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Failure of extended-moment-equation approaches to describe ballistic transport
in submicrometer structures
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Lower-order moment-equation models with a general nonlinear closing relation incorporating a priori
ballistic and heating effects are studied numerically. Results for an n+-n-n+ diode show a reasonable

agreement of these models with predictions obtained from the numerical solution to the corresponding
Boltzmann equation in the nonballistic regime. In the predominantly ballistic regime, all lower-order
models fail. A sketch of the parameter range in which these moment-equation models are valid is

presented, based on a comparison of the predicted I-V characteristics. The conductance is inadequately
described by all models, even in nonballistic cases, due to the high built-in potential, caused by the dop-

ing profile present in the device.

I. INTRODUCTION

The significant size reduction of semiconductor devices
over the last few decades has prompted the need for de-
vice simulation models that do not presuppose equilibri-
um between electrons and phonons. Although it is often
felt that Monte Carlo simulations' of electron transport
in such devices will, in due time, be the most appropriate
tool, presently workers in device simulation welcome
descriptions that constitute extensions of the usual drift-
diffusion approach. Many authors have proposed mod-
els that include the energy balance equation. The most
well-known recent model of this kind is the hydrodynam-
ic model of Baccarani, and Wordeman who adopt a
Fourier law for the heat Aux. In this paper, we present a
systematic hierarchy of moment equations, as well as cor-
responding closing relations for the approximate descrip-
tion of transport properties of semiconducting submi-
crometer structures, closely following earlier work by
Bringer and Schon and Portengen, Boots, and Schuur-
mans. We solve the moment equations numerically for a
test case, the n +-n -n + diode, for a wide range of param-
eter values and compare predictions of various moment-
equation models with those obtained from a full solution
to the corresponding Boltzmann equation.

The transport of electrons in semiconducting submi-
crometer structures is characterized by both hot and
ballistic electrons, as we11 as large gradients in, e.g., the
electron density and the electric field locally. Reduction
of typical sizes and the use of high-mobility materials in
device applications cause these far-from-equilibrium
effects to become even more pronounced and result in the
failure of conventional device simulation models, e.g., the
"drift-diffusion" and the "hydrodynamic" models. We
introduce a truncated expansion of the Boltzmann distri-
bution function around a local reference state, which gen-
erates systematically a general class of (nonlinear) closing
relations. A proper choice of the local reference state al-
lows for an a priori inclusion of ballistic and heating
effects without having to resort to additional empirical

considerations related to the definition of the closing rela-
tion, The four-moment-equation models obtained in this
way are highly nonlinear and the combination with
Poisson's equation calls for the use of an extended
Scharfetter-Gummel scheme in the numerical treat-
ment.

From the four-moment-equation models we obtain the
electron density, the current density, the kinetic-energy
density, the kinetic-energy-density current, and the elec-
tron temperature. The main result of the paper is the I-V
characteristic of our four-moment model(s) in compar-
ison with the results from the drift-diffusion and hydro-
dynamic model(s) and the exact results directly obtained
from the corresponding Boltzmann equation. These re-
sults indicate that all lower-order moment-equation mod-
els give reasonably accurate predictions in the nonballis-
tic regime, i.e., for small relaxation times and/or wide
structures. However, in the predominantly ballistic re-
gime these predictions become inaccurate; all lower-order
models show large errors in the predicted transport prop-
erties if the parameters are outside a certain region. The
truncation order of the moment model has only a small
effect on this parameter region, i.e., increasing this order
does not lead to a significant extension of the region for
which the predictions are useful. The error in the predic-
tions of the moment models increases very rapidly and in
a manner which is not very sensitive to the truncation or-
der of the model as the parameters approach the ballistic
regime. This suggests that it is not possible to treat
predominantly ballistic transport phenomena with any
low-order system of moment equations. This is the main
conclusion of this paper. In addition, the large built-in
potentials found in these structures cause the failure of all
moment models to correctly predict the conductance,
even in the nonballistic regime, i.e., departure from the
local equilibrium reference state is described rather poor-
ly.

