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The principal approximation in the Green s-matrix method for calculating the electronic structure
and total energy of point defects in crystalline solids is the choice of (finite) basis set. In this paper the
results of total-energy calculations with a number of different Gaussian-orbital basis sets are presented
for several defects in silicon, including the silicon lattice vacancy and the silicon self-interstitial. Partic-
ular attention is paid to the convergence of the total energy with respect to the number of atoms includ-

ed in the defect cluster on which the Green's matrix is represented. Our best estimate for the formation

energy of an unrelaxed neutral silicon lattice vacancy is 4.4 eV. In many cases we are interested in calcu-

lating the distortion accompanying incorporation of a point defect or the total-energy difference when a
defect is displaced. As illustrative examples, the breathing relaxation around the lattice vacancy and the
migration energies of the self-interstitial and of interstitial oxygen are examined. It is shown that the
atoms surrounding a neutral silicon lattice vacancy relax inwards toward the site of the missing atom.
On including this symmetric relaxation and the Jahn-Teller pairing distortion, the formation energy be-

comes 3.6 eV. Because of the importance of the long-range response to the Jahn-Teller distortion, it was

not possible to calculate the pairing energy entirely ab initio. For silicon self-interstitials in the empty
channels of the silicon lattice, high-temperature (midgap Fermi-level) formation energies of upwards of
4.4 eV are found. The migration energies are strongly charge-state dependent but in general substantial-

ly smaller than the formation energies. The self-interstitial displays negative-U behavior, and its elec-
tronic structure supports athermal migration. The migration energy for interstitial oxygen is calculated
to be 2.5 eV, which is in good agreement with the experimental value.

I. INTRODUCTION

The success achieved with the local-density approxima-
tion (LDA) in describing the energetics of collections of
atoms has led to attempts to apply the Hohenberg-
Kohn-Sham formalism' to increasingly more complex
problems. A point defect in an otherwise perfect crystal
is an example of such a problem. Various schemes such
as finite-cluster, periodic-sup ercell, or Green's-
function techniques were devised to deal with the in-
herent difficulti of the defect problem, i.e., the loss of
translational invariance in a crystal. In the development
of a Green's-function method suitable for the calculation
of defect energies, a number of difficulties were encoun-
tered in the original Green's-operator formulations that
delayed the application of such schemes to realistic defect
models. In these formulations the Green's operator for
the perturbed system G is expressed in terms of the un-
perturbed operator G via the Dyson equation

C=C'+C'(f' —f")0,
where OP' is the o' —perator representing the defect per-
turbation. To obtain solutions of Eq. (1) in practice,
some approximations are necessary both for 0 and for
G. In the defect problem, for exatnple, the operators are
expanded in terms of an incomplete set of localized orbit-
als. This procedure can easily introduce errors in all the
quantities representing a defect-induced change if the
perturbed and unperturbed problems are not treated with

the same degree of accuracy.
Another difficulty in the Green's-operator approach is

associated with the unbound character of the spectrum of
the exact Green's operator. The spectral representation
of C is used in solving Eq. (1). Therefore, even if one is
interested in the operator 0 only over a finite-energy
range, a summation over an infinite spectrum is, at least
in principle, implied in Eq. (1). The contribution coming
from high-energy states of 0 in Eq. (1) decays only very
slowly as the inverse of the energy and may be non-
negligible. It is not clear how important this is in practi-
cal applications.

These difficulties are relevant in total-energy calcula-
tions where one is interested in the small total-energy
changes induced by a defect, e.g., formation, migration,
and lattice-relaxation energies. All of these quantities in-
volve substantial cancellation between individually large
contributions, of the order of several tens of electron
volts, to obtain energies that can be as small as a few
tenths of an electron volt, as in the case of migration bar-
riers and relaxation energies.

In the Green's-matrix approach proposed by Williams,
Feibelman, and Lang' both the perfect and the per-
turbed crystals (including lattice relaxation) are treated
with the same accuracy in the presence of di6'erent kinds
of defects. The fundamental approximation in the matrix
method lies in the choice of the localized basis sets for the
perfect crystal and for the defect calculation. These basis
sets are necessarily approximate but can be chosen in
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such a way as to describe the ground states of the respec-
tive systems with comparable accuracy. In terms of these
basis sets, the Schrodinger equations for the perfect and
the perturbed crystals become matrix equations having a
finite spectrum. Only at this stage are the matrix equa-
tions reformulated in Green's-function language in order
to obtain a Dyson equation connecting the Green's ma-
trix for the perturbed problem to the one for the perfect
crystal. In contrast to the operators appearing in Eq. (1),
the matrices used in the present approach provide only
an approximate description of our system, but they have
the important advantage that no additional approxima-
tions are required to solve the matrix Dyson equation, so
that the problems mentioned above in connection with
the operator scheme are no longer present.

