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Transmission and intensity correlations in wave propagation through random media
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We report on an experimental study of wavelength-dependent intensity fluctuations in coherent light
that passed through a random dielectric medium. For the intensity that is scattered into a narrow solid

angle and for the total transmission, we find exponential- and power-law decay in the intensity-intensity
and transmission-transmission correlation, respectively. We derive an expression for the intensity-

intensity correlation in the medium under the prevailing experimental conditions: Gaussian incident

beam, slab geometry, and some absorption. From this expression we calculate the short-range and long-

range correlation functions, using a Langevin approach to find the latter. Two earlier calculations of the
long-range corrrelation function disagreed by a prefactor. The present theory quantitatively describes
the long-range correlation, and therefore removes the uncertainty about this factor. With the
Boltzmann diffusion constant for light in the random medium as the only fitting parameter, we obtain
quantitative agreement between theory and experiment.

I. INTRODUCTION

In recent years interference effects in the multiple
scattering of waves in disordered media have raised a lot
of interest. Weak localization of electrons has been
known for some time. ' More recently, weak localization
of electromagnetic waves has been observed in the form
of enhanced backscattering. Intensity fluctuations, pos-
sibly related to the "universal" Auctuations known in
electronic conduction, have been observed. Theoreti-
cal results as obtained through a diagrammatic tech-
nique and also a random-matrix approach predict that
the universal conductance fluctuations (UCF) observed in
electron transport, ' indeed, have an electromagnetic
wave counterpart. We shall briefly summarize these re-
sults: The volume occupied by the random sample is
considered to be a waveguide, supporting X modes. The
sample will mutually couple these modes in a random
manner, and intensity transmission coefBcients T & give
the fraction of the power in the incoming mode a that is
coupled into the outgoing mode I3. For the correlator
C &,&

—(5T &
5T,& ) (angular brackets stand for

averaging over the disorder), Feng et al. obtained the
expression C=C, +C2+C3 with

C'~&.&=D, (T &)(T .tr)5t, ~ F,(bq+),

C'&,&
—=D2g '( T &)( T & ) [F2(bq L )+Fz(bq&L)],

C-"il-i«= D3g '(T-i &&T—-t »
where the D's are constants of order unity and Ft and Fz

are form functions. The C, part is of order 1 if +=a'
and P=P', and decays exponentially with increasing
b,q =—q

—q =q&—
q& ("memory effect"), and is zero if

hq Ab, q&. The C2 part is of the order g
' (with g the

conductivity Nl/L, where l is the mean free path and L
the sample thickness) if either b,q or Aq&=0 and shows

power-law decay with increasing Aq. Finally, the C3 part
is of the order g and does not depend on either Aq or

Aq&. The same types of correlation, short range, long

range, and "infinite range, " respectively, will show in the
corresponding three components of the two-frequency
correlator (5Ta&(co)5Ta&(co')) for varying bco= co to'. — —
The results predict that if, in an experiment on a sample
with g))1, just one incoming mode is excited, the C,
and Cz correlation functions will be measured in the sig-

nal in just one outgoing mode and the total transmission,
respectively. If all incoming modes are excited by mutu-

ally uncorrelated signals and the total transmission is

measured for different sample realizations (we then have

a situation analogous to that in an electronic conduction
experiment) the C3 term (UCF) would be found.

The short-range correlation function C& has been stud-

ied by varying the angle of incidence and wavelength. '

Its shape does not depend on the beam profile. The
long-range correlation function C2 does depend on the
beam profile and has been calculated in the plane-wave
limit for both varying angle of incidence and varying
wavelength. " Long-range correlation has been observed
in experiments with varying wavelength in the mi-

crowave and optical regions.
In the present paper we describe detailed measure-
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ments of both the short-range [Ci(hco)] and the long-

range [C2 ( hco }] correlation functions, including the
dependence on beam profile of the latter. We also calcu-
late the correlation functions and compare the experi-
mental results with theory.

In Sec. II we derive an expression for the frequency-
dependent intensity-intensity correlation in volume
speckle within a weakly absorbing random dielectric
medium with slab geometry for a Gaussian incident
beam. The short-range C& correlation function that
holds for intensity fluctuations in light that is scattered
into a narrow solid angle follows directly from this ex-
pression. In Sec. III we calculate the long-range C2
correlation function that holds for the total transmitted
intensity from the short-range correlation function for
volume speckle through a Langevin approach. ' Experi-
mental techniques are described in Sec. IV. The measure-
ment of Cz(b, co) correlation functions is affected by the
finite length of the frequency interval over which scans
could be made. We used Fourier techniques to correct
for this effect. These techniques are described in Sec. V.
In Sec. VI the results are discussed, and conclusions are
given in Sec. VII.

