarize the above discussion of Fig. 5, below the

resonance, ~4, is determined by a term in the KKB for-
malism that corresponds to the emission of phonons by
holes. This term would be absent in a one-electron pic-
ture. It affects the shape of the tail of the resonance.
Above the resonance bottom, ~& is dominated by emission
of phonons by electrons, and the terms in the expression
are the same terms that appear in Fermi's golden rule
when the occupation factor can be ignored. The feed-
back between ~& and No in the SCFBA alters the density
of states.
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ature of 205 K labeled "Feq." The arrow represents the
energy of the bottom of the resonance.

When only elastic phase breaking is present, the
sequential tunneling picture predicts that the occupation
of the well should be proportional to the occupation in
the emitter. ' This is what we find. Above the bottom of
the resonance, the occupation in the well for both the
elastic and coherent curve is a scaled version of the equi-
librium Fermi-Dirac factor in the emitter. For the elastic
curve, ~& is set to a constant value in the well of 0.46 ps
and for the coherent curve, ~& is set to 10 ps. There is
essentially no difference in the occupation of the well for
the two cases. With only elastic phase-breaking process-
es, the different energies are in disequilibrium, and the oc-
cupation factor cannot be fit to the tail of a Fermi-Dirac
function.

When inelastic scattering is present (solid line), the
electron-state occupation is shifted to lower energies as
expected. Furthermore, the occupation above the reso-
nance can be fit fairly well to the tail of a Fermi-Dirac
function (long-dashed line). The fit is good for energies
above the resonance and below the threshold for optical-
phonon emission E„&E&E„+%co,. At energies above
the optical-phonon energy, there is a depletion in the cal-
culated occupation factor compared to the equilibrium
factor. This is precisely what is expected. As pointed out
by Yang et al. and Hess, , rapid optical-phonon
scattering tends to deplete the distribution of carriers
with kinetic energies larger than the phonon energy. The
phonons tend to cut off the high-energy part of the
Boltzmann tail. This is what is shown by our simula-
tions.

G. Energy distribution of the current

The energy distribution of the current density gives us
information about the inelastic scattering and power dis-
sipation within the device. In the following plots, Figs. 7
and 8, we consider the spatial variation of the inelastic-
scattering intensity and power dissipation. We find a rel-
atively high intensity of inelastic scattering and power
dissipation in the resonant regions.

The energy distribution of the current density J(z;E)
at the bottom of the valley current (225 mV in Fig. 3)
with inelastic scattering present is plotted versus position
and energy in Fig. 7(a). The current enters at the high
energy of the emitter, the right side, and the energy dis-
tribution changes very little until the 5-nm region of the
well. Then there is a major shift in the distribution from
the high incoming energy down to the bottom of the reso-
nance level where the distribution peaks sharply. This is
shown clearly in Fig. 7(b) where two cross sections taken
from Fig. 7(a) along lines of constant position are plotted.
Both curves are taken from a point 1 nm outside the we11

in the adjacent barrier. The long-dashed curve is from
the emitter barrier, and the solid curve is from the collec-
tor barrier. The points on the energy axis labeled Ez,
Ec, and EI; are the energies of the resonance, the emitter
conduction band, and the emitter Fermi level, respective-
ly. Exiting the well, there is little change in the distribu-
tion in the collector barrier and lead. Thus the well is a

region of relatively intense inelastic scattering compared
to the leads.

This result seems reasonable on physical grounds. In
the resonance, the group velocity of the electrons is slow
compared to the surrounding regions. If the inelastic-
scattering time is roughly position independent, then the
inelastic-scattering length is shorter in the resonance re-
gion than in the leads and a higher intensity of energy re-
laxation results. Defining the power density as the power
dissipated by the electrons to the phonon bath, then a
peak in the power density results in the region of the res-
onance.

