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Direct-band-gap structure of uniaxial-stressed Si Ge, „/Ge [111]strained-layer superlattices
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The efFects of both internal strain due to lattice mismatch and externally applied [111]uniaxial
stress on Si„Ge, „/Ge [111]superlattices are predicted. In an Ns; XNc, Si„Ge, „/Ge [111]su-

perlattice, the composition x can always be chosen so that the superlattice conduction-band
minimum is Ge derived. Then the Ge conduction-band minimum at kL =(~/a&, ) (1,1,1) can be
folded to the zone center with suitable choices of N&; and NG„permitting the crystal-momentum
selection rule for luminescence to be satisfied for the folded (1,1,1) minimum in the superlattice.
However, internal strains raise the energy of the folded (1,1,1) conduction-band minimum relative to
the unfolded L minima at (1,—1, —1), ( —1, 1, —1), and ( —1, —1, 1), causing the unfolded minima
to be the lowest-energy conduction-band states into which injected electrons thermalize —and rein-

stating the selection rules against luminescence. Nevertheless, application of a [111]uniaxial stress
of sufficient magnitude will overcome the internal strain, will make the folded (1,1,1) L minimum

(which has significant s character) the lowest-energy conduction-band minimum, and will cause the
Ge quantum wells in the superlattice to luminesce. These results obtained with use of the zone-

folding approximation also hold when the electronic structure of the superlattice is evaluated prop-
erly.

I. INTRODUCTION II. BAND OFFSET

Future generations of high-speed computers are likely
to compute electronically, but communicate optically be-
tween chips, making it necessary to develop electro-optic
materials that can convert electrical signals into light.
Since silicon-processing technology is highly advanced
over most other electronic-materials technologies, a
silicon-based light emitter could play a central role in

making Si compatible with electro-optics device applica-
tions. Bulk Si itself does not emit light, because its band
structure is indirect: electrons injected into the conduc-
tion band thermalize to the indirect band minima at
(2n/as; ) (0.85, 0, 0), near the X points of the Brillouin
zone, while holes rise to the valence-band maximum at
the zone center —leading to a situation such that an elec-
tron with finite crystal momentum and a hole of zero
momentum cannot recombine to emit light (which has
near-zero momentum) because of a selection rule. Super-
lattices of Si Ge, and Ge, despite the fact that neither
Si„Ge, nor Ge is a direct-gap-band-semiconductor, ap-
pear to offer some promise of circumventing this prob-
lem, because the simplest approximation to the band
structure of the superlattice, the zone-folding approxima-
tion, produces a superlattice conduction-band minimum
at or near the zone center, kr=(0, 0,0). In this paper we
show that a direct band-gap electronic structure can
occur for Si Ge, „/Ge [111]superlattices.

Since the value of the valence-band offset (extrapolated
to unstrained conditions) of Si/Ge superlattices is some-
what controversial, ' we consider two models here: (i)
one assuming a 0.2-eV offset and a band alignment such
that the Ge conduction-band edge lies below that of
Si„Ge, , and (ii) a 0.455-eV offset, with the Ge
conduction-band minima above those of Si (see Sec. V F).
For x =1, namely, Si/Ge [111] superlattices, provided
that the valence-band offset is less than 0.4 eV, the
conduction-band minima of Ge will lie lower than those
of Si (type-I alignment); but for an offset greater than 0.4
eV, the conduction-band alignment will be type II, with
the superlattice conduction-band minimum being Si-like.
The essential physics of this paper requires only that the
stressed superlattice's conduction-band minimum be Ge
derived: the band offset of [111]Si Ge& „/Ge must be
such that the conduction-band minima of stressed Ge lie
below those of Si Ge& (type-I alignment). Although
this might not turn out to be the case for x = l unstressed
[111] Si/Ge, it certainly will be true for a sufficiently
large applied stress, or for a range of compositions x for
unstressed Si Ge, „/Ge [111] superlattices. Therefore,
for simplicity of presentation, we illustrate our physical
ideas first with calculations for Si/Ge superlattices, as-
suming a small offset of 0.2 eV (Ref. 2) and type-I align-
ment, while recognizing that a fully quantitative descrip-
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tion of these materials must await the final determination

