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Quantum bound states in narrow ballistic channels with intersections
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A quantum-mechanical calculation is made of ballistic transport in intersecting narrow channels of
finite length. The two-dimensional (2D) semiconductor structure we study consists of perpendicular
channels, one of which connects to two reservoirs of 2D electron gas. These reservoirs serve as emitter
and collectors when a potential difterence is applied. At a single intersection with infinite leads, there
are generally bound states that are well localized to the intersection area. In a structure with finite leads
to emitter and collector, such localized states or quantum dots give rise to resonant tunneling. We show
that in narrow ballistic channels with few stubs the bound states couple to each other. Therefore, the
states at the di6'erent intersections combine as split bound states. The splitting is X-fold if there are E
intersections. Here we study conductance in structures containing a few crossed-bar or T-shaped junc-
tions and focus on the splitting of the resonance conductance below the first subband threshold. We ar-

gue that our results are in qualitative agreement with recent measurements. We also consider the spatial
distribution of currents and show that a complicated flow pattern with vortex structures appears at
higher energies.

I. INTRODUCTION

Recent progress in nanostructure technology has made
possible the fabrication of semiconductor structures
whose sizes are smaller than the carrier elastic and inelas-
tic mean free paths. ' Structures of this kind may be
achieved by a lateral confinement of the high-mobility
two-dimensional (2D) electron gas that resides at the
semiconductor interface in a modulation-doped hetero-
structure like Al, Ga, As/GaAs. The high speeds and
novel electronic properties of these structures make them
potentia1 candidates for a new generation of electronic
devices. Therefore, it is worth making efforts to clarify
and describe the phenomena that occur in such systems.
In addition, this type of nanostructure gives rise to a rich
physics that deserves to be studied on its own merits. Re-
cently, bound states in laterally constrained two-
dimensional systems have received considerable atten-
tion. Quantum-mechanical calculations show that
bound states reside at the intersection of two perpendicu-
lar, perfect channels. Although the potential is classical-
ly unbound, electrons may thus be trapped at an intersec-
tion when their wave-mechanical nature is enhanced; i.e.,
the crossing channels are made so narrow that transverse
quantization and the formation of subbands become
characteristic features. This happens when the de Bro-
glie wavelength is comparable to the spatial extension of
the structure. On the basis of model calculations, we
have recently proposed that bound states at a single inter-
section may be probed by resonant tunneling. ' A natu-
ral question that arises and has been recently studied ex-
perimentally and theoretically ' is what happens when
there is more than one intersection in the system. This
corresponds to the formation of collective states by the
coupling of individual states and the interference among
the intersections.

The purpose of this paper is to present the results of
quantum-mechanical calculations of the conductance for
structures with a few intersecting channels. The model
we use is a one-electron approximation; i.e., electron in-
teractions and charging effects are not included in this
model. ' ' The reason for using this kind of simplified
model is that one needs a general understanding of the
one-electron behavior in our type of structures before de-
tails associated with charging are considered more explic-
itly. The actual structures are assumed to be connected
to two 20 reservoirs. When a potential difference is ap-
plied, electrons How from one reservoir to the other via
the network of quantum channels. We are mainly in-
terested here in the bound states whose energy is less
than the threshold energy E, =Pi sr /(2m'to ), i.e., the
lowest sublevel associated with a single channel of width
w. Below this threshold, the structure in the conductance
is simply due to resonant tunneling, and should therefore
be easy to recognize and interpret. On the other hand,
above threshold, the conductance depends sensitively on
geometric variations because of the many possibilities for
interference. A distinct quantum transport effect is pre-
dicted: The coupling between bound states with energy
less than the threshold E, results in the formation of
split-bound states in the systems. The number of split-
bound states N corresponds to the number of the inter-
sections in the conducting network. At the same time,
the sharp peak in the conductance associated with tun-
neling through a single intersection is split into N peaks.
Such systematic features should emerge clearly in mea-
sured data to prove that resonant tunneling indeed takes
place. It is interesting to note that there are qualitative
similarities with the theoretical predictions for the tun-
neling conductivity through thin oxide layers grown on
metal substrates. '

In Sec. II we present the theoretical mode1. Numerical

45 6652 1992 The American Physical Society



45 QUANTUM BOUND STATES IN NARROW BALLISTIC. . . 6653

results for the conductance are given in Sec. III, and the
electron densities associated with the subthreshold reso-
nances are analyzed. The quantum-mechanical current
density is elaborated on in Sec. IV. Some concluding re-
marks are given in Sec. V.

