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An explicit expression for impurity-induced one-LO-phonon forbidden resonant Raman scattering
in diamond and zinc-blende-type semiconductors, which includes excitonic effects, is presented. It is
derived by fourth-order perturbation theory and can be applied in a photon energy range below and
above the exciton energy. We have considered both neutral and ionized impurities in the exciton-
impurity coupling. Discrete and continuous exciton states have been taken as virtual intermediate
states in the process, and the matrix elements corresponding to different excitonic transitons have
been calculated analytically. The different contributions to the squared Raman polarizability are
compared; the most important ones are found to be due to discrete-discrete-discrete transitions. An
analysis of the dependence of the Raman-scattering e%ciency on impurity concentration, screening
factor, and lifetime broadening is presented and quantitative differences with the forbidden Frohlich
Raman scattering by LO phonons are discussed. These results are used to calculate the absolute
value of the Raman e%ciency around the Eo gap of AlSb and the Eo+ 60 gap of GaAs. The actual
role of the impurity-induced scattering in terms of the impurity concentration is clarified.

I. INTRODUCTION

Dipole-forbidden Raman scattering by LO phonons
has been reported in several III-V and II-VI compound
semiconductors. ' ' This Raman process was observed
in CdS. is i4 The electrons and holes can interact via the
Frohlich mechanism leading to a diagonal Raman tensor
for transitions near k 0 in cubic semiconductors. This
forbidden scattering can be observed in the backscatter-
ing configuration z(z, z)Z for a (001) surface (z ~~ [100),
y [[ [010], z )[ [001] directions) in the zinc-blende-type
semiconductors. Crystal momentum conservation im-
plies that the phonon wave vector q = ~~ —~„v~ and v,
being the wave vector of the incident and scattered pho-
tons, respectively. In the dipole. approximation (q = 0)
the Raman process is forbidden. In Ref. 15 it was shown
that the finiteness of the photon wave vector makes the
process "allowed" and thus, a strongly one-phonon Ra-
man efficiency is obtained. Consequently, in the past,
several papers have appeared where absolute values of
Raman scattering efficiency or Raman polarizability aris-
ing from intraband Frohlich (F) electron-phonon interac-
tion and its interference with the corresponding allowed
scattering due to the deformation-potential (DP) mech-
anism have been reported~ ~ in different backscattering
configurations.

Recently, the role of excitons in one-phonon Raman
processes in III-V compounds has been clarified.
The theory developed for short-range interband
scattering and long-range intraband scattering, tak-
ing into account excitonic effects, reproduces the experi-
mental absolute values of squared Raman polarizabilities

as well as the resonance profiles. Another contribution to
the forbidden Raman scattering by LO phonons involving

impurities was proposed in Ref. 20. A model, assuming
free-electron-hole pairs (uncorrelated theory) and includ-

ing scattering by ionized impurities, was given in Ref. 3.
That model was developed keeping in mind the similarity
of the extrinsic mechanism with the scattering by two-

phonons process, zi where one of the emitted phonons is

replaced by the ionized impurity. Following this idea, it
was claimed in several papers (see, for instance, Refs. 3,
5, 8, and 9) that the extrinsic impurity-induced scatter-
ing plays a dominant role with respect to the long-range
Frohlich intraband mechanism even in nominally high-

purity samples. The spectra of GaAs around the Ep+Ap
gap were fitted with this uncorrelated electron-hole the-
ory and assuming that 50—70% of the total scattering
amplitude is due to extrinsic impurity scattering. The
authors of Ref. 8 added 70% of impurity-induced scat-
tering in order to fit the experimental data of GaSb in

the neighborhood of the Ep+ b, p critical point (CP).
The theory of one-phonon resonant Raman scattering

including excitonic effects shows that the impurity
mechanism is not as important as previously assumed,
even at the Ep+Ep CP. The Raman profile of the GaP
at Ep and Ep + Ap CP's, the GaSb at the Ep + b,p gap,
and also the Ep+ 60 CP of GaAs for different tempera-
tures were fitted for the F interaction and its interference
with DP mechanism calculated using the correlated
electron-hole-pair theory. No assumption of impurity-
induced forbidden scattering was necessary to reproduce
the experimental data and to reach the measured ab-
solute values in these III-V compounds. Nevertheless,
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some experimental evidence shows that for moderately
high impurity concentration [for example, in commer-
cial samples with 10 donors jcm (Refs. 3 and 18)] an
impurity-induced increase in forbidden scattering should
be observed. Recent measurements in A1Sb (Ref. 22)
show that in the z(z, z)z geometry, the Raman efficien-
cies measured at high temperatures are stronger than at
low temperatures, a fact that can be explained if an addi-
tional mechanism involving scattering of excitons by im-
purities is added to the F interaction. Such a mechanism
should be stronger at high temperatures, when impuri-
ties are ionized. These remarks emphasize the need for an
excitonic treatment of the impurity-induced scattering.