of [111]band offsets. All of the qualitative physics of the

0.2-eV-offset case will still hold for [111]Si„Ge, „/Ge
superlattices, provided that the composition x is chosen
such that the conduction-band edge of stressed Ge lies

below that of Si Ge&, as we also demonstrate in Sec.
V F for an assumed Si/Ge offset of 0.4SS eV, for x =0.6,
and for a uniaxially stressed superlattice.

III. QUALITATIVE PHYSICS

A perfect Si/Ge superlattice will luminesce if the fun-
damental band gap of the superlattice is direct: namely, if
the conduction-band minimum lies at the same wave vec-
tor as the valence-band maximum (normally k=0). To
determine if luminescence is possible, one must compute
the band structure of the superlattice. An estimate of the
superlattice band structure can be easily obtained in the
zone-folding approximation, in which case the band
structures of bulk Si and Ge are merely folded in k space
to reflect the larger unit cell and smaller (mini-) Brillouin
zone in the superlattice growth direction. The zone-

folding approximation provides a qualitative estimate of
the band structure which is very useful for thinking about
the physics of superlattices, but is rarely quantitatively
reliable. Therefore we shall employ the zone-folding ap-
proximation in discussing the physics of Si/Ge superlat-
tices, but we shall confirm the conclusions obtained using
the zone-folding approximation with a complete calcula-
tion of the superlattice electronic structure.

The most common superlattices are grown in the [001]
direction, ' in which case Brillouin-zone folding cannot
easily map two of the six relative conduction-band mini-

ma of bulk Si near the X point of the Brillouin zone to
wave vectors near the zone center, because the minima
are not exactly at the X point. In bulk Ge the
conduction-band minima are exactly at the L points,
equivalent to (m /ao, ) (1,1,1), not near the X point, and so
the lowest folded conduction-band minimum of the [001]
superlattice is not at the zone center either. However, in
a [111]1 X 1 superlattice (alternating two-atom-thick lay-
ers of Si and Ge (Ref. 9) grown in the [111]direction), the
Ge band structure in the [111]direction is folded in half,
mapping the conduction-band minimum of bulk Ge at
the L point into the zone center for this superlattice (see
Fig. 1). (Such folding can also be achieved with larger-
period superlattices by suitably choosing the thicknesses
of the Ge and Si layers. If the total number of the two-
atom-thick layers is even, for example, 1 X 3 and 2 X 2 but
not 1X2, Si/Ge superlattices will achieve the desired
zone folding. ) Thus one of the four conduction-band
minima has the same crystal momentum as the valence-
band maximum and light emission is possible —in princi-
ple. However, bulk Ge has a larger lattice constant than
Si by about 4%, and so the Ge layers in a 1X1 Si/Ge
strained-layer superlattice mill be compressed and
sheared (a positive shear strain as well as a compressive
dilational strain), and the shear will raise the energy of
the folded (1,1,1) L valley of this band structure relative
to the unfolded L valleys in the (1,—1,—1), ( —1,1,—1),
and ( —1, —1, 1) directions —making the superlattice an
indirect-gap semiconductor once more.
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FIG. 1. Illustration of the zone-folding approximation for
the lowest conduction-band state of an unstrained 1X1 Si/Ge
superlattice: the computed conduction band (in eV) vs reduced
wave vector g in the [111] direction, where we have
k=(m/aL, )(g, g, g) and az is the relevant lattice constant. The
bulk Ge band and its folding are denoted by dashed lines; com-
parable results for Si are chained. The computed superlattice
band structure is denoted by solid lines —and differs
significantly from the band structure obtained by the zone-
folding approximation. The band offset is assumed to be 0.2 eV.