II. INTENSri Y CORRELATION
IN VOLUME SPECKLE

We measure wavelength-dependent intensity-intensity
correlation because —at least in the optical region—
these are experimentally more accessible than correla-
tions that depend on spatial position or angle of in-
cidence. We shall restrict our calculations to this type of
correlations as well.

Because of interference, the intensity inside the (static)
random dielectric slab will fluctuate strongly in space
("volume speckle" ). In this section we calculate the aver-
age correlation in the intensity in a correlation volume
(speckle spot} at depth z as a function of the frequency
shift in the incident coherent light. The correlation func-
tion is defined as

&I(co,r)I(co', r) &
—

& I(co,r) & &I(co', r) &

&I(co,r) & &I(co', r) &

From now on we drop the co dependence in C(co, hco, r).
Writing the diffuse part & I(co, r) & in its field components,
we get

&I(co,r) &:—
& V(co, r)%'(co, r) &

—= f fdri dr4& G(co, r, ri) && 6'(co, r, rz) & &L(co,r„rz, rs, r„)&W(co, rs) & & +'(co, r4) &,

with & G(co, r, r, ) & the average-amplitude Green s function for propagation from r, to r in a disordered medium. The
four-point vertex & L & denotes the sum of all ladder diagrams. Writing the correlator & I(co,r)I(co', r }& in its field com-
ponents, we get

&I(co,r)I(co', r) & —= & %(co,r)%'(co, r)%(co', r)V'(co', r) &

1 FS G N, I', I'1 G , rr2 G r, X3 G r, r4

X &K(co,co', r, , . . . , r4;rs, . . . , rs) & & 4(co, rs) & & 4'(co, r6) & &%'(co', r7) & & 4'(co', rs) & . (3)

The eight-point vertex &K& contains all possible four amplitude diagrams. Feng et ctl. showed that the intensity
correlations of interest can be classified by writing the eight-point vertex & K & in an expansion ofg, where g =Nl /L.
In the lowest-order expansion, the eight-point vertex &K & factorizes as a product of two ladder vertices &L & X &L &.

Higher-order terms of the expansion in g
' contain Hikami boxes, ' (irreducible) eight-point vertices connecting two

ladder vertices, which describe the long-range correlations in volume speckle. In this section we are interested in the
short-range correlation only, which follows from the lowest-order expansion of & K &:

&K(co,co', r„.. . , r4, r„.. . , rs) &
= &L(co, r, , rz, r„rs) & &L(co', r3 r4 r7 rs) &

+&L(co,co ri r2'rs rs)&&L(co, co' rs r4'r6 r7}& (4)

The vertex &L(co,co ) & in Eq. (4) denotes the ladder diagrams in which two amplitudes with different frequency travel
along the same path. Using Eqs. (2—4), the numerator of the rhs of Eq. (l) may be written as

&I(co,r) & C(bco, r)

—=f . . fdr, . dr~& G(co, r, r, ) & & G'(co', r, r2) &&L(co,co', r„r2;rs, r4) & & %(co,rs) && V*(co',r4) &

X f . . . fdr, . . . dr4& G(co', r, r, ) & & G'(co, r, r2) &&L(co,co', r, rz, rs, r4) &&+(co', rs) &&%*(co,r4}& .

To calculate the two-frequency vertex &L(co,co') &, the time-dependent ladder vertex &L(t, co) & is needed. The latter has
been calculated by using the time-dependent Green's function' in the integral equation
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(L ) =(I)+(I)((6)(6*))(L ),
with ( I ) the lowest-order contribution to the irreducible four-point vertices. If (I ) is incorrectly assumed to be fre-
quency independent, the value that one obtains for the energy-transport velocity U which occurs in (L ) is equal to that
of the phase velocity. In real samples one may expect the two velocities to be different. The actual velocity of energy
transport may be obtained in (L ) by taking the frequency dependence of (I ) (and of the self-energy of (6 ) ) into ac-
count. ' %e thus obtain