H. Power density

The mean energy of the current density pJ is plotted
versus position in Fig. 8(a) for the peak current, 135 mV,
and the valley current, 225 mV, of Fig. 3 when inelastic
scattering is present. This shows clearly the relatively
large drop in energy that occurs in the well. pJ is defined
such that the power density is proportional to its deriva-
tive P(z)= Jz(did—z)pz. The power density, plotted in

Fig. 8(b), shows a large peak in the 5-nm region of the
well.
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FIG. 7. (a) J(z;E) plotted vs position and energy at 225 mV
with inelastic scattering. Ef is the Fermi energy of the emitter,
E, is the level of the conduction band in the emitter, and E„is
the energy of the bottom of the resonance. (b) Cross sections
from (a) at constant position 1 nm outside the well in the emitter
and collector barrier.
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energy of the emitter contact, and the energy of the bot-
tom of the emitter conduction band is taken to be zero.
Since the bottom of the emitter conduction band is
aligned with the bottom of the resonance in the well, the
maximum drop possible in pJ between the barriers is
E~/2. Thus the maximum power that can be dissipated
between the barriers is J&EF/2, where J& is the particle
current density. For Fig. 8, this estimate is a factor of 5

higher than the calculated power dissipated in the well.

I. Eft'eet of a quasibound state in the emitter
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FIG, 8. (a) Mean energy of the current density pJ(z) at 135
and 225 mV. (b) Power density P (z) at 135 and 225 mV.

Next, the effect of inelastic scattering in a resonant
tunneling device with an emitter quasibound state is con-
sidered. The conduction band, superposed over a gray
scale plot of the calculated, strictly 10 density of states,
No(z;E) is shown in Fig. 9. The temperature, effective
mass, and conduction-band offsets are the same as de-
scribed for Fig. 1. A linear potential drop is used, and
the I-V characteristic is shown in Fig. 10. The contribu-
tion to Xo from the transverse energies has been ignored
in the plots for clarity. The dark regions present high
density of states. The resonance level and quasibound
states in the triangular well of the emitter lead can be
seen. There is also a standing-wave pattern due to
reQection from the barriers on either side of the barriers.

Although most of the power loss seems to be occurring
in the well, most of the I X V loss is actually occurring in
the contacts (not shown) as in the usual Landauer pic-
ture. Only the device region has been plotted in Figs.
8(a) and 8(b). The total integrated power J dz P(z) in

Fig. 8(b) (225 mV) is -0.18I X V. In a real device, the
leads are metallic n + material and they are very long, mi-

crometers instead of nanometers. Very deep in the emit-
ter and collector leads the current is distributed in energy
as it would be in an n + resistor. The mean energy of the
current pJ would lie a distance ~ (the Peltier coefficient)
above the quasi-Fermi energy p. Since the applied bias is
225 mV, pJ must drop by 225 meV across the real device.
In Fig. 8(a), the total drop across the "device" is -41
meV, which gives the factor of 0.18. Thus, in a real de-
vice, the majority of the power dissipation is taking place
in the leads and contacts. There is simply a peak in the
power density in the resonance region.

The concept of the mean energy of the current density

pJ provides a way of qualitatively understanding the lo-
cation and intensity of the power dissipation in devices
and placing upper limits on the amount of power dissi-
pated in any one region. In 10, when J=Jz,
P(z) = dJF(z)/dz= —J~,—dpJ/dz. The net power being
dissipated between points zo and z

&
is

Jv[pj(zo) —IMJ(zI ) j, where J~ is the particle current.
Thus the net power dissipated in a region is proportional
to the drop in pJ in that region.

As an example, consider the peak current of the device
(135 mV). In the Luryi picture, at zero temperature, pJ
in the emitter lead equals EI;/2 where EF is the Fermi

119,.-. , . : ...,.;:. .. ,„,:,

:::.;-::.:"".":&:i:.6k'&~~W+q:;:", ,"".'..'( i::;:!'

0 325

0
Q)

E
~ 0.0

I
UJ

Position (nm)
65

119

)
E 0.0

CDI
UJ

-245
32.5

Position (nm)

65

FIG. 9. Shadow plots of the calculated, strictly 1D density of
states Xo(z;E), with conduction-band profile superposed corre-
sponding to (a) the first current peak, 150 mV, and (b) the
second current peak, 245 mV of Fig. 10. Dark regions are re-
gions of high density of states. The contribution to the density
of states from the transverse energies have been ignored in the
plot for clarity.
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FIG. 10. I-V characteristic for DBRTD of Fig. 9. The total
current is plotted along with its coherent and incoherent com-
ponents.
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FIG. 11. (a) Mean current energy pJ(z) corresponding to the
two current peaks of Fig. 10. (b) Power density P(z) corre-
sponding to the two current peaks.