This internal shear strain of the superlattice can be
overcome, however, by the application of a [111]uniaxial
stress, as we show here, establishing the folded (1,1,1) L
minimum as the conduction-band minimum, lower in en-
ergy than the other three L minima. Furthermore, we
shall show that this minimum has significant Ge s charac-
ter, in contrast to the p character of the valence-band
maximum, suggesting that luminescence involving elec-
trons confined in a Ge quantum well of a Si/Ge superlat-
tice should be reasonably strong.

In Sec. IV we develop a theory of the electronic struc-
ture of such [111] superlattices, based on an empirical
tight-binding scheme. ' Although theoretical studies of
[001] Si/Ge superlattices have been reported, "we be-
lieve that this is the 6rst calculation of its sort for [111]
Si/Ge superlattices. In Sec. V we present our main re-
sults and show that the qualitative physics of the zone-
folding approximation holds when the superlattice band
structure is evaluated properly. Section VI summarizes
our findings.

IV. FORMALISM
A. Tight-binding Hamiltonian

for the unstrained [111]superlattice

We treat a periodic Ge/Si superlattice whose layers are
perpendicular to the [111]direction, with respect to the
usual cubic axes. We employ a nearest-neighbor tight-
binding Hamiltonian with an s 'sp basis' of five orbitals
centered on each atomic site. The superlattice we consid-
er has Xz, two-atom-thick Ge layers and Xs; two-atom-
thick Si layers repeated periodically. The tight-binding
Hamiltonian has a block-tridiagonal form as shown on p.
4. Here we have k =2No„L =2(No, +As; ), and all the
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H(m, n) for m =1,2, . . . , L, and n =1,2, . . . , L are 5 X 5
matrices. 0 is the 5 X 5 null matrix.

The matrices H( n, n ) are diagonal:

E, g 0 0 0 0

0 E, 0 O O

H(n, n)= 0 0 E 0 0

0 0 E 0

0 0 0 O E,
where E +, E„and E are tight-binding parameters for
Ge or Si, depending on whether n refers to Ge or Si, of
Vogl et al. ' To account for the valence-band-edge
discontinuity of ~bEva~, a constant —~EEva~ is added
to the energies E +, E„and E for Si. This constant

causes the valence-band maximum of Si to be ~AE1,21~

below the valence-band maximum of Ge.
Here we are, in effect, assuming that this band-offset

AEv& is independent of strain, an effect that has been dis-
cussed by Priester et al. ' We do, however, include the
effects of strain in the Hamiltonian using elasticity theory
(see below), and so we do compute a superlattice band
edge that does depend on the strain. The philosophy
guiding this work is that the band offset and its depen-
dence on strain are parameters whose precise values can
be determined experimentally, and do not affect the quali-
tative conclusions of this work.

The off-diagonal matrices H(m, n), with mAn, have
three different forms. The first is H(m + l, m), where m

is an odd number; here both m and n refer to sites in the
same materials:

0 Co V6 Co V6

0 Co V) —Co V4 —Co V4

H(m+1, m)= CpV7 CpV3 CpV2 CpV3

Co V7 Co Vs Co V3 Co V

Co V7 Co V5 Co V3 Co V3

Co V6

—Co V4

Co V3

Co V3

Co V2

Here we have Cp=gp, where we have 4gp=exp(ik xp),
where we have xil=(aI /4)(1, 1, 1), with aL being the lat-
tice constant of either Si or Ge, whichever is relevant,
and k being the wave vector, respectively. In addition,
we have

and

V5 = V(sc,pa),
V6 = V(s "a,pc),

V7= V(s'c, pa),

V, = V(s, s),
Vz= V(x,x),
V, = V(x,y),
V4 = V(sa, pc),

in the notation of Vogl et al. The parameters of Ge are
used for rn &2NG„and Si parameters are employed for
the case 2No, & m & 2(NG, +Ns; ).