II. THEORETICAL MODEL

Consider a 2D electron gas in, e.g., an
Al„Ga, „As/GaAs modulation-doped heter ostructure
as referred to above. Assume that a nanopattern is creat-
ed by introducing also a lateral confinement. In practice,
this may be achieved by means of a patterned gate that
depletes the electron gas under the gated regions only.

The geometry that we will consider is given in Fig. 1.
This particular geometry is chosen because of the recent
experiments by Haug et al. ' Some similar structures
are studied theoretically in Refs. 17 and 18. The recent
study by Brum' is actually rather similar to the present
one. However, methods and the general outlook differ.
For example, here considerable emphasis is put on the
nature of charge and current distributions.

The pattern in Fig. 1 is oversimplified with respect to
its sharp corners. In a real device, these corners would
thus be rounded because the conducting regions at the
Al, Ga, „As/GaAs interface derive from smooth elec-
trostatic depletion. For a single channel, for example,
sharp corners give rise to "organ pipe" resonances.
Such features are unreahstic, ' but at the same time they
are of less of a problem here because we are primarily (x,y) =f dk'A„(k')e""+'" (2)

Within the horizontal channels (I =1,5, 9, 13 in Fig. 1),
the expansions are of type

concerned with the subthreshold behavior that depends
on the states trapped at the intersections. Thus we be-
lieve that the detailed shape of the potential that confines
the electrons to the various channels is not important in
determining qualitative aspects of the bound states at the
different intersections and how these states couple to
each other. Thus we assume a potential that is zero in-
side the channels and infinite outside, so that the Hamil-
tonian is just II=p /2m * inside the well; m ' is the elec-
tron effective mass. Because of the hard boundaries, the
electron wave function vanishes at the edges of the chan-
nel. When a weak potential difference is applied at the
2D reservoirs, we have to consider the process by which
electrons are injected into the channel connecting the 2D
regions and emitted from it. In doing so, we use
Kirczenow's analogous ballistic model for a single short
channel in between two 2D reservoirs. In the region con-
taining the constrictions, the wave function may be ex-
panded in a complete set of solutions of the Schrodinger
equation in each of the 13 rectangular regions shown in
Fig. 1. Consider a free electron with wave vector
k=(a, k) incident on the channel opening from the left.
The corresponding wave function is '

(xy)eix+iky+ f dk i g(k i
)e
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where the last term accounts for backscattering. For the
electron emitted into the reservoir on the right-hand side,
one has
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where m is the width of the channels and n refers to sub-
levels. The expansion is similar in the remaining re-
gions. The quantity q„ is determined by the energy E of
the electron injected from the emitter to the left, and can
be either real or imaginary depending on whether E is
below or above sublevel E„. The wave function is ex-
panded in similar ways in the remaining channel areas.
Matching amplitudes and derivatives at every boundary,
we find a system of linear equations for the expansion
coefficients 81„and Cl „. We solve this system numen-
cally, and use the solution to calculate the conductance at
zero temperature as an expectation value over the opera-
tor for the quantum-mechanical current. Details of this
procedure are found in Refs. 3, 8, and 20. The current is
also discussed in Sec. IV.

FIG. 1. Schematic representation of the "network" connect-
ing left (L) and right (R) reservoirs of 2D electrons with equal
Fermi energy. When the potential difference is applied, elec-
trons Aow from L to R. The regions 1 —13 are used in the ex-
pansion of wave functions that are to be matched across the
boundaries represented by the dashed lines.