The first peak in the I-V characteristic corresponds to
the conduction band in the emitter crossing the reso-
nance level in the well [Fig. 9(a)]. The second peak
occurs when the quasibound state in the emitter lead
aligns with the resonance in the well [Fig. 9(b)]. Also
plotted in Fig. 10 are the coherent and incoherent parts
of the current. The coherent current is the fraction of the
total current that has crossed the entire device, from the
emitter at 5 nm to the collector at 60 nm, coherently. In
Fig. 9(b), all of the current flowing is incoherent. All of
the current is coming from the emitter, inelastically
scattering down into the quasibound state and flowing

out through the resonance. At the first current peak
[Fig. 9(a)], no current is flowing through the quasibound
state; This is clearly shown in plots of the mean current
energy.

The mean current energy p~ is plotted in Fig. 11(a).
For the first current peak, the slope of pJ is smallest in
the emitter lead, next largest in the collector lead, and
largest in the well. This ordering is expected since the
power density is proportional to dpj /dz. The maximum
power density is in the resonance region. In the collector
region, where there is plenty of phase space into which to
scatter, the power density is greater than in the emitter
lead. The lack of drop in the emitter lead indicates that
no current is flowing through the emitter quasibound
state. At the second current peak, 245 mV, there is a
large drop in pJ in the emitter lead. This is what must
occur if current is to flow through the emitter quasibound
state.

The power density for the two current peaks is shown
in Fig. 11(b). At 150 mV, there is a peak in the power
density in the well only. At 245 mV, there are large
peaks both in the well and in the emitter lead correspond-
ing to the two quasibound states. Again, the same cau-
tionary word is in order. Figure 11(b) does not imply
that the majority of the I-V power loss is occurring in the
quasibound states. The drop in pJ in the emitter lead at a
bias of 245 mV is 39 meV. Thus —,",, (0.16) of the IV-
power is being dissipated in the emitter quasibound state;

+,
', (0.065) of the I Vpower is -dissipated between the bar-

riers, the majority of the power is still being dissipated in
the contacts.

VI. SUMMARY AND CONCLUSION

The nonequilibrium Green's-function approach pro-
vides a powerful tool for investigating the effect of energy
broadening and inelastic scattering in quantum transport.
The effects of both constant and energy dependent self-
energies calculated in the self-consistent first Born ap-
proxirnation can be compared. Our approach allows the
energy spectrum of the phonons to be included, and it al-
lows a self-consistent first Born treatment of the
electron-phonon interaction. It also allows the calcula-
tion of a number of quantities which give insight into the
effect of inelastic processes on quantum electron trans-
port throughout the device. The nonequilibrium occupa-
tion factor f (z;E) shows the effect of inelastic scattering
on the equilibration of energy levels. With inelastic
scattering present, the occupation of the well of the sim-
ple resonant tunneling structure at the peak current can
be described by the tail of a Fermi-Dirac factor up to the
optical-phonon energy at which point the calculated f is
depleted. With no inelastic scattering, the occupation of
the well is a scaled version of the occupation in the emit-
ter. The local density of states No(z, E) displays how
different resonances align with each other and with the
conduction band. We have shown that the enhanced val-
ley current due to inelastic scattering is coincident with
enhanced occupation of the resonant state. The process
of filling the state also is seen in the energy-dependent
current density J(z;E), which undergoes a sharp down-
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ward shift in the resonance region. This shows up as a
peak in the power density between the barriers. Knowing
J(z;E), one can calculate the mean current energy pJ
and hence the power density throughout the device.

The concept of the mean current energy was intro-
duced and shown to be a valuable intuitive tool by which
to understand the spatial variation and intensity of the
power dissipation. The mean energy of the current densi-
ty indicates where power is being dissipated in a device.
We have consistently found peaks in the power density
when current passes through a resonance; however, only
a fraction of the total I-V power is actually dissipated
there.

Thus, by including the energy coordinate explicitly and
performing energy-resolved computations, one can calcu-
late the occupation of levels f (z;E), the local density of
states No(z;E), the energy distribution of the current
density J(z;E), the mean energy of the current pJ, and
the power density throughout the device. These quanti-
ties provide a detailed picture of the effect of inelastic
transitions on quantum transport.