In Ref. 20 a calculation of the impurity-induced LO-
phonon Raman scattering was presented considering only
the exciton ground state n = 1 for a laser frequency
above the gap and approximate analytical expressions
for the Raman tensor were obtained. This result cannot
be used to elucidate quantitatively the principal features
of the Raman scattering eKciencies. Moreover, transi-
tions between the discrete and continuous exciton states
give the principal contribution to the first- and second-
order Raman scattering when the Frohlich interaction is
considered.

In this paper we present an excitonic treatment of the
impurity-induced LQ-phonon resonant Raman scattering
valid in a broad spectral range around direct allowed ex-
citonic transitions. The fundamental relations for this
process are summarized in Sec. II. Section III is devoted
to the calculation of the Raman tensor and the impurity
concentration and excitonic broadening effects are ana-
lyzed. In Sec. IV this theory, is compared to experiments
for GaAs around the Eo + Ao CP and for A1Sb near the
Eo gap. Section V summarizes the main conclusions of
the work.

a, K =x.[ K =a(-q y, K =ms

Hexc-r Hexc-ph Hexc- i

a, K=m[ P, K=q m~

8+a

, K=~, Zx

Hexc-r

FIG. 1. Diagrams contributing to impurity-induced 1LO-
phonon Raman scattering. H, „,, „, H„-.-.. and IX ph

rep-
resent the exciton-radiation, exciton-impurity, and exciton-
phonon Frohlich interactions, respectively.

A. Hamiltouiau of the system

The total Hamiltonian is given by

Hamiltonians defined below, and the interpret, ation is the
same as given in the above case. In both Feynman di-
agrams t, he quasimomentum conservation is relaxed and
phonons with q g ~1 —&., can participate in the Ra-
man process. This scattering process can be treated
in fourth-order perturbation theory with two crystal-
radiation interactions, one exciton-phonon interaction,
and one exciton-impurity interaction vertex.

H = Ho + Hexc-~ + Hexc-ph + Hexc-i )

II. FUNDAMEN'J AL RELATIONS

To calculate the Raman scattering efficiency we choose
a two-band model with isotropic parabolic bands and
correlated electron-hole pairs as excited states in the
framework of the AVannier-Mott effective-mass approxi-
mation. If the polariton effect is neglected, the main dia-
grams contributing to the impurity-induced LO-phonon
Raman scattering are shown in Fig. 1. The process is

described in. the following way: a virtual exciton in the
state n with center of mass wave vector K = r~ is cre-
ated by the incident light; the exciton is scattered by
an impurity center making a transition to the state P,
K = q+ v, [see Fig. 1(a)], the impurity transfers a wave
vector g + K,, —v~ to the excitonic state; the exciton
emits one LO phonon with frequency ~La and wave vec-
tor q and changes its state to y and K = ~, ; finally, the
virtual exciton recombines and a scattered photon with
frequency ~, = ~~ —~Lo is emitted.

Another contribution to the Raman efficiency arises
from the permutation of H,„,and H,„&h [Fig. 1(b)]

where Hzxz- Hex~ph and H,„, ; are the exciton-photon,
exciton-phonon, and exciton-impurity interaction Hamil-
tonians, respectively. Here we are interested in the intra-
band Frohlich Hamiltonian, i.e. , H,„,&h

——H,„,F. In
Eq. (1), Ho is the unperturbed Hamiltonian which can
be written as

Hc —) h,~(at, a„,+ —,') + ) &~.(q)(t~t. ~~,.+ —,')
v, q

+ ) EA, K(d), KdA, K + g ) )

K, A

(2)

corresponding to the free photon phonon and exciton
field, respectively, where n~, represents the annihilation
operator of a photon with wave vector v, polarization
e, and frequency ~, bq the annihilation operator of a
phonon with wave vector q belonging to the branch v and
phonon frequency ~; dg K the exciton annihilation op-
erator with internal quantum number A, center-of-mass
wave vector K, and energy Ep K given by
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(3)
q A, A' K,K'

for the discrete spectrum, and

I I'2 I'k'
+AK —E + +

2mE 2p
(4)

K' Kwhere M&, & (q) is the exciton-impurity coupling con-
stant:

for the continuum. Here E& is the energy gap, mE ——

m, + mg, m, (ml, ) is the electron (hole) effective mass,
R is the exciton Rydberg, p is the reduced mass, I'E is

the exciton wave vector. Furthermore we have

(12)

and g(q) is the impurity vertex which depends on the
kind of impurity under consideration (see Appendix A).