47TU (I ] ~3] /4at
(L(t, co, r, , rz, r3 I4) ) z 3/z e ' ' 5(ri —rz)5(r3 —r4),

I z(4~Dt )'"
with D = Ul /3 the Boltzmann diffusion constant. Defining the propagator

HL(t, r, r, )5(r, —rz) = f dr3 f dr4( 6(co,r, r3) ) (6'(co, r, r4) ) (L(t, co, r3, r4;r, , rz) ),
the corresponding two-frequency ladder vertex (L(co,co') ) may be obtained as follows: The phase shift that develops
between the two waves that travel along the same path results from their difference in wavelength and will be equal to
exp( i scot ) Thu. s

f dt HL(t, r, ri)e' "'5(r, —rz)= f dr3 f dr4(G(co, r, r3))(G'(co', r, r4))(L(co co 13 r4;r„rz)) .

For the slab geometry, we have

(9)

Ue rJ/4D& —
pnZD&/LZ

—innzi /L innzZ/L
L izl ~ ziri. e e e e e

n = —ao
8rtIDtL

—in.nz /L2
)

where L is defined as L,&,b+2zo, zo is the distance from the slab boundaries at which the diffuse energy density extrapo-
lates to zero, and absorption is introduced through the inelastic mean free time v, . Following Akkermans, Wolf, and
Maynard, ' we will assume that all diffuse intensity is generated at a depth l with respect to the physical boundary of
the slab. The average diffuse intensity at depth z is then

(I( croi, z)) =f dt fdzi fdru f drziHL(t, zi, z, ri r»)5(r—u rzi)I5(z—i
—z;)('P;„,(co, riJ))(%';"„,(co, rzJ)), (11)

with z, =I +zo the injection depth. Substituting Eq. (9) in Eq. (5) and decomposing the incoming amplitudes into their
plane-wave components, we get

(I(rJ,z) ) C(bco, ri, z)

2

4 f dq, J f dq4J fdr» f dt( q;/„, qi|))(%",„,(q4 J))e " "HL(t, z;, z, rJ r&J)e'—
(2~)

X fdqzJ f dqzLf drzi fdt&qi;„,(q3L)&&%'„,(qzJ)&e"" "HL(t, z;,z, ri rz|)e— (12)

with Aq&~=—q4j q]J and Aq2J —q3i q2$ We now integrate over t, r&i, and r2i, respectively, and write the summation
in HI in closed form. Since we are only interested in the average correlation at depth z, Eq. (12) is integrated over rJ.
Subsequent integration over hq2i gives hq, j =hq2i. The short-range correlation in volume speckle as a function of
depth in the slab, beam profile, and frequency shift is then given by

2 2

&1(z))'C(&co,z)=,', f dqii f dqzJ fd&q»&+;„.(qiJ)&&qi;*„.(q»+&q»)&&q'i„. (q»+&q»)&&q';*..(qzJ)&
(2m. ) D

cosh[2(L —z)y, ]—cos[2(L —z)y z]
X

cosh(2L y, ) —cos(2L yz)
(13)

with y&=—(a +b )'/ cos(P/2), yz=(a +b )'/ sin(P/2),
a =bco/D, b:hqii+k—„k,—=Q—l/Dr„and tang=a/b.
Equation (13) holds independently for three orthogonal
directions of polarization.

The short-range correlation in the transmitted intensi-

ty is determined by interference that takes place in the
point of observation, i.e., outside the slab. The two
ladder vertices in Eq. (5) will in general have different
emission points from where the two intensities propagate
to the point of observation. The integrations over ri
must therefore be performed independently over the first

cosh[z/(2a)' ]—cos[zI(2a)' ]
C, (b,co)=

z/ cosh[L (2a)'/ ]—cos[L (2a) ]1/2 1/2 7 (14)

I

and second right-hand factor of Eq. (12). This leads to
Aq, j =0 and hq2i=0, respectively, so that the short-
rag. ge correlation function in the transmitted intensity
CJ(waco), unlike the short-range correlation function in

the volume, does not depend on the beam profile. If, in
addition, we neglect absorption, we obtain from Eq. (13)
the earlier reported '" short-range correlation function
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with L —zf the emission depth, in analogy with the injec-
tion depth z;.