The second form of off-diagonal matrix is H(m + 1,m ),
where m is an even number:

V6(gi g2 g3} V6( gi+g2 g3) V6( gl g2+g3}
Vi(gl+g2+g3} V4(gi g2 g3) V4( gi+g2 g3} V4( gi g2+g3}

V7(gl g2 g3) Vs(gi g2 g3) V2(gi+g2+g3) V3( gl g2+g3) V3( gi+g2 g3 }

—V ( —g +g —g ) —V (
—g, +g —g ) V ( —g, —g +g ) V (g +g +g ) V (g —g —g, )

V7( gi gz+g3) V5( gl g2+g3} V3( gl+g2 g3}
In the case m =2%&„one is treating an interface between a Ge layer
average of the corresponding parameters for Ge and Si. Here we have

4g, =exp(ik. x, ),
4gz =exp(ik. xz),

and

V3(gl g2 g3 } V2(gl +g2+g3 }

and a Si layer, the parameters are taken to be an

4g3 =exp(ik x3) .
Here we have xi=(az /4)(1, —1, —1), xz=(az /4)( —1, 1, —1), and x3=(al /4)( —1, —1, 1).

The third form corresponds to another interface: H(L, 1 },where L =2(NG, +Ns; ).

0 0 V6(C, —Cz —C3) V6( —C, +Cz —C3}

0 V, (C, +Cz+C3) V4(C, —Cz —C3) V4( —C, +Cz —C3)
—V7(C, —Cz —C3) —V3(C, —Cz —C3) Vz(C, +Cz+C3) V3( —C, —Cz+C3)

—V7( —C, +Cz —C3) —V5( —C, +Cz —C3) V3( —C, —Cz+C3) Vz(C, +Cz+C3)
—V7( —C, —Cz+C3) —V3( —C, —Cz+C3) V3( —C, +Cz —C3) V3(C, —Cz —C3)

V6( —C, —Cz+C3)

V4( —C, —Cz+C3)

V3( —C) + C2 —C3 )

V, (C, —Cz —C, )

V~(C, +C2+C3)
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The parameters are also taken from the average of the
corresponding parameters of Ge and Si, and here we have
C, =g;*.

This Hamiltonian for Xs; =0 will give exactly the same
band structure as obtained from the Ge tight-binding
Hamiltonian of Vogl eI; al. ; for XG, =O it will give the
band structure of Si. Spin-orbit splitting ( =0.3 eV) is not
included here because it is small and affects primarily the
valence band, whereas the essential physics of this paper
concerns the conduction-band minimum of the superlat-
tice, its L parentage, and its dependence on strain.
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B. Internal strain

Si/Ge superlattices are not perfectly lattice matched,
however, and so internal strains cause the atoms to move
from the perfect-lattice sites and to change the bond
lerigths and angles between nearest-neighbor atoms.
These altered bond lengths and angles lead to
modifications of the strain-free Hamiltonian. To deter-
mine these modifications, we first obtain expressions for
the dilation 6 and the shear e in both Si and Ge layers,
and then we express the bond lengths of atoms in the
strained superlattice as functions of the dilation and
shear.

The dilation and shear result from internal strains due
to the difference of Ge and Si lattice constants: the lattice
constant of Ge, aoe, is 5.66 A, about 4% larger than the
lattice constant of Si, as;=5.43 A. ' In [111]Ge/Si su-

perlattices, the in-plane lattice constant of Ge, aIIG„and
the in-plane lattice constant Si, aIIs;, should be equal to
each other:

++
+
w" ++

I

But we have

and

u~~G uG (1+~G &G )

OI Ol
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WI Wl WI
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~((s; =as;( I+As ~s )

strain, and E'
Q&y Qyz Qzz which is the shear strain.

Because there is dilation and shear in both the Ge and
the Si layers, the elastic energies W of both types of layers
increase

WG =(—)c1111G (u +u +u )

+C1122 Ge(uxxuyy + uy u»+ uxzuxx )

+2C1212 G,(u„u„+uy, uy, +u»u» )

—( 2 )( C11 Ge +2C 12,Ge )EGe+ 6C44 GeEGe

A similar expressions holds for Si. The elastic stiffness
constants' c&&, c», and c~ have been tabulated for Ge
and Si.'