H&x«) ) Tp(K)(dI, K + dg K)a~ e + H c

K,A ~,e

T~(K), the exciton-photon coupling constant, for direct
allowed transition is given by~4

B. Raman scattering efBciency

The differential cross section do/dA, the Raman scat-
tering efBciency per unit length and unit solid angle dQ,
for fixed final phonon brach v, dS/dQ and the scattering
amplitude WFi are related, for a Stokes process, through
the equation

e 2' h
Tq (K) = ——

2 e p, „pq (0)bK
m Cd 17

1 dt's

VdO
dS ~t~, g(rl, V

dQ (2~)2 c4 (h~()2

where p,„ is the matrix element of the momentum oper-
ator, g the refractive index, and pg(r) the wave function
of the internal exciton state. The exciton-phonon inter-
action EIamiltonian is expressed by

=) ) ) [S„,„' (q)d, Kd b „]+H. .
q, ~ A, A'K, K'

The exciton-phonon coupling constant Sz, z (q) for long-
K', K

wavelength longitudinal polar-optical phonons (Frohlich
interaction) is given by

(8)

&& ) )14 FI(~s eg ~l eI)['[&(~LO) + 1]

where ~I) and ~F) are the initial and final states corre-
sponding to the scattering of a photon of frequency ~~
and polarization e~ by an Lo phonon, giving a scattered
photon of frequency ~, = ~~ —~Lo and polarization e, .
N(~Lo) is the Bose-Einstein occupation number for LQ
phonons in thermal equilibrium at a temperature T, and
t." the speed of light. In the following the indices t and s re-
fer always to incoming and scattered light, respectively.
In many III-V (Refs. 2—8) and II-VI (Refs. 9—12) com-
pound semiconductors the scattering ef5ciency has been
given in terms of absolute values of the squared Raman

polarizability a which is related to the Raman tensor R
through a = e, R e~ and to the scattering e%ciency by
the equation

2' h~„e
F ———

& &oo —&p
U dS ~s~( h ) (e, R e(('[N(~r.o)+1]c4 2UM~go

zp and c~ being the low- and high-frequency permitiv-
ities and V the crystal volume. I&~, &(q) (o. = e, h) is

the matrix element between internal exciton states A, A'

defined as

(10)

The exciton-impurity interaction H arniltonian can be
written as

(14)
where U, is the volume of the primitive cell, and I the
reduced mass of the atoms in that cell. By comparing
Eqs. (13) and (14) the Raman polarizability is obtained in
terms of the microscopic amplitude probability 8'F~. Ac-
cording to the Feynman diagrams in Figs. 1(a) and 1(b),
the first-order Raman scattering via impurity-induced
Frohlich interaction is a fourth-order perturbation the-
ory process. Considering only the resonant terms and
Eqs. (1)—(12), the scattering amplitude can be expressed
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(h~ilH«, „la, K=0)(n, K=OIH«, , IP, K=q)
Nyy

{i,—z. +:i'„i~i,—z, — + r, )
g

2IF
(P K=qlH. Ilp-K=O&(p K=OIH. » —.Ih~ &

h~, —E~ + iI'~

(»~i
I
H —

I

o' K = 0& (o K = o IH. FIP-K = q&

( h'q'
(hat —F., + iI', ) ~

h~, —Ep — + il.'p)
2m+

(P K=qlH -'lp K=O&(p K=OIH- .Ih~. &~

h~, —E, +ir, (15)

The states IA& (A = n, P, p) refer to excitonic intermediate states with energy Ep and lifetime broadening I'g. In
Eq. (15) Ki —K, 0 has been assumed. According to Eqs. (5)—(12), the scattering amplitude can be written as

q(q) - q'. (0)(1.",p(-q) —I.',p(q)jap, ,(q) —Ip, ,(-q)]vv(0)
q (h~i —E + iI' )(hcu, —E~+ iI'~)

1 1
n~q~ . +

h~, —Ep — „,' +iI'p h~, —Ep — ' + imp)
(16)

where

e 2 2vrh
Hi. =(clei I'l~)(~II e lc)cr I rlirls Qiiii~s

(17)

The first term in the large parentheses of Eq. (16) cor-
responds to diagram (a) in Fig. 1, i.e. , the exciton inter-
mediate transition lo, K = 0) ~ IP, K = q) due to the
interaction with impurities, while the second term rep-
resents the contribution to WFi of diagram (b) in Fig. 1

when the exciton is scattered firstly by a Lo phonon. It
can be seen from Eq. (16) that terms arising from the
permutation of H«, , and H, F enter differently in the
amplitude calculation. In order to evaluate Eq. (16) it is
necessary to know the matrix elements I„p(q) between
different exciton states, i.e. , transitions between discrete-
discrete, discrete-continuous, and continuous-continuous
states. In a one-phonon process (without impurity in-

teraction) only the s-exciton states (angular momentum
l = 0) for discrete and continuum excitations contribute
to the scattering efficiency. ' The different matrix ele-
ments for exciton transitions with / = 0 are reported in

Ref. 17. In the case of an impurity-induced LO phonon
(or a second-order Raman scattering process) and accord-
ing to Eq. (16) exciton transitions with angular momen-
tum / ) 0 have to be consider in the scattering amplitude.
In the following we consider the Wannier-Mott hydro-
genic model in the framework of the envelope-function
appr oximation.