III. CONDUCTANCE AND RESONANT-
TUNNELING STATES

In the following, we will assume an effective mass
m *=0.067m o, which is appropriate for the
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Al„Ga, „As/GaAs interface. In Figs. 2(a) —2(c), the cal-
culated conductance G is given for three different struc-
tures, namely a single, a double, and a triple cross. We
have chosen to plot G as a function of the Fermi energy,
keeping the dimensions of the structures constant. The
change in energy corresponds to a variation of the densi-

ty of the 2D gas in the emitter and collector regions.
From a practical point of view, one would rather vary the
dimensions of the structure uniformely by means of, e.g. ,
an applied gate voltage. In both cases, however, the Fer-
mi energy is made to sweep through the different energy
levels. Qualitatively, the physics should therefore be the
same in the two cases.

2 [

cv Ei

E (meV)

2 t

FIG. 2. Calculated conductance at zero temperature as a
function of the Fermi energy E. The width of the channel con-
necting the 2D regions and the distance among the stubs are
kept constant, w = 100 nm and d =20 nm. Cases (a) and (b) cor-
respond to removing stubs in the constriction of Fig. 1. For (a)
we remove the two outermost stubs by choosing w', =w,'=30
nm, w,'=100 nm, d', =dl'=d', =1 nm, d2+d2'=50 nm. For
(b) we remove the middle stub with the choice wl =w& =100
nm, w2 =30 nm, d', =d 1' =d3 =d3 =50 nm, dz =dz' =1 nm.
Case (c) refers to the full structure with three stubs with

w =100 nrn, d =d;"=50 nm, i =1, 2, and 3. The positions for
the two lowest sublevels are indicated by arrows labeled (1) and
(2). El, E2, and E3 denote energies at which resonant tunneling
via states resembling quantum dots takes place.

E) q =ED+ V,

C, ~=(1, + I)/+2,
(4)

where Eo is the single-site energy and the elements of the
vector refer to single quantum-dot wave functions local-
ized to the different intersections. As is to be expected,
we obtain a bonding and an antibonding state with ener-

gies E, and E2, respectively. As for the single cross, we

find that the conductance may vanish at higher energies
due to destructive interference and that the two peaks
close the second subband threshold both split into two
new peaks.

Let us now consider the case of a triple cross. It is in-

teresting to compare this case with calculations of the

We first consider the case of a single cross. This case is
obtained by letting d', =d', =d

3
=d 3' =0; i.e., the outer-

most stubs are removed. In practice, however, one would
have to chose a small value ( —1 nm) instead of zero to at-
tain numerical stability. Otherwise, the difference be-
tween the two choices for the d's is, of course,
insignificant. Figure 2(a) clearly shows a peak in the con-
ductance G below the lowest subband threshold
E, =A' vr /(2m *w ). This peak is to be expected, since it
corresponds to tunneling through the state residing at the
center of the cross, i.e., the localized bound state in the
case of two infinite, crossing channels. The resonance
peak is sharp and acquires its maximum value 2e /h be-
cause the corresponding state is well localized to the in-
tersection itself, and is well separated from the first sub-
band. Actually, we may view this state as a quantum dot,
and the tunneling as occurring via such a dot.

Although our main concern is the conductance near
threshold, we will briefly comment on what happens at
higher energies. The conductance in Fig. 2(a) for ener-
gies above E, is related to traveling-wave states associat-
ed with the subbands. For a single channel, one would
ideally have quantized plateaus corresponding to the
different subbands. ' A single intersection as in Fig.
2(a) modifies this picture drastically. Because of destruc-
tive quantum-mechanical interference, the conductance is
even seen to vanish at some energy below the second sub-
band. Also, the conductance for energies in the second
subband deviates strongly from the ideal quantization.
Close to the second subband threshold, we note two other
pronounced peaks. The lower one corresponds to the
next lowest bound state in two intersecting infinite chan-
nels, and the second to a resonance associated with the
finite extension of the stubs. These peaks do not attain
ideal quantization in units of 2e /h because they are im-

mersed in or interact with a subband continuum. This
situation is thus different than for the lowest resonance,
which is well separated from the subbands.