The total elastic energy of the superlattice is

8 =KG, W~, +lVs; Ws; .

By minimizing the total elastic energy of the superlattice
subject to the constraint
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4c44 s;es;/(c 1 1 s; +2c,z s; )

Here we have

and

D„=12No,c44 o, /ao, ,

D iz 12NS;c44, s /as

(c„o,+2ciz o, +4c44 o, )as
Dzi=

~ ) ],Ge +2c ]z,«
«», s;+ 2C12,si+4C44, si)aoe

D zz
11 Si 12,Si

D =D&&Dzz —DizDzi

These equations give the correct dependence on elastic
constants and on layer thicknesses. Consider, for exam-

ple, the dependence on layer thickness for growth on a Si
substrate; then for N»))N«, we have D»))D&& and
D = —D,zDz„' thus we find es;=(ao, —as; )D» /
D i z D z ~

—0 6s' —0, a
~~

——a s;, as it should be. We also find

that the magnitudes of the strains e«and hG, decrease
as the Ge layer thickness increases —as expected.

C. Tight-binding Hamiltonian for the strained suyerlattice

After the strains have been determined, we need to find

the relative positions of the nearest atoms in order to
determine the new tight-binding Hamiltonian under the
internal strain. If, without strain, a central atom and its
four nearest-neighbor atoms are located at (0,0,0),
(ai /4)(1, 1, 1), (aL/4)(1, —1, —1), (a~/4)( —1, 1, —1),
and (al /4)( —I, —1, 1), then, with strain, the new atomic
positions are (2(e, 2(e, 2(e), (al /4)(1+6+2@, 1+6,
+2e, 1+b, +2@), (aI /4)( 1+b, —2e, —1 —b„—1 b), —
(ai /4)( —1 —6„,1+6,—2e, —1 —5), and (al /4)( —1

—b, ,
—1 —b„1+6 —2e), respectively. Here g is the inter-

nal displacement parameter' and e and 6 are the corre-
sponding shear strain and dilation. The internal displace-
ment parameters for both Si and Ge are taken to have the
measured value of 0.7 for Ge. ' ' After the relative posi-
tions of the nearest-neighbor atoms have been deter-
mined, the new tight-binding Harniltonian of the super-
lattice under strain can be easily deduced. The diagonal
Hamiltonian matrix elements, which are independent of
bond length, ' will remain the same as those without
strain. The oA'-diagonal matrix elements V &

between
atomic orbitals a and P centered on adjacent sites depend
both on the distance between the two atoms and on the

ao, (1+ho, e—o, )=asi{1+bsi esi)

for fixed layer thicknesses NG, and Ns;, we determine

G ~s, t-G„and es;:

es Dii(ao as )/D,

Eo = D12(ao asi )/D

4c44 oeeoe/(ci i o, +2ciz o, ),
and

direction cosines of the corresponding orbitals. The dis-
tance dependence of the matrix elements V

&
can be

treated as in previous work:

V p= V s(do/d)

Here do and d are the distances between the nearest-
neighbor atoms, namely, the ones that are the centers for
the orbitals a and P, for the unstrained and strained
cases, respectively. V & is the matrix element for the un-
strained crystal, and a and 13 range over s, p„p, p„and
s*, in addition to specifying the site. By fitting to the ex-
perimental pressure variations of the band gaps of Si and
Ge, we found the following exponents for Ge (Si):
2), , =4.4 (3.0), 2), =v)„,=2.4 (1.6), 2), ,=2.3 (3.42),
2)„» =2.5(2.6), and 2), =2) 4 =3.982 (3.327). .