Of course, the use of the relaxation-time approxima-
tion of the collision integral in the Boltzmann equation
implies an exaggeration of ballistic effects. ' However,
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we feel that even when using more realistic scattering
terms, similar discrepancies will be found for predom-
inantly ballistic transport. Roughly speaking, if the prod-
uct of relaxation time and maximal drift velocity in the
diode is on the order of the width of the n-type region or
larger, the moment model predictions deviate
significantly from those of the corresponding Boltzmann
equation. " In essence, this is due to the fact that the dis-

tribution function develops a sharp high-velocity ballistic
peak next to a "bell-shaped" near-equilibrium distribu-
tion at lower velocities within the structure. ' ' '
Hence, it can no longer be expected to be representable
by any small number of moments, e.g., a single typical ve-
locity and temperature scale. Conversely, in the non-
ballistic regime, such a high-velocity peak is absent and
the essential structure of the distribution function can
quite well be captured with a small number of typical
scales and/or moments. The virtue of extended-
moment-equation models lies mainly in the fact that a
larger number of different moments are predicted, not so
much in the extension of the parameter range over which
these models give reasonably accurate predictions of the
actual moments. Increasing the truncation order leads to
an extension of this parameter region; however, it does
not give an essential increase in the sense that strong
ballistic effects come within reach. As will be shown,
these extended models are numerically not much more
involved in one-dimensional simulations, when compared
to drift-diffusion models. At the same time, these models
are capable of predicting a large number of relevant phys-
ical quantities whereas the related computational effort is
much smaller than that required when solving the corre-
sponding Boltzmann equation. We will indicate the pa-
rameter range for which these moment models remain
valid and can be usefully applied to the n +-n-n + diode.

In the next section we describe our moment approach
to the Boltzmann equation and discuss in some detail the
derivation of the closing relations. Then we present the
numerical results obtained for a wide range of parameter
values and compare the different moment models. We
also show the corresponding results obtained from the
full Boltzmann equation and hence sketch a range of pa-
rameters for which the moment approaches are valid. Fi-
nally, we give a summary of our findings.

where we adopt the parabolic-band approximation and
assume a constant-relaxation-time representation (with
rate ~) for the collision term. We use scaled variables;
position r and velocity v are measured in units ro (the De-
bye length) and Uo (the thermal velocity), respectively
where

rp=
1/2

EkB ~0
2e M„f

m'U =k T

with the understanding that kz is Boltzmann's constant,

Tp the lattice temperature, e the permittivity, e the unit

of charge, m* the effective mass, and M d a reference
particle density in the system. Also, fo is considered the
distribution function describing local equilibrium, and
both f and fo are taken in units M„&/Uo. The electric
field E is measured in units Eo=(m*uo)/(ero) and is

determined by Poisson's equation, which can be ex-

pressed in the above notation as

B„„V(r) =Mo(r ) C(r—); E = —B,%, (3)

with l denoting the total length of the diode and d, & d2,
In the following, we will use M„&=C+.

Physically relevant information is usually expressed in

terms of velocity moments of the distribution function,
i.e., the mth moment M is defined as M =(U ),
m =0, 1,2, . . . . The set of moments IM (r)I can readily

be shown to obey, using the Boltzmann equation (1)

d„M +, +mEM, = ——[M —M o I .1

7

We will use the local equilibrium (Maxwellian) distribu-

tion

Mo(r )

fo(r, v ) =— —expi/2' 2

where C(r ) describes the doping profile and Mo the parti-
cle density, in units M„&. An n +-n -n + diode is

represented by the following doping profile:

C+,0+ r ~ d&, dz r l
C()= C d („(d

II. EXTENDED-MOMENT APPROACHES
TO BOLTZMANN'S EQUATION

We derive a systematic hierarchy of moment equations
and closing relations approximating the corresponding
Boltzmann transport equation, closely following Bringer
and Schon and Portengen, Boots, and Schuurmans. We
show that an expansion of the distribution function
around a generalized "Maxwellian" reference function in
Hermite polynomials leads to a set of closing relations in
which ballistic and heating effects are included a priori.

The stationary Boltzmann equation governs the elec-
tron distribution function f(r, U ) and in one spatial and
one velocity dimensions reads'

[vB„E(r)B„]f(r,v)= ———[f(r,u) —fo(r, v)],1

7

which implies that the reference moments I M o I are

given by

Mz o Mo g (2j 1) Mo, o Mo *

j=1
('7)

and M2 +, p=0. One observes that the mth moment is

governed, in part, by the spatial derivative of the
(m+1)th moment. Hence, a closing relation must be

postulated expressing a higher-order moment in terms of
lower-order moments. Once such a closing relation is ob-

tained, the system of Eqs. (5) becomes finite and can be

treated numerically.
We next derive the closing relations. A systematic way

of generating a class of closing relations is by truncating
an expansion of the distribution function f. Consider the
following expansion of f:
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around a pure Maxwellian distribution and results in