III. LONG-RANGE CORRELATION

Correlation in the total transmitted intensity may be
calculated using a Langevin approach. In this approach,
which was first used in the present context by Spivak and
Zyuzin, ' volume speckle acts as a source for a Quctuat-
ing flux component j,„,(r), which generates the long-
range intensity correlations. Pnini and Shapiro" used
the method to calculate the intensity-intensity correlation
in the total transmission as a function of frequency shift

I

for an incident plane wave. In this section we shall ex-
tend the method of Pnini and Shapiro for the case of an
incident beam with Gaussian intensity profile. In the
Langevin approach the diffusion equation for the fluc-
tuating quantity 5I =I—(I—) is

DV 5I(co, r)=V j,„,(co,r) .

From Eq. (15) an expression for the long-range correla-
tion function (,5I(co, k,~,z, )5I*(co',k2j, zz)) is obtained
[the Fourier transform in the (x,y) plane is taken], which
in our notation reads

(5I(k,j,z, )5I*(k2~,z2)) =D f dz' f dz" (j,„,(co, k~j,z')j,'„,(co', kz, z"))
0 0

X [Hp(k, j;z „z')HD (k2j tzppz )k j j k2j+HD(ku, 'z
&,z')HD (kz~', zz, z" )], (16)

where

sinh(kjz & )sinh[k~(L —z& )]
k~sinh(k~L )

(J „(~r)j', „",(~', r'))

2

=5,, (I(r) ) C(bco, r~,z)5(rj —rj )5(z —z') .v 3k2

is the diffuse intensity propagator, z& —=min[z, z'],
z& ——max[z, z'], and HD(k~;z, z') is the derivative of HD
with respect to its second argument z'. The Aux correla-
tor (j,„,(co,r)j,'„,(co', r') ) in Eq. (16) is obtained from the
correlation function [Eq. (13)] for volume speckle and
the velocity of energy transport U between neighboring
correlation volumes. Its decay with increasing frequency
shift follows that of the correlation function for volume
speckle, and its dependence on ~r r'~ is rep—laced by a 5
function. The "strength" of this 5 function is found by
integrating the spatial short-range correlation function'
over space to obtain the correlation volume of one speck-
le spot (this yields 2n 1/ko, with ko the wave vector in the
medium). It follows that

The prefactor that we obtain in the right-hand side of Eq.
(18) is a factor of 2 lower than the corresponding factor
in the paper of Pnini and Shapiro, to make up for the fact
that j,„,(co,r) consists of two independent polarization
components. Another important difference is the appear-
ance of the energy-transport velocity in Eq. (18).

In order to obtain a description that goes beyond the
plane-wave solution for the correlation in the total
transmission, we now transform Eq. (16) back to real
space and integrate over r, ~ and r2j =—r&~+br~ at
z&,z2=L —zf, with L —zf the emission depth, in analogy
with the injection depth z;:

(5T (bco)) = f f f f (5I(co,kuL zf)5I'(co', k2—~L —zf))e " " "e " 'dr&~dbr~dk&j dkz~
(2n )

=(2a) (, 5I(co, k, ~=O, L zf)5I'(co', k ~=—20,L —zf)) . (19)

Since after the integration over r&~ in Eq. (19) it holds
that k&~=k2&, Eq. (16) depends on the length of the vec-
tor kj only, and the effect of absorption may be intro-
duced by substituting ~kj~~(~kj~ +k, )' with
k, =+ 1/Dr„where r, is the inelastic mean free time.
Moreover, because k»=k2~, the Fourier transform in the
(x,y) plane of the flux correlator [Eq. (18)], which de-
pends on k» —k2~, turns out to be independent of ky and
will read

(+;„,(r, )) = e
Po

(21)

and its Fourier transform

Though independent of k», the flux correlator still de-
pends on the beam profile through the correlation func-
tion for volume speckle [see Eq. (13)]. Assuming the in-
cident beam to be Gaussian, we have

(22)

Integrating over q, j and q2j in Eq. (13), we get
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dq» dq2~ %';„, q» %' q»+~q» + .q2l+~q» +' q2l (23)

We may now combine all intermediate results to calculate (5T (bcv) ). Using Eqs. (13},(16), (17), (19), (20), and (23)
and taking k&~=k2~=k, k&~, we get

Iv z, zfk., I ~&~q& q4 cosh[2(L —z')y, ]
—cos[2(L —z')yz] cosh(2k, z')

12mkuD o cosh(2Ly, )
—cos(2Lyz) sing (k,L)

The total transmission ( T ) is obtained by integrating Eq. (11)over ri at z =L —zf and yields

vz;zf k~

D sinh(k, L) (25)