The direction cosine variations of the off-diagonal ma-
trix elements V &

for the strained superlattice are due to
stress-induced bond-angle distortions, and can be easily
obtained using the Slater-Koster definitions of these
matrix elements. For example, for the matrix element be-
tween s and p states on neighboring sites we have

V, ~
= V, ~ (cos8/cos8o)(do/d) ",

with similar expressions for the variations of the other
off-diagonal matrix elements on d and 8. Here 80 and 8
are the zero- and finite-stress bond angles relative to the
crystal axes.

With these new values for the matrix elements of the
Hamiltonian Ho, the calculation of the electronic proper-
ties proceeds as for the unstrained superlattice. It is
noteworthy that, for the case of bulk Ge, the deformation
potentials calculated using this method are in reason-
able agreement with data.

D. Applied [111]compressive aniaxial stress

Under an applied compressive [111]uniaxial stress of
magnitude P (force per unit area), the Hamiltonian for
the superlattice is determined from the combination of
induced and internal strains, as in the case of internal
strains alone.

The induCed StrainS u«, uyy7 uzz7 uxy7 uyz7 and u« in

Ge and Si can be obtained from the stress tensor

o.„=cr~~
=o „=P /3,

Oxy =Oyz Ozx

using elasticity theory, ' with the net strains being a
linear superposition of the external and internal strains.
The expressions given above for the dilations 6 and
shears e undergo the following changes:

6A =P{S)
&
+S» )/3

6e =PS44/6,

where S,&, Siz, and S44 are the elastic compliance con-
stants. "
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V. RESULTS
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FIG. 2. Band gaps of 2 XNG, free-standing superlattices as a
function of the number of Ge layers NG, (i) computed without
internal or applied stress (long dashed lines, open circles for I,
closed circles for the unfolded L minima), (ii) computed with
internal strain, but with P =0 (solid lines, open triangles for I,
closed triangles for the unfolded L minima), and (iii) computed
with internal strain and P =5 kbar (dash-dotted lines, open
squares for I, closed squares for the unfolded L minima) and
P =10 kbar (short dashed lines, open hexagons for I", closed
hexagons for the unfolded L minima). The gap derived from the
zone-folded (1,1,1) minimum of Ge is labeled I because it is at
k=Q of the superlattice Brillouin zone. The gap labeled L is de-
rived from the (1,—1, —1), ( —1, 1 —1), or ( —1, —1, 1) minima
of the bulk band structure of Ge. The zero of energy is the
valence band maximum of the superlattice and the assumed
valence-band offset is 0.2 eV. Parts (a) and (b) of the figure cor-
respond to different ranges of Nz, .

A. Unstrained Si/Ge [111]superiattices

The electronic structure of a 1 X 1 (Ref. 9) Si/Ge [!11]
superlattice is displayed in Fig. 1, in comparison with the
folded band structures of bulk Si and Ge. Here we as-
sume AEvB=0. 2 eV. The conduction-band minimum is
near k=0 for the 1 X 1 superlattice (see Fig. 1). and at
k=O for the 2X2 superlattice, directly above the
valence-band maximum, indicating that luminescence is
allowed.

The large band-gap Si layers cause quantum
confinement in the small-gap Ge quantum wells. To illus-
trate this effect, we fix the Si layer thickness at 5.43 A
(four Si atoms thick) and vary the Ge-layer thickness.
The fundamental band gap of the superlattice, corre-
sponding to the gap between the Ge valence-band max-
imum and the Ge folded (1,1,1) conduction-band
minimum, increases dramatically as the Ge-layer thick-

ness decreases (Fig. 2). This effect is most dramatic, as

expected, for small Xo, and for the [111]valley (1,1,1),
which is folded into the k=0, I point of the superlattice
Brillouin zone. Note in particular that the (1,1,1) valley
folded into I is at a lower energy than the other I. mini-

ma for large XG, and at a higher energy for small XG,—
an effect not contained in the folded-band approximation.