M4=6M2
—3Mp, (12)

f3 M3 3p, (v, )Mz —3pz(v»vz)M1

—p3(vl vz)Mp=O, for n =3;
f4=M4 —4p, (v, )M3

—6Pz(v l, vz)Mz —4P3(v» vz)M,

+p4(vl Uz)Mp=0 for n =4

where

(9)

Pk(UliV2) Pl(UI )Pk —1(Ulivz)

—(k —1)vzpk z(v „vz)

for k=3,4, 5, . . . , with pl(v, )=v,

(10)

where {H, J are Hermite polynomials' and

g—= [v —v, (r)]/vz(r). Thus, we propose to expand f
around a Maxwellian distribution [viz. the factor
exp( —

g /2)] with the option of including a suitably
transformed and/or scaled velocity through the introduc-
tion of v

&
and v2. A judicious choice of v, and v2 can im-

prove the accuracy of a truncating approximant to f
without increasing the order of truncation. As will be
shown, choosing v

&
to be the scaled drift velocity and v 2

the electron temperature relative to the lattice ternpera-
ture generates an expansion in which f, and fz are iden-
tically zero. Since v f can now be explicitly integrated
with respect to v, the expansion functions {f (r ) ] can be
expressed as linear combinations of the moments

{M ];m =0, 1, . . . ,j and the functions v 1 and vz.
Hence, truncating the above expansion at some order n

by putting f„=O renders a relation between M„and
{M ];j=0, 1, .. . , n —1 which will be used as the closing
relation. The first few closing relations obtained in this
way are

f, =M1 —pl(v, )Mp=O, for n=l;
fz=Mz —2P1(v, )M, —Pz(vl, vz)Mp=O, for n =2;

whereas taking vl =Ml/Mp renders f1=0, and the cor-
responding closing relation in this case reads

M4=4V, M3+6(1 —v, )Mz —3(1+2vz —v, )Mp . (13)

This corresponds to an expansion off around a "drifted"
Maxwellian, i.e., the velocity is corrected with the drift
velocity of the electrons. Evidently, the function v2 can
now be used to render fz

——0 as well through

M2Mp —M1
2 M20

(14)

This corresponds to expanding f around a "scaled and
drifted" Maxwellian, i.e., velocity is corrected with the
drift velocity and scaled with the local temperature. The
above derivation can readily be specialized to lower-order
models (n =2, 3). For example, in the n =2 case (drift-
diffusion models), the expansion around a pure Maxwelli-
an results in M2=Mp, whereas an expansion around a
drifted Maxwellian yields Mz=(vi+1)Mp, with vl
=M& /Mp ~ These models have been studied numerically
as well and will be discussed in Sec. III.

The above clearly shows that a judicious choice of the
"transformation" functions v& and u2 has the potential to
result in improved expansions of f. The consequence,
however, is that the closing relations become less trans-
parent and nonlinear. Moreover, the ansatz for f is an
expansion around a local scaled and/or drifted Maxwelli-
an reference state and, hence, we may certainly expect
some improvements of the predictions for "nearby" situa-
tions. However, we have no guarantee as to the accuracy
of the various predictions for situations far away from
equilibrium.

which results in the closing relation

M4=4V, M3+6(vz —vl)Mz —3[2vz —(vz —v, ) ]Mp .

(15)

and

P2(V1, V2) V2 V 1
2 2

III. MODEL PREDICTIONS
FOR AN n+-n-n+ DIODE

We will not pursue the structure of these closing relations
as expressed above but concentrate on the fourth-order
closing relations which will be the highest order con-
sidered in this paper, as an example. One has, written
out in full,

M4 4U1M3+6(vz —vl )Mz+4V, (v, —3vz)M,
—(v, —6vzvl+3vz)Mp .

The functions v, and v2 are arbitrary, but the structure of
Eq. (9) suggests that a proper choice of these functions
renders lower-order expansion functions identically zero.
Hence, it is expected that the accuracy of the expansion
can be improved without having to increase the trunca-
tion order. Putting vz = 1 and v1=0 implies expanding f

We first present numerical results obtained for the
moment-equation models introduced in the preceding
section. Special attention will be paid to transport prop-
erties and their dependence on the truncation order in the
model and material parameters, such as the relaxation
time and the width of the n-type region. Then we com-
pare these predictions with those obtained by solving the
full Boltzmann equation (1), concentrating, in particular,
on the I-V characteristics.