Integrating over z' in Eq. (24), dividing by ( T ), and putting for later convenience the energy and phase velocities v

and v& (that are not rigorously known} into one parameter cz= vv &/c, we obtain the final result in which the mean free
path is eliminated in favor of the diffusion constant:

with

( 5T (Acv) ) c~v«L

( T)' 32~'pz~
(26)

&o~qii/'42

Poe
Fz(b,cv): dAqii—

L [cosh(2L y i ) —cos(2L yz ) ]

yisinh(2Ly, ) yzsin(2Lyz) k, sinh(2Lk, ) k, sinh(2Lk, )

(27)

In the plane-wave limit po&&L and in the absence of ab-
sorption, Eqs. (27) and (26) reduce to

3v&A, „«[sinh(L&2a )
—sin(L&2a )]C(h )=

4~ c &po&2a [cosh(L&2a }—cos(Lv'2a )]

(2&)

The integrand of Eq. (27) contains the infiuences upon
the strength of the long-range correlation of the sample
thickness L, the spot size (through pv), the inelastic
length (through k, ), and both the frequency shift and
differential angle of incidence b,qi (through yi and yz).
The effect of the angular distribution of the incident light
upon the measured correlation is incorporated by in-
tegrating over Aqz. Two limiting cases may be dis-
tinguished: First, for large values of h~, this parameter
will dominate y i and yz. Fz ( Scan ) then decays as
1/(Acv'~ L), while po hardly affects its value. At fixed
hen' L and sample composition, the strength of the
correlation will be proportional to L/po [cf. Eq. (26)].
Second, for small values of Aco, Aqj will dominate y& and
yz. The integrand of Fz(bco) will behave as a function of
hq~L, and po will still be important. At fixed he@' L
(and sample composition) a reduction of po (i.e., an in-
crease in the range of b,qi) or an increase of L will now
weaken the correlation: The top of Cz(hco) will fiatten.

In the plane-wave limit Eq. (28), our solution differs
from the result of Pnini and Shapiro in the prefactor
only. Apart from the already mentioned factor of 2 that
results from the effect of the transversal nature of the
waves, this is due to different definitions of the beam
profile.

IV. EXPERIMENT

pcPOWER 1
I

QT atj
I I
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I I
I
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I
I

Ai" I

I ~ I

— LOCK- IN -~-~ I
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DYE LASER = ~ ~ k I

1l

SM Q CH SF Q L IS

FIG. l. Experimental setup for the recording of fluctuations
in the total transmission. SM, stepper motor; Q, quartz beam
splitter; CH, chopper; SF, spatial filter; L focusing lens; IS, in-

tegrating sphere. Inset: Insert as fitted in port of integrating
sphere, carrying a sample on transparent supporting material.

The experimental setup as used for total transmission
experiments is shown schematically in Fig. 1. A
Coherent Radiation, Inc. 590 dye laser operating in
broadband mode was used as a light source, and its fre-
quency was varied by driving the birefringent filter under
computer control. The beam was chopped, spatially
filtered, slightly expanded, and then focused onto the
sample, which was mounted on an insert, fitting in the
porthole of an integrating sphere. Fluctuations in the to-
tal transmission were measured by recording the diffuse
intensity in the sphere as a function of wavelength. The
beam diameter could be varied by changing the position
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of the focusing lens L with respect to the sample and was
determined by measuring the distance across the beam
between the 1/e points with a 10-pm pinhole. The
sample-detector assembly was mounted on a translation
stage driven by stepper motors under computer control.
In each scan, 1024 data points were taken over a wave-
length interval between 622 and 583 nm. Between scans,
the lateral position of the sample was changed by at least
4 times the beam diameter. A set of scans consisted of 16
consecutive scans probing different parts of a same sam-
ple. In the case of C, -type scans, the integrating detector
was replaced by a photomultiplier fitted with a polarizer
and a pinhole, positioned at some distance from the sam-
ple.