Note added in proof. We note several theoretical stud-
ies of the effect of inelastic scattering in double-barrier
resonant tunneling that were missed in the Introduc-
tion, and several works that have recently ap-
peared. Special mention needs to be made of the
work of Anda and Flores, whose model and treatment
are very close to ours. Both approaches are based on the
Keldysh formalism, though the detailed implementation
is different. Also, they treat strictly 1D resonant-
tunneling diodes while we treat 1D resonant-tunneling
diodes with finite cross section.
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APPENDIX A: INFINITE CROSS SECTION

To simulate a device with translational invariance, we
wish to only compute one dimensional quantities. We
achieve this by averaging Eqs. (13), (17), and (23) over the
transverse plane. The derivation that follows is identical
in spirit to a simpler derivation by Mclennan in which
only the case of a constant ~~, independent of position
and energy, was considered. We assume a separable
Hamiltonian. Furthermore, since the system is transla-
tionally invariant, we assume that the occupation factor
f (r;E) and the phase relaxation time r&(r;E) are not
functions of the transverse coordinates. Thus the trans-
verse eigenfunctions of the Hamiltonian

H, (r;E)=Ho(r) i A/r&(—r;E) (Al)

f (z;E) f dx dy No(x, y, z;E) .
1

X y

(A2}

Next, we write N~ as ImG (r, r—;E)/vr and expand G
in terms of the eigenfunctions of (A 1}.Since we have as-
sumed that ~& is only a function of z, the transverse part
of H is Hermitian with plane-wave eigenfunctions. The
z component is non-Hermitian and is expanded in terms
of the eigenfunctions y„(z) and q„(z) of the adjoint
operators H, (z) and H,'(z). Equation (A2) becomes

are plane waves.
We will take Eq. (13) as an example. The transverse

coordinates are x and y, and the longitudinal coordinate
is z. We begin by multiplying both sides of (13) by
No(r;E) and then averaging both sides over the cross sec-
tion. Considering the left-hand side first, we have

1 PI(x )P (y )y„(z)PI'(x }P*(y )g„*(z)
f(z;E) dx dy Im g

x y I, m, n
E ~I ~m &n

(A3)

and P are plane wave eigenstates,
( I)=xe p(xik x)t/'1/ W . E~ and c, are the correspond-

ing eigenenergies. c„is the complex eigenvalue corre-
sponding to y„and g„*.Since the plane waves appear
with their complex conjugates, they disappear from (A3),
and (A3) becomes

where No is the density of states obtained from only
considering the z component of H, . Defining a quantity
(N, ) as

(N (z;Eo)) = +NO (z;E —E, —E )
1

x y l, m

f (z;E)
W 8'

g„(z)g„*(z)1
Im g E —E( —8 —c.

„

(A4)

(A4) becomes

f dE'No (z;E'),
27TA

(A6)

We rewrite the term (
—I/vr)Impel

„

in (A4) as

g No (z;E —Et —E ),
I, m

(A5)
f(z;E)(NO(z;E)) . (A7)

Now we consider the right-hand side of (13). We sub-
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stitute (14a) into (13) and average over the cross section
to obtain

fdE' f dz' f dx dy dx 'dy'

X [~G (r, r', E)~ No(r', E')f (z';E')F(E E—') j .

(A8)

The integral

f dx dy dx'dy'iG (r, r', E)i No(r';E') (A9)
1

x y

is evaluated by expanding
~
G

~
and No in terms of the

eigenfunctions of H, . Writing out the expansion, (A9)
becomes

1 r))1(x )y (y)y„(z)(J)l*(x')(J)'(y')g„"(z')
dx dy dx'dy'

X l, m, n
E ~1 m n

(J)('(x )0' (y )y." (z)01 (x')0 (y')g'(z')
x

E &I' ~m' n'

—1
X Im

P, (x ')P (y')y„(z')P,"(x')P"(y ')rlk (z')
(A10)

The third term in the integrand of (A10) is (N (tlz; E)).
The integrals over x' and y' give factors of 5I I and 5
respectively. 1/8' 8' times the integral of the first two
terms in the integrand of (A10) becomes

1 y„(z)g„*(z') y„'(z)g„(z')

(Al 1)

The quantity in (Al 1) is

g ~G tD(z, z', E Et —&
—

)~ (A12)8' 8'

where G &D is the retarded Green's function of the z com-
ponent of H, . We define the quantity ( ~

G
~ ) as

&/G, (z,z';E)/') = y /G"„(z,z', E—., —e. )/'1

8'„8

f dE'F(E' E)( No(z; E—') )r„z;E fi

X [1 f(z;E'))—

Guess initial x&(z;E), f(z;E)

I(
Calculate N&(z;E)», E

'J(

Loop through all energies E;

Update g(z; E;), ~p(z;E;), ~„(z;E;)

I
Update JGn(z, z';E;) Jz, No(z E')

Update f(z;E;) and J(z;E;)

(A17)

, f dE'iG, (z, z';E')I' .