If we now consider the case of a double cross as in Fig.
2(b), the tunneling below threshold could be thought of as
a tunneling via two quantum dots, one at each intersec-
tion. If the corresponding states are spatially close
enough to interact weakly, the resonance should split into
two peaks. If we assume that the interaction energy be-
tween two dots is V, the split levels E, 2 and eigenvectors

C& 2 are given by



QUANTUM BOUND STATES IN NARROW BALLISTIC. . . 6655

E, 3=EO+&2V,

C, 3=(1,+&2, 1)/2,

E2 =Eo

C2=(1,0, —I)/&2 .

(5)

States of this kind are also discussed in Ref. 16. Figure
2(c), which is based on the exact calculations outlined in
Sec. II, shows clearly the three distinct resonance peaks
in accordance with our simple qualitative arguments
about coupled quantum dots. %e also notice that the
conductance reaches it maximum value 2e /h at the res-
onances. This happens when the separate quantum-dot
wave functions are well localized to an intersection and
well separated from the first subband. Above the thresh-

E

I

(b)

tunneling current through thin metal-oxide layers grown
on the metal substrate. ' Scanning-tunneling-microscopy
(STM) measurements for NiO on Ni(100) have shown
three distinct peaks in the STM spectra that may be ex-
plained as resonant tunneling through weakly coupled
oxide states in the three layers. The tunneling is in this
case conveniently described by means of a Kronig-
Penney model or 5 functions representing the different
layers. Although our system is a very different one, the
physics is quite the same. In our case, we should then ex-

pect a resonance structure below the lowest subband
threshold that mirrors three weakly interacting quantum
dots. If the interaction V is limited to nearest neighbors
only, the three quantum dots combine as

old energy E„we find the same behavior as above, but
the two peaks of Fig. 2(a) are now split into three peaks
each. Since we are mainly concerned with the behavior
close to threshold, these peaks are, however, not well
resolved numerically.

In summary, we conclude that the resonance peak
below the lowest subband threshold is split into N peaks
if there are N intersections or crosses in the structure
connecting the two 20 reservoirs. The transport may be
viewed as tunneling or hopping via coupled quantum dots
at the different intersections. If the coupling is weak, the
splitting is small, and vice versa. This is shown explicitly
in Figs. 3(a) and 3(b), which show the calculated conduc-
tance for two crosses with different degrees of coupling.
If the states associated with the resonant tunneling are
well localized to the intersections, i.e., the stubs are
suSciently extended, the resonance peaks are well below
the first subband threshold and the conductance is found
to equal 2e /h at resonance.

Finally, we consider the T structures studied experi-
mentally by Haug, Lee, and Hong that correspond to
removing the upper stubs in Fig. 1 by choosing d =0 (or
any small value in accordance with the remarks above).
In a single-T structure with infinitely long leads, there is
one bound state below E, as for the crossed bars. In
fact, this is the only bound state in this case. Coupling
the Ps in series in between the emitter and collector re-
gions, we should thus recover the split resonant tunneling
as above. Figure 4 shows the expected splitting for the
case of a three-finger structure. Figure 5 shows the elec-
tron densities associated with the resonance states. Since
the states are strongly concentrated to the intersections,
these densities are essentially the same as for the bound
states in structures with infinite leads. Figure 5(a) thus
displays the density for a single T. Figures 5!b)—5(d)
show how states of this kind combine to form the three
split resonance states at energies E„E2,and E3 in rough
agreement with Eq. (5). Figure 4 is based on a somewhat
course mesh in energy in order to save computer time.
Although the numerical resolution is reduced in this way,
the figure still shows the principal feature we want to em-
phasize here, namely, the three-peak structure at thresh-
old. However, we have not cared to locate exactly the

,
(2)
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FIG. 3. Zero-temperature conductance of the constriction vs
Fermi energy E. Here w=w', =w3 =100 nm, d =10 nm,
d', =dl'=d3=d3 =50nm, d2=d2'=1 nm for all cases. (a) and
(b) refer to w2 =20 and 60 nm, respectively; i.e., the interaction
between the quantum dots is made weaker by increasing the
separation of the intersections. General notations are the same
as in Fig. 2.