C. Wave functions and matrix elements

The AVannier-Mott exciton envelope wave functions fo1.

the discrete spectrum in spherical coordinates are

v-, i, (i' ~ &) = 2 (n+ l)! 2r)
n' +(2l + 1)! as(n —l —1)! a )

2r 5
xe "l'"F n+ —l+ 1, 2l + 2; —Ian)
»i(l!,4), ,

where F(a, b; z) is the confluent hypergeometric func-
tion, Yj „,(9, $) are the spherical harmonics, with I

0, 1, . . . , n —1, and I runs from —/ to /, and a is the ex-
citon Bohr radius. For the case v = 0,

w. , i,-(0) = bb1,0 m, 0
7r a3n3

For the continuous spectrum

where k = k~a, and I'(z) is the gamma function. The
continuous spectrum is infinitely degenerate, to each
value of E = h k&/2p, it corresponds an infinite num-

ber of states, with / running from 0 to oo and m

0, +1, . . . , +/. In the case r = 0

p~, i, (0) = ke l2" II'(1+ i/k)Ibi Db
xV

For simplicity, in the calculation of the continuous-

q i-, i, (~, fl 0) =, , ),
e"'IF(i+ 1 —i/ ) I

V 2/+1!
2k'

(i ikr
x F !

—+ l + 1, 2l + 21; &i.(0 0),
qk

(2o)
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continuous matrix elements we take for the exciton the
uncorrelated electron-hole pair approximation:

Vk(r) =
V

(22)

Q
&p I( ~(r) pko (o „,o(r)d r = 2Ir—b(k —k')b( (oh~ ~o )

The function pt. ( (r) [Eq. (20)] is normalized as
follows.

1.0

0.8

0.6
C)

C

o 0.4
Q C

0.2

while pk(r) [Eq. (22)] is normalized according to

3

pk, (r)pk(r)d r = (2~i) —b(k —k') .

(23)

(24)

'I

I01 I I
I I I I I I I I I

1 2 3 4
Q

I
'

l ' I

The mat, rix elements I(), p(q) are evaluated in Appendix
B. For discrete-discrete transitions they are given by

I

04 ~ l~

(3.2)

( d)=

1
x Io&„o„& (Q )I (2S)

- -0.2c)
—-0.4 -~

I I

-06-' I
I

sl, I I I I I

2 3 4

where the constant Cu p u (o and the function
p o (o(Q ) are defined in Appendix B, and

(m /ma)qa. The I„p„((Q) matrix elements satisfy
the following properties:

I,(;,o(Q) = (—1)' I,o;,( (Q)

Q

FIG. 2. Matrix elements I„p, & Il as a fllllction of the di-
mensionless variable Q for different, values of n and n' (from
1 to 3) with angular momentum (a) I' = 0; (b) I' = 1. The
numbers in brackets correspond to (n, n')

I,o. , ( (-Q) = (—1)' I,o;u, ( (Q)

In'I';n, o( ,Q) —In, o;n', l'(Q)

(26) , 2'+'k'+'e I'"~I'(I+1+ i/k)~

(2I+1). '+

(n+ I')!
(n —I' —1)!

a ( d
n, o;t-,((Q) = ~, o;t-, (

& Q

1
x 2. (2 o o, (Q) —Z„,o;o,o(—Q))),

where

(27)

Figure 2 shows the matrix element as a function of Q for
n and n' from 1 to 3 with I' = 0 [Fig. 2(a)] and I' = 1
[Fig. 2(b)]. From Fig. 2 it can be seen that I„)„p.
decreases rapidly with increasing Q and for a given I' the
maximum contribution comes from n = n'.