B. Effect of internal strain

Because the lattice constant of bulk Si is about 4%
smaller than that of bulk Ge, and because the in-plane
lattice constants of Si and Ge layers in the [111]superlat-
tice must match, there is a positive shear strain and nega-
tive dilation in the Ge layers (together with negative
shear and positive dilation in Si). The positive shear
strain in Ge raises the energy of the (1,1,1) valley and
lowers the other three valleys such as (1,—1, 1) (Refs. 29
and 30) (Fig. 2). This effect is not negligible: the (1,1,1}-

(1,—1, 1) strain splitting is typically =0.3 eV for a 2X2
superlattice, whereas in the absence of strain it is about a
factor of 4 smaller. This strain splitting is bad for
luminescence because electrons tend to thermalize into
the lowest-energy conduction-band states, namely, the in-

direct minima such as (1,—1, 1} (where they are forbid-
den from emitting light by recombination with holes at
the valence-band maximum), rather than the optically-
active, folded (1,1,1) minimum at the I point of the
mini-Brillouin-zone. The effect is minimized if there is

very little strain in the Ge layers, that is, if the Ge layers
are thick and the Si layers are thin. Unfortunately mak-

ing the ratio of the Ge to Si large will also minimize the
effect of zone folding on the optical matrix element, be-
cause the superlattice will be very Ge-like, having a very
small optical matrix element despite the zone folding.
Thus it is best to keep the thickness of the Ge layers
small, too. Hence to make [111] Si/Ge superlattices
luminesce, we must construct small-period superlattices
and find a way to overcome the internal strain (e.g. , with
strain-absorbing buffer layers between the Si and the Ge)
and make the (1,1,1) I minimum the lowest-energy
conduction-band state.

Effects «applied compressive [111]nniaxial stress

One way to drive the (1,1,1) L valley of the conduction
band of bulk Ge to lower energy is to apply a compres-
sive [111]uniaxial stress; this will induce a negative shear
strain and will lower the (1,1,1) conduction band
minimum and raise the othe three L minima, as shown in
the theory of Herring and Vogt and as Chandrasekhar
and Pollak demonstrated experimentally. ' ' ' Thus a
sufficiently large compressive [111] stress applied to a
[111] Si/Ge superlattice should overcome the internal
strain splitting and drive the folded (1,1,1) minimum of
the Ge conduction band to lower energy than the other
three L, minima —making the fundamental band gap of
the superlattice direct and permitting luminescence.

This reasoning indicates that favorable conditions for
light emission from a Si/Ge [111]superlattice include (i)
small Si-layer thicknesses or periods, {ii) periods such
that the Ge (1,1,1) L minimum is folded into the
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satisfy the condition for luminescence, even for rather
large Si/Ge thickness ratios.

VI. SUMMARY

Si„Ge, „/Ge [111]superlattices with periods chosen
to fold the (1,1,1) Ge conduction-band maximum into the
center of the Brillouin zone appear to offer the possibility
of direct-gap recombination, provided the internal strains
are compensated. Although we performed the calcula-
tions first for x =1 and an assumed valence band offset of
0.2 eV, we have also shown that the basic physics will
still hold for x & 1 and for other values of the band offset,
provided the Ge conduction band edge lies below that of
the Si,Ge, , (type-I alignment). For example, if the
currently unknown (unstrained) Si/Ge valence band
offset should turn out to be greater than 0.4 eV so that
the superlattice has type-II alignment, then type-I align-

ment can be restored either by reducing x or by applying
larger uniaxial stress, ' and the qualitative predictions of
the present theory will still be valid, as shown in Figs. 3
and 4. Only three physical features are required to pro-
duce the desired direct-gap structure in [111]
Si„Ge, „/Ge superlattices: (i) band alignments that re-
sult in the unstrained or strained superlattice's
conduction-band minimum being derived from the Ge
minima, (ii) band folding, and (iii) the fact that applied
uniaxial stress drives the (1,1,1) L minimum down in en-
ergy with respect to the (1,—1, 1) minimum.
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