We consider the four-moment models based upon ex-
pansion around an equilibrium Maxwellian [closing rela-
tion (12)], a drifted Maxwellian [closing relation (13)],
and a drifted and heated Maxwellian [closing relation
(15)], together with the drift diffusion as well as the hy-
drodynamic model. Our test structure will be an
n+ n n+ GaAs -dio-de, with m*=0.069m, (m, being the
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electron rest mass), e„=12.5, an n-type-region width of
10 —10 m and a total length /of 10 —10 s m. Dop-
ing concentrations are taken as C+ = 10 m and
C =2X10 ' m . Different relaxation times will be
used in the range 10 ' —10 ' s. %'e calculate the elec-
tron density (n), the current density (j), kinetic-energy
density (K), kinetic-energy-density current (Q), and the
"quadratic kinetic-energy density" (R ). These are relat-
ed to the dimensionless moments introduced above by

n =M„rMo; j= —euoM„&M, ; K =
—,'m 'uoM„rM2,

(16)

10
)l

10

10

10-' =

Q= —,'m*uoM„rM3; R =
—,'(m') u~„rM~ .

We also consider the electron temperature (T, ) and the
drift velocity (ud ), which are defined by

0 6 / / / I ) $ $ I / I I I I I I

1.8 2.0 2.2 2.4 2.6

r (10 m)

M2Mp M I
Te —Tp

0

MI
Vd =Vo

p

FIG. 2. The kinetic-energy density (E) as a function of posi-
tion for the same parameters and model as in Fig. 1.

A brief description of the numerical procedure used to
treat the moment-equation models is given in the Appen-
dix; see also Ref. 9.

We first turn to the results of the four-moment model

based upon an expansion around a pure Maxwellian dis-

tribution, i.e., with Eq. (12) as a closing relation. These
results form the basis with which corresponding results
based on the other four-moment models, the drift-
diffusion models, the hydrodynamic model, as well as the
full Boltzmann equation, will be compared below. In
Figs. 1 —4 we show n, K, Q, and R, respectively, display-

ing the influence of variations in the applied voltage V.

E

1 017

The electron density n becomes asymmetric due to the
applied voltage and the minimum gradually shifts to the
high-voltage region. The kinetic-energy density K exhib-
its more or less opposite behavior; moreover, E builds up
a small overshoot near the high-voltage region. The
kinetic-energy-density current Q shows two distinct
peaks near the doping steps which become larger as V is
increased. Finally, the quadratic-kinetic-energy density
R displays qualitatively the same dependence on V as E.
The electron temperature T, exhibits a cooling effect re-
lated to the potential barrier near the first doping inter-
face and a heating of the electrons inside the doping
profile as shown in Fig. 5. Notice that at sufficiently high
voltages this model predicts negative electron tempera-
tures, in conflict with physical reality. This reflects the
fact that the truncated approximate-distribution function
becomes negative within the structure. The predicted
temperature profiles are physically unacceptable at

0.8
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015 I I I I I I

1.8 2 0
I I I I I I I I

2.2 2.4

r (10 m)

2.6

FIG. 1. The electron density (n ) as a function of position for
the four-moment model with Eq. (12) as closing relation, show-

ing the influence of applying a voltage. %'e used V=O V (full

curve); V=O. 15 V (dotted curve); V=O. 3 V (dashed curve), and
V=0.45 V (chain-dotted curve). This labeling of the curves
also applies for Figs. 2—4. In these calculations we used an
n +-n-n + diode with a width d =0.4X 10 m and a total length
of l=4.4X10 m. The relaxation time ~=1.0X10 ' s.
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FIG. 3. The kinetic-energy-density current (Q) as a function
of position for the same parameters and model as in Fig. 1.
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FIG. 4. The quadratic-kinetic-energy density (R ) as a func-
tion of position for the same parameters and model as in Fig. 1.

sufficiently high voltages. In Fig. 6 the drift velocity (v& )

is shown. The maximal drift velocity increases as the ap-
plied voltage is increased; the electrons are extremely ac-
celerated within the n-type region.