The discrete-continuous matrix element I„p ), I(Q) can.
be put in the form (see Appendix B)

and 2 p t. )(Q) is given by Eq. (B11) of Appendix B.Sim-
ilar formulas can be obtained for the matrix elements be-
tween (n, 0) and (k, I) states. The following relation is
fullfilled:

It. (;., o(Q) = I~,o; ((tQ)— (29)
No simple relationship can be ob tained between
I~ p /„, ((Q) and I„(t p(Q). The matrix elements corre-
sponding to Jtn, I) and (k, 0) transitions can be written
a,s

Q ( d
~,(;);,o(Q) = ~(;tov Q, ,

1
x ~. (r. ioo(Q) —Z.o;o,o( —O))),, ,

(30)
where now
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(31)l
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Fi(z) =
oo n —1I

1

() gi)3/2
n, n', n"=1 1'=1

(-1)' l.",0,. l (z) —I' 0;. , l (z)
(p 1/„,)(p 1/,

',"„,') [(-1)' ."-,o;. , l ( ) —:-,o...l (z)l

x! 1 1

(p2 —h~o/R+ 1/n'~ p2 + 1/n'~)„+

In F2(z) two intermediate states belong to the discrete spectrum and one to the continuum. In this case different
transitions can be performed: (a) discrete-discrete-continuous, (b) continuous-discrete-discrete, (c) discrete-continous-
discrete. For example, in case (a) the light creates an exciton in the virtual state !n, I = 0, m = 0) (discrete state) by
the emission of one phonon [diagram (b) in Fig. 1], the exciton made the transition from !n, 1 = 0, m = 0) to another
discrete state with quantum numbers!n', i', m = 0), the scattering by impurities moves the exciton from!n', I', m = 0)
to !k, i" = 0, m = 0) state (continuous state) from where the exciton annihilation is produced with an emission of a
quantum of light. Considering all these possibilities the function F2(z) is

1
F2(z) =-

2m

oo oo n —1

—,) —, ).). [(-1)'I",o;,l (z)-I',o;. , l (z)]
n=1 n'=1 1'=1

1 1
X

/)a —&~ra/R+ 1/n'~ Pz y 1/n'~)I +

x dk k[I„", i, &0(z) —.I„', l, &0( z). ]e ~—"!r(1—ijk)!

1 1x!
k(P, + 1/n )(Ps —k ) (Pi —k )(P3+ 1/n ) p

2 2 + 2

II

+ 4 0;a, i( *) 1~,0;a,l(z)
kdk

a n"3&2 Pi + 1/n2n"=1 p 0

k, l;a",0( ) —Ik, l;ra", 0(—Z)

P +1/
1 1

X .s+
p2 — ~hL/oR—ks p2 —k2) (39)

The contribution due to two continuous exciton states and one discrete virtual state is given through the function F3(z)
where all combinations have been taken into account (discrete-continuous-continuous plus continuous-continuous-
discrete plus continous-discrete-continuous transitions). It is possible to show that Fs(z) can be put in the form

QQ n —1

F.(~) = )f , ) „,)f—d&:""I&(&,-~'/&)III.",oui(-*) -I:,oui(*)I
n=1 1=0

1 1

(pi + 1/n )(p3 —k ) (pi —k )(p3+ 1/n ))

ln!
t P2 —h~l, o /R —(k —zm/, /mg) P2 —(k —zml, /m~) )

(p2 —h41r.o/R —(k + zml, /mg) p2 —(k + zmh/m g)
!

2
+

jr

1
ln P2 —h4Lo/R —(k —zm, /mF) P2 —(k —zm, /mz)

2zm, /ma p2 —hour, p/R —(k + zm, /m~) p2 —(k + zm, /mz) j
"~"!r(1—i/k)! „

[I/";,0;,l( z) Ii'-. o;,l(z)]
i

e )""!r(1—i/k)! [li 0;n, i( *) ia, o;,i(z)]

1 1

(X
Pg —h~Lo/R + 1jn2 Ps + 1/n2

+ (4o)

The term F4(z) corresponds to the contribution of only continuous virtual states to the scattering efficiency, and can
be written as
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1 3 3 I 3 II b(k —k' + zmg/m~) —b(k —k' —zm, /m~ )
2(2n.)2 Pt —k2

b(k —k" —zmI, /mz) —b(k —k" + zm, /m@)
Ps —k"

1
x

l I2i, p2 —~~Lp/R —k'' p2 —k (41)

h~] —Eg + iI'g

R
h~t —F~ + iI'2

R
h~, —E~+ iI'3

R

p,
Z t

l7l E

The functions P; (i = 1, 2, 3) are defined as follows:

(42)

0.025
(al

0.020—

0.015—
05

1/S I ap
----i/S I a I2
——i/S Ia I'0 22" . . " &/So I a3I

In Fig. 4(a) squared magnitudes of the diff'erent contri-
butions

0.010—

0.005—

dz~'(z)l~&(z)l' (i = 1, 2, 3, 4) (43)
0.000

for the case of scattering by ionized impurities, i.e. , for

g = [z2 + (a/A)2] ', are presented as a function of the
reduced laser photon energy (h~~ —Ez)/R for the case
bc' Lp/R = 4.55 and a/A = 0.186. The total squared Ra-
man polarizability la~; l /Sp is also shown. The following
empirical relation is used for the lifetime broadenings:
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Fi

r„= r(k)— (44)