Extreme care was taken to eliminate any fluctuations
that are not due to interference effects within the sample:
The output of the dye laser was stablized through a feed-
back circuit coupled to the pump laser (this also mini-
mizes the influence of nonlinearities of the signal and
reference detectors and permits the dynamic range of the
lock-in amplifier and analog-to-digital converters to be
fully exploited over the entire wavelength range). A ratio
technique was used to filter out the remaining source fluc-
tuations. The reference photo diode was installed within
another integrating sphere because with a parallel in-
cident beam its protective coating was found to produce
interference fringes. The recorded (total) transmitted in-
tensity showed a wavelength-dependent drift, resulting
from different transmission characteristics of optical
components in the signal and reference beams, the wave-
length dependence of the average transmission through
the sample (I is wavelength dependent}, and from
different response curves of the detectors. This drift was
corrected for by recording a "drift curve" before a set of
scans was started, using an unfocused beam in order to
average many sample realizations and dividing the
recorded curves by this drift curve. We found that, even
so, some wavelength-dependent drift remained. Experi-
ments at different power levels showed this remaining
drift to be of thermal origin: The focused beam raises the
temperature of the probed part of the sample more than
does an unfocused beam, and the resulting expansion
slightly changes the wavelength dependence of I. Before
processing the data, we therefore calculated the average
remaining linear drift in the scans belonging to a set and
corrected each individual scan for this drift. Part of a
genuine linear drift component of the fluctuating intensi-
ty is lost in this way.

A typical individual scan is shown in Fig. 2. It is seen
that the fluctuating part of the signal appears on top of a
large background. Depending on the sample thickness
and spot size, relative fluctuations were found ranging
form 0.6% to 2.8%. At constant wavelength of the in-
coming light the relative fluctation was less than 0.05%.

Samples were prepared by suspending rutile Ti02 pig-
rnent in a solution of 3 vol % of PMMA relative to TiOz
in chloroform. The suspension was then spread on a
transparent substrate, and after evaporation of the
chloroform, its thickness was determined microscopical-
ly. The volume fraction of TiO in the resulting samples
was calculated from density determinations to be 36%,

] 0K
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0g 086

02- 0.82
600

M 00- '

580 590

602 604 606 608

600 61 0 620

Wave I en g th

FIG. 2. Total transmission as a function of wavelength for a
sample of 30 p,m thickness at p0=26 pm. The relative fluctua-
tion in the transmission is about 1%.

and the absorption length I, was determined to be =70
pm.

V. DATA ANALYSIS

In this section we shall discuss some experimental con-
straints on the measurement of the correlation functions
and describe methods that we used to circumvent their
effect in the interpretation of the results.

The correlation functions sought are defined as

( 5I(co)5I(co') )
(I(co))'

Under the experimental conditions (rigid samples), the
average over the disorder (I(co) ) cannot be obtained, and
the best approximation at hand for its value is the aver-
age over the frequency range I(co). Since, e.g., the sample
thickness may slightly vary with position, I(co) values can
only be calculated per individual scan. The consequence
of using the average over the frequency range instead of
that over the disorder is that in a Fourier decomposition
of 5I(co} the zeroth component will be missing. Similar-
ly, the linear drift correction discussed in the former sec-
tion will reduce the first Fourier component and cause
some redistribution among a few more low-order corn-
ponents. The combined effect will be mainly a negative
offset of the experimental C(hco) with respect to the
"true" function. In the measurement of C&(hco), this
effect is not important, but for C2(bco) it is. In the next
section we will therefore compare theoretical Cz(bco)
curves to both "raw" measured ones and measured ones
that were recalculated on the basis of a comparison with
theory of all but their lowest Fourier components.

The recalculated correlation functions were obtained
as follows: The discrete Fourier transform of 5I(co ) is
defined as

5I(k„)=
0—1

[I(co ) I(co)]e-
Q 0

(30)

with k„=2vrn/(coo
&

—coo}, n =0, . . . , 0—1; Aco is m
times the frequency step. If we assume I(co ) to be
periodic (with periodicity 0), this definition leads to the
following expression for the measured Fourier com-
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ponents of C(hco):

C(k„)= —[5I(k„)5I*(k„)/I(co) ] .1

0
The Fourier transform of C(b,co) is then defined as

(31)
~ 10-I

D
10

~ ~ ~ ~ ~ ~ ~ ~ g

&na

C(k„)=
0/2 —1

C(bco )e0 0

0—1

+ g C(been )e
m =0/2
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10 100

It can be seen from Eqs. (27) and (28) that C2(b,co) de-
pends on po and L, neither of which could be measured
with high accuracy. The values used in the calculation of
the theoretical C(k„) may therefore differ somewhat
from the actual values. Relatively small errors in po and
L have a pronounced effect on the vertical scale of the
correlation function, but hardly affect its general shape.
We therefore corrected for the effects of the finite scan
length and drift correction in the following way: For
every individual combination of sample thickness and
spot size, the calculated curve was fitted to the 4'"-300'"
experimental Fourier component using the D value found
in C& measurements and a fit parameter az, instead of the
proportionality constant a(=vu&/c ). We "improved"
the set of experimental Fourier components by replacing
the first one by its calculated counterpart and adding the
calculated zeroth component. The improved set was then
transformed back.