We also studied the influence of varying the electron
relaxation time ~ and the width of the n-type region. A
decrease in the width d and/or an increase in the relaxa-
tion time, corresponding to enhanced ballistic effects, re-
sults in an amplification of the effects observed above. At
the same applied voltage the moments differ significantly
more from their corresponding local equilibrium state.
The qualitative behavior of the momenta as a function of
position, however, remains the same. It will be shown
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FIG. 5. The electron temperature as predicted by the four-
moment model with Eq. (12) as closing relation at applied volt-
ages of V=0. 15 V (full curve); V=Oe3 V (dotted curve);
V=0.45 V (dashed curve), and V=0.6 V (chain-dotted curve).
We used ~=1.7X10 ' s, and the values for d and l are as in
Fig. 1.

FIG. 6. The drift velocity as predicted by the four-moment
model with Eq. (12) as a closing relation with parameters as in
Fig. 5.

later on that the same variations in the parameters ~ and
d yield a poorer agreement between the moment equation
predictions and the results obtained from direct solution
of the Boltzmann equation. Roughly speaking, as ~vd is
of the order of d, ballistic effects tend to dominate the
transport and the lower-order moment-equation models
fail. A high-velocity ballistic peak develops in the distri-
bution function f and cannot be accurately represented
by a small number of typical moments.

The use of the nonlinear closing relations (13) or (15),
i.e., expansion based upon a drifted and a drifted and
heated Maxwellian, respectively, does not lead to any
significant changes in the predicted moments at low ap-
plied voltages. As one might expect from the extended
ansatz to f used in these cases, the predictions of these
"nonlinear" models are improved in the low-voltage re-
gime, but this improvement is, however, quite small. The
predictions of the nonlinear models [Eqs. (13) and (15)]
compare almost perfectly with those presented in Figs.
1-6, in the low-voltage regime. However, as V is in-
creased sufticiently, both these models reach a critical
point at which the solution branches terminate. This is
due to the fact that the partial derivative of the closing
relation with respect to Mp approaches zero at some
point within the device and the set of governing
differential equations degenerates in the sense that there
is no longer an equation containing d,Mp. Thus, the
electron density is no longer continuously difFerentiable.
One may introduce jump conditions to go beyond this
point. ' We, however, did not pursue this approach, but
rather limited the applied voltage such that this critical
situation was not reached. For applied voltages slightly
lower than the critical value, the electron density starts to
show up a sharp "kink" at the position at which the par-
tial derivative of the closing relation with respect to Mp
reaches its maximum. Again, an increase in r and/or a
decease in d amplifies these effects and the limiting ap-
plied voltages become quite low in the strong ballistic re-
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gime; so the nonlinear models fail to give any predictions
at more realistic applied voltages for ballistic devices.
This is illustrated in Fig. 7, in which we show the critical
voltages ( V, ) of the nonlinear models (13) and (15) for
two different devices, as a function of the relaxation time
~. If V) V„no solution exists. As d decreases and/or ~
increases, the critical voltage rapidly decreases, rendering
V, quite small in ballistic situations. Moreover, the pre-
dictions of the nonlinear models start to deviate appreci-
ably from those based on model (12) only in a very small
region of voltages below V, . Everywhere else in the pa-
rameter space, the predictions almost perfectly agree
with those presented in Figs. 1 —6. We return to this
momentarily, in Figs. 8 and 9. Typically, for applied
voltages V(0.95V, all four-moment models introduced
yield essentially the same predictions. For a more de-
tailed discussion, see Ref. 9. Roughly speaking, if ballis-
tic effects start to dominate heating effects, these critical
situations are reached. As an example, the dnfted
Maxwellian drift-di6'usion model, as given below Eq.
(15), terminates exactly when U i becomes equal to one. If
this happens, the corresponding closing relation is such
that the derivative with respect to Mo is 0 and the equa-
tions no longer contain a differential equation governing
Mo. The condition U& =1 is readily interpreted. It arises
if M~ =MD at some point in the device, i.e., if the drift ve-

locity (Ud ) is equal to the thermal velocity (vo) defined in

Eq. (2).
%e next turn to a comparison of the kinetic-energy-

density current Q, the electron temperature T„and the
electron density n as predicted by the above four-moment
models, the hydrodynamic model, and the full Boltzmann
equation. Then we proceed with a discussion of the cor-
responding I-V characteristics to obtain a sketch of the
parameter region for which moment-equation models as
used in this paper can be usefully applied. In Fig. 8, we
show the various predictions for Q as a function of posi-

j
1.2

) i
0.08

e,
Il
I

l

I 0.06—
U

Q.O4

0.02

000 & i & I

1.8 2.0
I « & I I

2.2 2.4

r {10~ m)