A. Broadening and screening elects

Figure 5 displays the results of the calculation of laF; l

with Eq. (36) obtained for the GaAs with the parame-
ters of the Fo + Ao gap' for three different values of
the 1s-exciton broadening I' t, (5, 10, and 14 meV). In
all calculations a continuous exciton broadening I', = 14

with I'(k) = 10 meV and I't —5 meV. The most impor-
tant contribution to the Raman tensor comes from the
function at (involving discrete-discrete-discrete exciton
states) and gives, for these particular data, an incoming
resonance larger than the outgoing one. All other terms
give outgoing resonances stronger than incoming ones.
This is due to the possibility of triple resonance intro-
duced by the continuum in the outgoing resonance for a
particular value of Q.

Figure 4(b) shows the squared Raman polarizability
laF, l

in units of Sp including the excitonic effect (solid
line) and the corresponding calculation for the uncorre-
lated laF, l

electron-hole pair theory (dashed line) as a
function of the reduced laser photon energy (hest Ez)/R-
As can be seen in Fig. 4(b) la&, l is two orders of mag-
nitude lower than the laF;l calculated according to the
impurity-exciton theory.

4

0.010—
O

CO

0.005—

0.000
-6 -& -2 0 2

(~tet-Eg) / R

FIG. 4. (a) The different contributions, s la~i (jSo
1, 2, 3, 4), to the Raman eKciency calculated for the extrin-
sic impurity-induced forbidden scattering by one LO phonon
as a. function of incident photon energy in dimensionless units
are shown together with the total Raman efficiency lay';i /Sp.
j = 1, all three intermediate states belong to the discrete spec-
trum; j = 2, two intermediate states belong to the discrete
and one to the continuum; j = 3, two intermediate states be-

long to the continuum and one to the discrete spectrum. (b)
Impurity induced LO-phonon Raman eKciency. Solid line:
excitouic theory given by Eq. (36) in units of Sp. Dashed line:
uncorrelated electron-hole theory la+, l

according to Ref. 3.
The curve la~.

i /Sp has been multiplied by a factor of 50.
1n the calculation the GaP parameters were used (Ref. 17)
a.nd the ionized impurity is assumed with a screening factor
A = 5.4a.
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lsl' = Is~I'+ I(sF*I', (47)

where a~ represents the Raman polarizability for wave-
vector-induced Frohlich interaction. The diagonal com-
ponents a~ of the Raman tensor for the case of transitions
between exciton states is given in Ref. 17. An analysis of
the different contributions to the squared Raman polariz-
ability shows that the outgoing resonance in the squared
Rain polarizability ~aF

~

is higher than the incoming
one because of the contribution of discrete-continuous ex-
citonic transitions. It is well known that the scattering
amplitude for the Frohlich mechanism is proportional to
the magnitude phonon wave vector q which is equal to
v~ —K, , since in this case the wave vector is conserved. For
impurity-induced Frohlich interaction the phonon vector

q is not limited to any particular value. The main con-
tributions to the Raman scattering eKciency come from

q near the values q~ and q2 determined by the relations

alld

h q2
r~, —Z, — ' =0

2177+
(48a)

h q
h~& —h~LO —Fp — ' —0

2m, F
(48b)

The q = q~ or q = q2 values correspond to real exci-
ton transitions for the intermediate state P in Figs. 1(a)
and l(b), respectively. These real transitions are deter-
mined by the zeros in the corresponding denominators of
Eq. (15) and produce double and triple resonance effects.
Equation (48a) is the double resonance condition while
Eq. (48b) represents triple resonance. The latter explains
why the Raman scattering efficiency for the outgoing res-
onance is higher than for the incoming resonance.

In Fig. 7 we compare the absolute value of the Frohlich
interaction ~a~~z, calculated including excitonic effects

(see Ref. 17) and impurity-induced (az;~ for the Ep+b, o

CP of GaAs with different impurity concentrations. Note

that we need a value of n; = 10 cm in order to have

)aF, [ of the same order as the q-induced [a~[z. This
small contribution is explained by the (q +I/Az) factor
present, in Eq. (36), which drastically reduces the main

contribution of large q vectors to the Raman e%ciency.
For these calculations A = 0 and I'~, ——I', = 14 meV

were taken. From this comparison we conclude that in

high-purity liquid-phase epitaxy samples the only contri-
bution to the Raman polarizability in the z(z, z)z config-

uration comes from Frohlich interactions, as was already
pointed out in Ref. 18. The experimental data for GaAs
measured at 100 K obtained from Ref. 5 are also pre-

sented in Fig. 7. It is clearly seen that dipole-forbidden
Frohlich interaction fits the experiment without assum-

ing the impurity-induced mechanism.
Figure 8 shows the calculated absolute value of the

squared Raman polarizability for A1Sb around the Ep CP.
The forbidden Frohlich ~aF ~' and the total absolute value