0
0

(1) E (meV)

FIG. 4. The conductance 6 at zero temperature vs Fermi en-

ergy E for an unsymmetrical constriction consisting of three
coupled Ps. Here w=w =100 nm, d =20 nm, d =1 nm,
d;"=120 n, i =1, 2, and 3. General notations are the same as in
Fig. 2.
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maximum values at the peaks. %'hen comparing with
measurements, this is also of less concern, because it is
hard to go beyond qualitative arguments for the follow-
ing reasons. Conductance measurements are obtained by
varying the applied gate voltage that determines the elec-
trostatic depletion regions and hence the structure. Both
the Fermi energy and the geometric structure change. In
addition, for real structures, the relation between gate
voltage and the geometry is not well defined. This pre-
cludes any detailed comparison with experimental result.
Rather, we should look for principal features.

Our calculations have shown that interactions between
the different intersections cause a splitting of the reso-
nance below the first subband threshold. This splitting is

found here to be qualitatively the same for coupled
crosses and T structures. In fact, it should be a general
feature of any geometry containing N interacting inter-
sections that there is N-fold splitting. Such an imprint
should be easy to distinguish in measured data. The sys-
tematic correlation between the number of peaks near
threshold and the number of fingers in the experimental
structure of Haug et al. ' suggests that these peaks are
indeed due to resonant tunneling via coupled quantum
dots. The observed conductance is, however, less than
the ideal theoretical value for ballistic transport. Obvi-
ously, the presence of imperfections in a real device
should generally have such a consequence. %'e should
also recall that our calculations are based on a very
simplified model potential. As shown in Fig. 5, the
charge accumulates in certain regions of the structure.
Hence the electrostatic potential should vary, and the
wave functions we use should be considerably modified if
such variations in the potential are treated self-
consistently. This will tend to reduce ballistic transport,
as discussed already by Escapa and Garcia. It is, how-
ever, beyond the scope of the present model study to in-
clude self-consistency.

The measured data also reveal structure above thresh-
old that does not agree with our computed results. Also,
the observed conductance does not really vanish for any
of the gate voltages applied. Again, we believe this is re-
lated to imperfections. Transport above subband thresh-
olds takes place by means of traveling waves that inter-
fere in a delicate way. Perfect interference of this kind is
the cause of the zero conductance that may appear above
threshold, according to our model calculations. We
would like to argue that imperfections easily disturb such
interference. Above threshold, the observed data would
therefore be contaminated with noise. On the other
hand, below threshold, the structure appears much more
robust, since we are dealing with localized states that are
linearly combined in a simple way. Our discussion about
the effect of imperfections is obviously speculative. It
would therefore be illuminating to perform realistic simu-
lations on nanostructures, allowing for a large number of
imperfections. The present method is, however, not well
suited for such a study.

IV. SPATIAL VARIATIONS OF CURRENTS

FIG. 5. Electron densities for the resonance states below the
subband threshold E, in the T-shaped structures of Ref. 9. Case
(a) shows the density for a single T. One notes the high degree
of localization that makes the state akin to a quantum dot.
Cases (b) —(d) show how states essentially consisting of coupled
quantum dots are formed in rough agreement with Eq. (5).