2.6

tion. Notice that already at this low applied voltage the
differences between the hydrodynamic and four-moment
models are quite large. Also, all four-moment models
give roughly the same predictions, apart from small im-

provements in the n-type region, when using the non-
linear models. All moment models predict excessively
sharp peaks in Q, though the discrepancies in the four-
moment models are not as large as in the hydrodynamic
model. The use of four moments rather than three, as in
the hydrodynamic model, leads in this instance to a
slightly improved agreement between the moment predic-

FIG. 8. The kinetic-energy-density current {Q ) as a function
of position comparing the four-moment models and the predic-
tion of the hydrodynamic model with the Boltzmann predic-
tions. %'e used an applied voltage V=O. 1 V and parameters as
in Fig. 1. The Boltzmann result is shown as a full curve, the hy-

drodynamic result as a dotted curve, and the four-moment mod-

el with Eq. (12) as a dashed curve, with Eq. {13)as a chain dot-

ted curve, and with Eq. {15}as a long-dashed curve.
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~ {10-"s)
FIG. 7. The critical voltage V, as a function of the relaxation

time ~ for the four-moment model closed by Eq. {13)(full curve)

and Eq. {15) (dashed curve) at 1=4.4X 10 6
&n and

1=0.4X10 m (lower two lines}; 1=0.8X10 m (upper two

lines).

250
2.00 2.10 2.20 2.30 2.40

r {10 m)

FIG. 9. The electron temperature T, as a function of position

with the same parameters as in Fig. 7 and similar curve labeling.



45 FAILURE OF EXTENDED-MOMENT-EQUATION APPROACHES. . . 6649

~ p18
Jl

Eu g 0'l7
C

qp16

(a)

I

2. tp
I

2.20
I

2.30 2.40

r (10-6m)

FIG. 10. The electron density n as a function of position at
~=2.9 X 10 ' s and V=O. 1 V (case a); V=O. 5 V (case b). The
Boltzmann results are shown as full curves, the drift-diffusion
results as dotted curves, and the four-moment results as dashed
curves. Parameters are taken as in Fig. 1.

tions and the Boltzmann results. However, turning to the
electron temperature (T',

~
in Fig. 9 indicates that all

models perform with roughly the same accuracy. It is
seen that the hydrodynamic model overestimates the
cooling and heating effects, whereas the four-moment
models underestimate these effects. The results presented
in Figs. 8 and 9 correspond to a comparison of all models
at one parameter setting. We also studied the effects of
varying ~, d, and V. As mentioned before, an increase in
r and/or a decrease in d enhances ballistic effects and the
discrepancies shown in Figs. 8 and 9 become larger, al-
though they remain of a similar nature as far as underes-
timating and overestimating the corresponding
Boltzmann-equation results is concerned. The effect of
increasing the applied voltage also corresponds to de-
creased accuracy in the predictions. In Fig. 10 we plot-
ted the electron density (n ) at a low and a high voltage,
comparing the Boltzmann equation results with the
(linear) drift-diffusion and four-moment model results.
Other moment models give similar results and the overall
resemblance is quite good in all these cases, although the
logarithmic scale used here is somewhat deceiving. Fur-
ther comparison of the results indicates, on the whole, a
fair agreement between the various predictions of the
even-order moments (i.e., n, K, and R), even in the ballis-
tic regime, and a much less accurate representation of the
odd order moments.

We proceed with a comparison of the I-V characteris-
tics of the various moment models and the corresponding
Bo1tzmann-equation results. These results are of most
direct practical use and are shown in Fig. 11. If ~ is low,
all models give almost equally accurate results, whereas
in strong ballistic situations, a11 models deviate consider-
ably from the Boltzmann results. Increasing the trunca-
tion order from two (drift-diffusion) to four does extend
the parameter region in which the predictions deviate by

)i
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FIG. 11. Comparison of the I-V characteristics as predicted
by the different linear-moment models with the corresponding
Boltzmann results showing the influence of variations of the re-
laxation time ~, keeping d fixed to 0.4 X 10 m. The
Boltzmann results are represented by the full curves, the drift-
diffusion results by the dotted curves, and the four-moment
models by the dashed curves. In the calculations ~ was varied
between ~=5X10 ' s (labeled a); 1X10 ' s (labeled b);
2.9X10 " s (labeled c); and 5X10 " s (labeled d). The other
parameters are as in Fig. 1.