(a~( + ~aF,
~

with n, = 2 x 101 cm s are presented to-
gether with experimental points. The parameters used
for Alsb are those of Ref. 22 and A = 0 was used. The
order of magnitude of ~aF,

~

obtained in Ref. 22 treat-
ing the contribution of impurities to the Frohlich mech-
anism in a simple, heuristic way is reproduced in Fig. 8
adding aF; in a rigorous way according to Eq. (36). The
samples used in Ref. 22 are p-type commercial samples
with impurity concentrations higher than 10 cm . It
is thus possible that impurities play an important role
in the measurements reported for A1Sb. This should be
clarified by simultaneous Raman and Hall effect measure-
ments for the same samples. We note, however that the
width of the experimental profile in Fig. 8 is much larger
than the calculated one. In view of the sensitivity of A1Sb
surfaces to humidity and the delicate polishing procedure
required, the measurements should be repeated, prefer-
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FIG. 7. Raman polarizability calculated for forbidden
LO-phonon scattering in GaAs around the E0 + &0 gap.
Solid line: intrinsic LO-phouou Ramau scattering (a~( (see
Ref. 17) including excitouic effects. The other curves repre-
sent the calculated (a~;( [see Eq. (36)] for n, = lo, 1O

and 10 cm . Parameters from Ref. 18, A = 0, and
I'q, ——I', = 14 meV. The dots are experimental points af-

ter Ref. 5.

Energy ( eV)

FIG. 8. Forbidden LO-phonon Raman polarizability for

AISb at the Ep gap. Solid line: total absolute value of ~aF ~
+

(as;( for LO-phonou Ramau scattering including excitouic
eR'ects. Dashed line: (a~( for iutraband Frohlich LO-phonou

Raman scattering (see Ref. 17). Parameters from Ref. 22.

The dots are experimental points after Ref. 22.
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ably for surfaces cleaved in vacuum.
We should point out that the Raman eKciency is con-

nected with the exciton lifetime broadening I' = h/r and
this is related to the relaxation time rl due to the impu-
rity scattering. In general we can write that

d3r —iq r —r, /Ae
7

e2
g.(q) =

epv
4vre2=,y [g'+(I/&)'j ' (As)

where 7p is the relaxation time due to other scattering
mechanisms like acoustic and optic phonon scattering.
1/7I is proportional to the impurity concentration ac-
cording to the relation 2

and for the hole g, (q) = —gh(q) = g(q) with r, re-
placed by the hole coordinate rh. Thus, the electron-
hole-impurity potential is

U(r„rh) = U, (re) + Uh(rh) . (A4)

In the K, A-exciton representation and using second
quantization the above equation is transformed into

1 2n;h 2'
[I —ne E;(—n)],

mF, kBT
(50) Hexc-i = ) )

K', gi K,A

y~ (r)U(R, r)e'K R

where E, is the integral exponential function, e
r;/1~T, and e, the binding energy. An estimation of
I'I = I/71 for the GaAs parameters, T = 100 K and
n,; = 10 cm gives I'~ 3 meV. For higher values of
n;, impurity scattering dominates and maximum Raman
polarizability should rapidly decrease.

with

me mQr = re rI„R= re+ rI
PA+ ?7l Q

(A5)

(A6)

IV. CONCLUSIONS

We have developed a theoretical model of impurity-
induced first-order resonant Raman scattering which in-

cludes excitons as intermediate states in the Raman pro-
cess. The obtained results confirm that the most impor-
tant contribution to the forbidden one-phonon Raman
process comes from the q-dependent Frohlich interaction
induced Raman scattering Ia~I2. The impurity scatter-
ing mechanism becomes important for relatively high im-

purity concentrations ( 10 cm ). Neutral impurity
scattering is important in the one Lo-phonon Raman
scattering for values of impurity radius of the order of
the exciton Bohr radius. The calculated absolute values
of Is~I + IaF; I

reproduce, for instance, the order of mag-
nitude observed in AlSb for T = 100 K with n, = 2 x 10
c1Tl

'7'& = ——e I@-(r)I'
E'p

(A7)

where g„(r) is the impurity wave function. For the ls
state the corresponding density of charge is given by

(r) = — e
xa;

(A8)

a; being the impurity Bohr radius. Combining (A8) with
(A7) and adding the boundary condition for P(r) in r ~
oo and?. ~ 0, the full solution for the electron-impurity
potential interaction U, (r, ) = eP(re) is given by

From Eqs. (A2) —(A5) follows the exciton-impurity
8amiltonian of Eq. (11).