(A13)

l(
Check convergence

Compare updated f(z; E;) and J(z; E;)
to previous f(z;E;) and J(z;E;)

Putting this all back together, Eq. (13) becomes

fi 1 rd, (~G (zz', E)~ )
2' (No(z;E) ) " (r (z', E) )

(A14)

where

E'+ —V(z)+ Gto(z, z', E')d
2m dz 2 r](z;E)

=5(z —z'), (A15)

fdE'F(E —E')(No(z;E')) f(z;E'),
7p z

t'

Electron Density: n(z) = dE f(z,E) No(z;E)

No

Yes

I

I

I

I 1C

I

I
Electrostatic Potential: s(z)~(z) = -en(z)

dz dz
I

I

I Check Convergence
Compare updated p(z) with previous (I)(z)

L

l

I
Poisson
solver
unused in

I this work.
I

I

I

I

I

I

I

(A16) FIG. 12. Flow chart for numerical solution.
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and

1

(r~(z;E) )
1

(r„(z;E)) (rq(z;E))
(A18)

respectively. The integral in (25) becomes

, —2imy, (z, —z)
dz dz'e

7p 7p
1 2

00

Equations (12)—(15) become Eqs. (A14) —(A18), which are
the coupled set of equations that we have numerically
solved to provide the results shown in this paper.

The equations for the current density, Eq. (17), and the
terminal current, Eq. (23), are treated the same way.

APPENDIX B: SOLUTION PROCEDURE

2 2
—2Imy (z' —z )

Performing the integral in (C4) gives

&'I G'(z, z;E)I'
T(E)=

2Imy, 2Imy2

(C4)

(C5)

Figure 12 is a flow chart of the solution procedure
when inelastic, energy-dependent scattering is present.
To save on notation, all quantities such as the ~'s, Xo,
~G" ~, and J represent their bracketed counterparts due
to averaging over the cross section as described in Ap-
pendix A. Note that a Poisson solver for self-consistent
electrostatic solutions exists in the loop although it has
not been used in the simulations presented in this paper.

APPENDIX C:
FISHER-LEE TRANSMISSION COEFFICIENT

In terms of E and ~&,

Imy =
2 1/2

(E —V) +
2~

and
'2 1/2

Rey= (E —V) +
2r~

(E —V—)

+E —V

' 1/2

(C6a)

1/2

(C6b)

For a strictly 1D (one transverse energy) device, the
Fisher-Lee transmission coefficient is'

T(E)=R u, u2iG (z„z~;E)i (C 1)

where

y = 2m* E —V+i
2r (E)

1/2

(C3)

In (C3) j stands for either 1 or 2 for y in contact 1 or 2,

To show that Eq. (25) reduces to (C 1) we consider a 1D
device with the contact-device interface of contact 1 at
point z, and the contact-device interface of contact 2 at
point z2. The contacts are far enough away from the
disordered region so that the self-energies are indepen-
dent of position in the contacts. Then, the Green's func-
tion connecting point z in contact 1 and point z in con-
tact 2 is

If we follow Khondker and Alam and define the group
velocity u (E) as

i' Rey
Pl

we evaluate Imy by multiplying by u(E)/u(E), expand-
ing out all the quantities using (C6), and find

1
Imp =

2U vy
(C7)

lf (E —V) &&A/2r, u(E) reduces to the usual quantity
u =I2m (E —V)]' /m*. Thus the coherent component
of the current is given by the usual tunneling formula (26)
with the Fisher-Lee form for the transmission coefficient.
This result can be extended to multiterminal devices with
discrete or continuous transverse modes in each lead.
For devices very short compared to L&, the coherent
current is essentially the total current and our quantum
kinetic equation reduces to the tunneling formula (26).
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