less than (say) 10%. It does not, however, extend this re-
gion into the predominantly ballistic regime. It was ob-
served that the I-V predictions of the linear and non-
linear two- and four-moment models agree quite well
with each other in the entire parameter region studied
and hence the results for the nonlinear models are not
shown here. For details we refer to Ref. 9. Further, the
hydrodynamic model gives the most accurate results for
relatively small relaxation times. At higher relaxation
times it fails to give any predictions at realistic applied
voltages due to instabilities related to drift velocity ap-
proaching the thermal velocity. ' In order to show the
effects of varying the width of the n-type region in the
diode, we plotted the current as a function of width in
Fig. 12. A similar observation can be made here; as d is
decreased, i.e., ballistic effects are amplified, the agree-
ment between the moment models and the Boltzmann
models decreases. As a measure of the "ballisticity" in
the system one may introduce B=~vd m»/d with vd I»,
the maximal drift velocity in the system. Comparing
current predictions as a function of 8 shows that
Iz/I ——log, o(B ) for large enough B. Here Is denotes
the current as predicted by the Boltzmann equation and
I the corresponding moment equation result. Typically,
for B smaller than —,', the ratio Iz/I is constant and
smaller than 1 to close approximation, and this ratio de-
creases rapidly as B increases above —,'." This implicitly
sketches the parameter region in which moment-equation
models can be usefully applied. Apparently none of these
models extends into the strong ballistic regime and addi-
tional approximation schemes should be used in order to
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In addition, the prediction of T, and Q by the hydro-
dynamic model are again quite inaccurate, even at low
applied voltages in the "mildly" ballistic regime
(r=lX10 ' s and d=0.4X10 m). The use of an
abrupt doping profile is not essential in these model cal-
culations. We also considered smooth but rapidly vary-
ing profiles and obtained similar results. The numerical
effort required in solving these models is only moderately
increased when increasing the truncation order, in one di-
mension, though in higher dimensional applications the
higher-order moment-equation models do give rise to
much more involved numerical problems.
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FIG. 12. Comparison of the predicted current showing the
influence of variation in the width of the n-type region, keeping
v.=1X10 "s at an applied voltage of V=0. 1 V. The fu11 curve
represents the Boltzmann results, the dotted curve the drift
diffusion results, and the dashed curve the four-moment results.

generate models that cover the full range of different be-
havior. Moreover, all moment models predict the con-
ductance dI /d V as V—+0 incorrectly, even in nonballistic
cases, partly due to the high built-in potential found in
submicrometer structures. The latter high potential im-

plies that even at low applied voltages far from equilibri-
um, situations are generated with great ease locally, for
which the previous results have shown poor agreement
between the moment-model predictions and the
Boltzrnann-equation results.

IV. CONCLUDING REMARKS

We compared a systematic hierarchy of moment-
equation models with the corresponding Boltzmann equa-
tion. The a priori inclusion of ballistic and heating effects
was studied and shown to yield somewhat improved

agreement between the moment predictions and the
Boltzmann results at low applied voltages, in accordance
with the improvement of the approximation around local
equilibrium. However, these ballistic and heating effects
were shown to give rise to nonlinear closing relations and
the occurrence of critical voltages beyond which no
unique solution exists. Comparison with lower-order mo-
ment models showed an improved agreement with the
Boltzmann results when increasing the truncation order
from two (drift-diffusion) to four. However, the results
also indicated that this improvement does not rea11y im-

ply that strong ballistic effects can be adequately de-
scribed with any low-order moment-equation mode1. In
the event that ~Ud becomes of the order of d, all moment
models fail quite abruptly. A further comparison with
the hydrodynamic model, which uses a Fourier law to re-
late the heat Aux to the electron temperature, showed
that the latter model gives surprisingly accurate predic-
tions of the I-V characteristics, although its predictions
cannot also be translated into the strong ballistic regime.

APPENDIX: NUMERICAL SOLUTION METHOD

We formulate the four-moment model explicitly and
sketch the discretization scheme used. It will become
clear that this scheme is a natural generalization of the
Scharfetter-Gummel scheme frequently used in drift-
diffusion models. It is particularly fit to treat the ex-
ponentially varying components of the solution. Then we
sketch the total algorithm generating the final self-
consistent solution.