The neutral impurities can be treated in the hydro-
genic approximation; the electrostatic pot;ential is the
solution of the Poisson equation

APPENDIX A: EXCITON-IMPURITY
INTERACTION HAMILTONIAN

e
U, (r, ) =

&O? e

—r /Ae (Al)

where A is the screening length and re the electron coor-
dinate. In the q representation Eq. (Al) can be written
as

For ionized impurities and considering the screening
effect, the electron-impurity potential interaction is equal
to

U(r)= e "~ ' —+1
Ia, ) (A9)

4~e 1 t 4/a,
soV q + 4/a; ~ (g2+4/a2) )

(Alo)

APPENDIX B:MATRIX ELEMENTS

Following the same procedure as in the ionized-impurity
case the exciton-neutral impurity Hamiltonian is ob-
tained now with g(q) equal to

U, (r, ) = ) g, (q)e'
q

with

(A2) According to Eq. (16) it is necessary to evaluate
the transition between p„o p and p„i (I p exciton states.
The discrete-discrete matrix elements I„o„I il (Q) are ob-
tained by substituting Eq. (18) into Eq. (10), i.e. ,
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»o,; »'&', {Q)= p 'p», o, o( p) 'p»', &', o(&)

~l' 2l'+1

(2l'+ 1)!n /' n"-'+

dz P( (z )e'~~

(2.t'+ 1)(n'+ I')!
{n' —I' —1)!

dp p' +2e "+ " ~F —n + 1, 2; —F —n'+ l' + 1, 2l' + 2;—' n)

(B1)

where P~{z) are the l.egendre polynomials, p = r/a, and the Q vector has been taken along the z axis. The integral
in z yields

d& R'(&)e — & Jl'+1/2(Qp)
Qp

(B2)

where J~ +, /q(Qp) is a Bessel function of order l'+ z. The function Jtj+, /2(Qp) can be represented by

Jt +t/2(Qp) = (—1)'
~ p'+' t, QcIQ & Qp )

Applying (B2) and (B3) to Eq. (Bl),

d
'

1
n, 0;n', 1' — n, o;n', l'

d 2
'

—p(1/n+1/n') (eiQp —~Qp)

x F
~

n+ 1, 2; —— F
~

n' + /' + 1, 2l—' + 2, —,2p /'. . . 2p&
'n (,

' 'n' (B4)

where

—2 +"

(2l' + 1) t n'/'n"'+'
(2l' + 1)(n' + l')!

(n' —I' —1)!

(B5)

—n+ l + 1, 2l+ 2;—2p
'0

(1 + l —n), 2'

(2l + 2), (s + 1)!n'

The integral

2'n, o; ~, i (Q) = —
/ (i/n+ i/n'+iq)

with (1 —m), = (1 —m)(1 —m + 1) (s —m). The
integral of an confluent, hypergeometric function times a
power is a. normal hypergeometric function:

2pxF —7l. + 1,2;—
7l e 'z'F(n, p", kz)dz

x I' —n,
' + l' + 1, 2l' + 2, —'

n. '

can be solved by writing

(B6)

k
= 1(v+ 1)A

' 'F ov+ 1 y; —
~

. (B8}'A/

ln our case we have the I' function of an integer, &(s +
2) = (s + 1)!,and the solution of 2 o ' I'(Q)

f(1/ + 1/n')'+ Q'l' '/" + '/" + 'Q~
(BQ)

The continuous-discrete matrix elements can be obtained by applying to Eq. (10) the wave functions given by Eqs. (18)
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and (20). We obtain

In, o;t. , i(Q) =

X

as i 2+2k + e~I "[I'(t + 1 —t/k)[
27r (2l + I)!nsI'

dp p'+ e "+'"IF( n—+ 1, 2;2p/n)F(i/k+ I+ 1,21+ 2;2ikp) dz P((x)e'q~ . (B10)

According to Eqs. (B2) and (B3) and writing

2 nO; tt(Q, ) = dppe & ~"+'"+'q F(i/k+ I+ 1, 2I+ 2;2ikp)F( —n+ 1, 2;2p/n)

" . (1 —n), (1/n+ik —iQ)'+' (. , 2ik

[(I/n

haik)z+Q2]

i,
' ' '1/n+ik+iQJ ' (811)

the matrix element I„ot~(Q.) can be given in terms of Z„o s &(Q), similarly to the discrete-discrete case and Eq. (25)
is obtained straightforward. Following the same procedure the function I„t y o(Q) can be calculated and Eq. (30) is
derived.
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