VI. RESULTS

In Fig. 3 we present the results of the short-range
CI(b.co) measurements for samples of 13, 22, 30, and 45

pm in thickness. The scans were made over frequency in-
tervals of 19 113 GHz for the 13- and 22-pm samples and
6371 GHz for the 30- and 45-pm samples, respectively.
Using the Boltzmann diffusion coefBcient D as a fit pa-
rameter, the theoretical curve [Eq. (14)] convolved with
the (Gaussian) laser line width of 10 GHz, was fitted to
the data points. The smooth curves correspond to a

FIG. 4. Comparison of measured C&(hen) correlation func-
tions with theory in the Fourier domain. Upper curve, L =30
pm; lower curve, L =45 pm. Smooth lines, theoretical curves
convolved with a laser linewidth of 10 GHZ.

value of D =12 m s '. The horizontal scale was chosen
so as to scale out the L dependence of the theoretical
curves. Deviations from the resulting "universal" curve
are due to the convolution with the laser linewidth. We
conclude that Eq. (14) provides a good description of the
experimental results.

In Fig. 4 we compare theory and experiment for the C&

correlation function in the Fourier domain. The data
correspond to 30- and 45-pm samples, respectively. The
measured curves represent C(k„) averaged over 32 scans,
plotted as a function of the Fourier component number.
The smooth curves are the calculated C(k„), obtained by
numerically Fourier transforming Eq. (14) after convolv-
ing with laser linewidth of 10 GHz. Up to a cutoff that
results from the finite slab thickness, the Fourier com-
ponents of the C& correlation function are of equal
strength, and this explains why the absence of the zeroth
component (cf. Sec. V) is of little importance here.

Figure 5 shows experimental Cz(b, co) curves as mea-

sured for 13-, 30-, 45-, and 78-pm samples using a beam
diameter defined by pa=26 pm. All scans were made
over a frequency range of 31 856 GHz. The choice of the
horizontal and vertical scales is such that the theoretical

1.0..
ii
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3 0.6-
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FIG. 3. Comparison of measured C&(hem) correlation func-

tions with theory. Experimental data for o, L=13 pm; Cl,

L =22 p,m; 6, L =30 pm; Q, L =45 pm. Smooth lines, theoret-
ical curves as calculated for D =12 rn s ', convolved with a
laser linewidth of 10 GHz.
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FIG. 5. Raw experimental Cz(d ~) data as a function of sam-

ple thickness at constant beam diameter given by p0=26 pm.
o, L =13 pm; CI, L =30 pm; 6, L =53 pm; 0, L =78 pm.
Solid line; "plane-wave limit" (po)&L ).
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curves (only the plane-wave limit is shown) should exhibit
a uniform tail. The presented results are averages over 32
scans. All experimental curves indeed show a slowly de-

caying tail, which, as expected from the absence of the
zeroth Fourier component, lies below the theoretical
curve. The discrepancy is smaller for the thicker samples
because there the relative scan length (the absolute scan
length times the square of the thickness) is larger, and
consequently the value of 5I(co) is expected to be closer
to (5I(co)). The predicted decrease in correlation for
small hem with increasing slab-thickness, which is due to
the finite beam diameter, is indeed found.

Figure 6 shows how theory and experiment compare
for the C2 function in the Fourier domain. The curves
correspond to 13- and 53 pm samples, respectively. The
measured curves represent the real Fourier components
C2(k„) averaged over 32 scans and plotted as a function
of the Fourier component number. The smooth curves
are least-squares fits of the calculated C2(k„), with a in
Eq. (26) replaced by a fit parameter cr„„ to these data
points over the 4th up to the 300th Fourier component.
The calculated C2(u„„k„}were obtained by numerically
integrating Eq. (27) over b,qu for each frequency shift
hco and numerically Fourier transforming the Cz(b, co )

according to Eq. (32).
The presence of a long-range tail in the measured

Cz( b co ) correlation function and its absence in the
C&(bco) function are very clearly seen by comparing Figs.
4 and 6. In the C2 function the magnitude of the Fourier
components increases with decreasing component num-
ber, whereas in the C& function their magnitude is con-
stant.