In the stationary state, the four-moment model reads

d,„% =M, —C,
d,M)=0,

d, M2+ EMO = ——M),1

7

d„M3+2EM, = ——tM~ —Mo ],1

1

drM4+ 3EM2 = M3
1

(Al)

(A2)

(A3)

(A4)

(A5)

where d„denotes differentiation with respect to r and the
closing relation is expressed as

M~=V(MO, M„M2, M3) . (A6)

Notice that the 1ocal-equilibrium reference state implies
that we may add an arbitrary function of M, to this clos-
ing relation without changing the predictions for
MO, M&, M2, and M3. With the use of this closing rela-
tion we eliminate M4 from the model given by (Al) —(A5)
and thus obtain a closed system from which Mo M] M2,
and M3 can be determined. Obviously, this only holds if
BM 9'%0, i.e., for systems of equations that are Lipschitz.

0
Upon eliminating M4 from Eq. (A5) using the closing re-
lation (A6), a term BM Vd„MO appears. Hence, if

0

B~ VWO the resulting set of equations (A2) —(A5) consti-
0

tute four ordinary differentia1 equations governing
Mo, M&, M2, and M3. If B~ P=O at some point in the

device, however, the resulting equations no longer con-



FAILURE OF EXTENDED-MOMENT-EQUATION APPROACHES. . . 6651

tain d,MO and no unique differentiable solution exists.
The boundaries will be treated as Ohmic contacts, i.e.,

%(0)=0' %(l )= V

Mo(0) =Mo(l ) =M2(0) =M~(l )= I,
(A7}

(AS)

where V denotes the scaled applied voltage.
The above system of equations is highly nonlinear and

due to the (large and abrupt) steps in the doping profile

(typically C ((C+ ), the solution for Mo and M2 shows

large local variations near the "interfaces" of the doping
steps. Hence, it is necessary to devise a discretization
scheme which accurately follows these large exponential
variations in order to keep the numerical effort limited.
Also, in view of the boundary conditions for Mo and M2,
it is useful to eliminate M&, M3 from the problem formal-

ly and to derive an equivalent set of three second-order
equations.

The procedure for doing this and taking the exponen-
tial variations into account proceeds in a few steps. It is
based on solving Eqs. (A3) and (A5} locally analytically
around a mesh point in which E, M, , M3, and the partial
derivatives of 7 with respect to the moments are approxi-
mated as constant over a small region around a mesh

point. These analytic solutions for Mo and M2 contain
two integration constants and the assumed values of M&

and M3 as parameters. Thus, by a lengthy calculation, it
is possible to find the latter two values such that the local
approximations for Mp and M2 exactly agree with the
desired solution at the mesh points. One thus obtains ex-
pressions for the values of M, and M3 at the mesh points

r;+, z2 in terms of Mo and M2 at r; and r;+, . Here I r; I

denotes a covering mesh and we introduced
r, +».2

=(r—; + r; +, )l2. Finally, treating the remaining
Eqs. (A2) and (A4) by a standard finite difFerence scheme
gives three-point relations for Mo and Mz at the mesh
points. It is then a standard matter to solve for the mo-
ments at a given electric field and an initial guess for the
moments. The electric field E shows sharp peaks near
the doping steps and in order to have an accurate evalua-
tion of the equations the calculation mesh was chosen
such that Mo —C was approximately equally distributed,
resulting in correspondingly small mesh intervals near
the doping steps. Iteration between these equations and
the Poisson equation, gradually updating all moments, re-
sults in the desired self-consistent solution. Details of the
derivation of the above scheme, as well as an analysis of
its performance, will be published elsewhere. The main
point is that sharp local variations in the solution have
been taken into account fully by the above local analytic
solution method. It generates a finite difference scheme
which is "tuned" to the above system of equations. It is
straightforward to customize this treatment to lower-
order moment models, thus arriving at the well-known
Scharffetter-Gummel scheme in the case of the drift-
diffusion model and the scheme as reported in Ref. 3 for
the hydrodynamic model with a Fourier law as closing
relation for the heat flow. Notice that the above pro-
cedure is only valid if t)M 7 does not change sign as a

0
function of position. If this does happen the correspond-
ing moment model has a finite solution branch, i.e., in
particular, the voltage range for which the model has a
unique solution is limited since the system of equations is
no longer Lipschitz beyond a certain voltage.
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