The transport properties discussed above appear to be
uniquely quantum mechanical. Thus the resonant tunnel-
ing and the off state due to interference are phenomena
that are distinctly nonclassical. One may then ask the
question of whether the corresponding currents and their
spatial variations will also show unexpected features.
This aspect seems to have achieved less attention. Actu-
ally, the classical calculation by Beenakker and van
Houten claims that many of the anomalies in multilead
microstructures, such as the quenching of the Hall resis-
tance, are surprisingly well explained by treating an elec-
tron as a classical billiard ball. In the billiard model,
the transmission probabilities are obtained by counting
the number of classica1 electron trajectories in the specific
sample geometries, neglecting the discreteness of a trans-
verse momentum and the interference among Feynman
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where p is the momentum operator and 4' is any of the
wave functions as defined above for the different regions
of the structure. The total probability current density
I(x,y) is obtained by integrating over all incoming elec-
trons:
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FIG. 6. Plots of the quantum-mechanical probability current
density. Case (a) shows the distribution of current in a triple-
cross structure at resonance [energy E, in Fig. 2ic)]. Case ib)
refers to the same structure as (a) but with a higher energy,
E =1.6 meV. At this energy the conductance is small because
of quantum-mechanical interference. Case (c) shows the proba-
bility current density in the triple T structure of Fig. 4 when
E=1.4 meV. Also, in this case, G is small because of interfer-
ence.

trajectories. Although certain features of small quantum
structures may be understood by means of "pinball" mod-
els, we will find below that the wave-mechanical in-
terference gives rise to a vortex flow that is hardly ex-
plained in such terms.

In a situation with ballistic transport, a one-electron
description of the flow of electrons is relevant. For an
electron with initial wave vector k, the quantum-
mechanical probability current density at position (x,y)
1s

i„(x,y) = ( tltptI(*+ lit'ptlt ),1

2m

kF
I(x,y) =2f k dk f dPi„(x,y)/(21r)', (7)

Ko —n/2

where k =k(cosP, sing) and the factor of 2 derives from
spin. Let EF be the Fermi energy and e V the drop in po-
tential energy across the constriction. Because of the
Pauli principle, only electrons in the energy range
(,Ez eV—,EF ) are allowed to flow from the emitter to the
collector . Then k~ =

(,2m *E~)
' IA and ko= [2m *(EF eV—) j' lfi in Eq. (7). If the applied voltage

difference is infinitesimal, we obtain

2m*
I(x,y)= eV dPil, (x,y),h2 —m/2

where the magnitude of k equals kF. If this expression is
integrated over coordinate (y), the expression for the con-
ductance given in Ref. 8 is easily recovered. Figure 6
shows the probability current density at two situations
for which wave-mechanical aspects should be essential,
namely at resonance and at strong interference in the re-
gion near zero conductance. The flow of electrons is
quite smooth at resonance, which seems consistent with
the concept of resonant tunneling. In the second case,
the flow develops an unexpected and complex pattern
with vortices. With increasing energy, this pattern be-
comes increasingly complex. Cases appear when small
changes in the initial conditions, i.e., Fermi energy or the
dimensions of the structure, induce large changes in the
flow pattern. In this sense, the behavior of the current
distribution reminds one of turbulence. Actually, the be-
havior is so complex that it ideally renders itself to an-
imation. A detailed study of transport through a single
cross is given in Refs. 28 and 29.

V. BRIEF SUMMARY

In conclusion, we have studied theoretically the ballis-
tic transport in some nanostructures at zero temperature.
We have shown that the bound states below the first sub-
level split into several bound states due to the coupling of
bound states in narrow ballistic channels with a few inter-
sections. The number of the split bound states is corre-
lated with the number of the intersections of the 2D
semiconductor structure. Experimentally, such features
should be easy to identify, provided that resonant tunnel-
ing can be achieved in practice. We propose that the
measurements by Haug et al. ' may be interpreted in
these terms. We have also shown that the spatial distri-
bution of currents is nonclassical and may display a very
complex pattern in which vortices emerge clearly. Exten-
sion of this work to include finite temperatures and elec-
tric fields and to more realistic modeling of the confining
potential, including scattering from potential fluctuations
and other imperfections, appears interesting but remains
to be done.
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