In Figs. 7 and 8, experimental C2 correlation functions
as obtained by back transformation after correction (cf.
Sec. V) of C(k„) are presented. Figure 7 shows the shape
of C2(b, co} as a function of the slab thickness at constant
beam diameter, and Fig. 8 shows the effect of the beam
diameter at constant slab thickness. As mentioned in
Sec. V, the fits were made using a fit parameter ay, in-
stead of the proportionality constant a in calculating the
theoretical curves. The a„, values found for the various
curves are listed in Table I. For clarity, the curves in the
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figures were all calculated using the average value
ex=0. 10 (with the chosen x and y scales, this makes the
tails coincide}. The y values of the data points corre-
sponding to each curve were multiplied by the respective
values of a/as, . From Figs. 7 and g, it is seen that Eqs.
(26) and (27) correctly describe the shape of the C2(b, ra)
correlation function, including the inhuence of L and po.

We now turn to the vertical scale of the correlation
functions. The slight variation in the values of az, listed
in Table I is easily explained in terms of inaccuracies in
the values of po and L, and in view of the wide range over
which these parameters were varied, we conclude that a
is indeed a constant. In earlier work different values were
found for the constant prefactor in the Cz function. "'
The present results permit the evaluation of this prefac-
tor: Our theory predicts Eq. (26) to hold, and the data
show that this expression is directly proportional to the
experimental C2(hco} function. If an additional prefactor
were involved, it should show up as a proportionality
constant between the value of a as defined in Eq. (26) and
that of cr as found from the fit of theory to the data. We
therefore calculate a: The velocity of energy transport

FIG. 7. Recalculated (see text) C2(hco) correlation as a func-
tion of sample thickness at constant beam diameter, given by
pa=26 pm. 0, L =13 lum; 0, L =30 pm; 6, L =53 pm; Q,
L =78 Ijm. So1id lines, calculated from Eqs. (26) and (27), using
a =0.10.
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FIG. 6. Comparison of C2(Leo) data with theory in the
Fourier domain. Upper curve; L =53 pm; lower curve, L =13
pm; both curves p0=26 pm. Smooth lines; least-squares fits of
theory to the data over the 4'"—300'" Fourier component with a
as the fit parameter.

FIG. 8. Recalculated (see text) C2(hen) correlation as a func-
tion of beam diameter at constant sample thickness L of 30 pm.
o, po= 10 pm; CI, p0=26 ym; 4, p0=32 pm; 0, po=74 pm.
Solid lines, calculated from Eqs. (26) and (27), using cc =0.10.
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Beam profile

po (pm)

13
30
53
78
30
30
30
30

26
26
26
26
10
26
32
74

32
32
32
32
32
32
16
16

0.087
0.098
0.091
0.106
0.113
0.098
0.117
0.102

between neighboring correlation volumes in our medium

by light waves of X=600 nm is low, as a result of reso-
nances in the scattering particles. From independent
measurements of I and the mean free time v. f, we found a
value of v =5+1X10 m s '. ' A reliable experimental
value for the phase velocity in the medium v& is not avail-

able. From Brewster-angle measurements we found
v =2.3+0.2 X 10 m s '. This technique, however,

probes sample properties very near the surface, which

may be different from the bulk properties. Values, es-

timated on the basis of Mie theory' and the Bruggeman
eff'ective-medium approximation' (the TiOz particle di-

TABLE I. Values of the fit parameter af„ in Eq. (26), given
for the specified sample thickness, spot diameter, and number of
scans over which it was averaged. Average value a of cxf;, is
0.10.

Sample thickness Number of
L (pm) scans

ameters are between 130 and 280 nm) fall in the range
2.3+0.3X10 m s '. Substitution of these values into
the definition of o. yields o.=0.1, in complete agreement
with the value found for a. We conclude that the
description by Eq. (26) is quantitative.

VII. CONCLUSIONS

We have performed a detailed experimental study of
correlations in wavelength-dependent intensity fluctua-
tions in light after transmission through random dielec-
tric slabs. In addition, we presented a theoretical model
from which both short- and long-range correlations in
the transmitted intensity may be calculated. The model
incorporates the intensity profile of the incident beam,
and its predictions for both the short- and long-range
correlation functions are in quantitative agreement with
the experimental results.
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