Since the first calculations of total energies for point
defects in semiconductors were reported" ' there have
been numerous further applications. ' Few details of
these calculations for point defects have been published,
making it difficult to assess the accuracy of the different
methods and the validity of the approximations made. In
this paper some aspects of the implementation of the
Green*s-matrix scheme in a version appropriate for point
defects in semiconductors are considered. The conver-
gence problems associated with the method are identified
and studied for a number of specific examples.

The principal approximation involved in the Green s-
matrix method is the choice of basis set. We therefore
begin by calculating the formation energies of lattice va-
cancies and interstitials with a number of different basis
sets. The problems associated with the convergence of
the total energy of charged defects are discussed for the
examples of a substitutional phosphorus atom and for a
charged self-interstitial atom. An important assumption
in the matrix method is that incomplete basis sets that do
not result in accurate absolute energies may be
sufficiently complete so as to give total-energy differences
adequately. To see if this is true, we examine the relaxa-
tion of the atoms surrounding a lattice vacancy and the
migration energy of a self-interstitial with the same basis
sets that were used to study the vacancy and interstitial
formation energies. These examples illustrate the
strengths as well as the weaknesses of the Green's-matrix
method. However, none of the energies calculated are
well known experimentally. In order to make a compar-
ison with experiment, the migration energy of an intersti-
tial oxygen atom in silicon is calculated.

The paper is organized as follows. In Sec. II, the
Green's-matrix scheme for defect calculations is summa-
rized in order to establish the notation used. In Sec. III
the results of calculations illustrating the convergence
properties of the defect total energy are given. Examples
are treated where lattice relaxation is important. A dis-
cussion of these results and a comparison with other cal-
culations follows in Sec. IV. In Sec. V a brief summary is
given together with our conclusions.

II. GREEN'S-MATRIX SCHEME
FOR DEFECTS IN SOLIDS

Calculation of the total energy within the density-
functional formalism' requires iterative solution of the

following set of equations:

[
—V +Vln, ](r)]g,(r)=e, g;(r),

n, (r)= g f, lg, (r)l

(2)

n, (r')
V[n, ](r)= V,„,(r)+2J, d r'+p„, (n, (r)) .

r —r' (4)

g;(r)= gc; P (r), (6)

with the shorthand notation a = t(nlrn; R] such that

il} (r)=P„t (r —R)

(r —R)= Ir —Rl'e "' '
Y, (r —k),

where Yi (r) are spherical harmonics. In principle, any

choice of localized orbitals is good, our choice of Gauss-
ian orbitals being determined by their well-documented
computational convenience: reciprocal space operations
can be carried out simply and efficiently because of the

rapid convergence of the Fourier transform of Gaussian
orbitals, and multicenter integrals can be evaluated

analytically. Gaussian orbitals have been used in all-

electron calculations' ' and more recently in combina-
tion with pseudopotentials. ' ' These references only

cover applications to extended systems, and the list is

representative rather than exhaustive.
In terms of the expansion (6), the differential equations

(2) transform into a set of algebraic equations for the

coefficients c, :

g(H tt E;S p)c; tt0—,

with

H t3
——f d rP*(r}(—V + V(r)]$&(r)=t &+ V ti

and

5&=— d r *r &r

(9)

(10}

The expansion coefficients diagonalize both the Hamil-

tonian matrix H & and the overlap matrix 5 &..

ia ap j tt Ei~ij & 2 i a~a@ Jtt ~i
e,P a,P

Here f; are occupation numbers, and iu„„ the exchange-
correlation potential, is given within the local-density ap-
proximation using the interpolation formula of Ref. 15.
We use Rydberg atomic units throughout. In the pseudo-
potential approach, 16 17 the external potential V,„t is re-

placed by an effective potential V „which represents the
interaction of the valence electrons with the nucleus and
the (frozen) core electrons. For a collection of atoms on
sites R, V, is given by a sum of atomic pseudopotentials:

V~, = g v, (r —R) . (&)
R

We shall write the wave functions of (2) as a linear
combination of Gaussian orbitals,
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where 5, . is the Kronecker delta. The expansion (6) is

necessarily approximate due to the incompleteness of the
basis set [P (r)]. The only requirement on the basis set

is that it should be sufficiently complete to describe the
ground state of the system satisfactorily. In other words,
only the occupied states need be described correctly in

(6). The basis sets used for the perturbed and the unper-
turbed crystals may be different. This is particularly use-
ful in defect calculations where at the defect site we are
free to use the orbitals most appropriate to an impurity
atom. When atoms are displaced, it is sufficient to dis-

place the corresponding localized orbitals with the atoms.
Equation (8) can be cast in Green's-function language

as follows

g (zS t3 H tt—)Ger(z)=5 r, (12)

where the Green's matrix for complex energy z is given

by

&Ia«P
G p(z)= g

Z
(13}

in terms of the eigenvalues c.; and the eigenvectors c; of
(8). Equation (12) is completely equivalent to (8). From
the Green's function one can construct the density ma-
trix:

1 KF

p &= . f dz G &(z)= ——f deImG &(s) .

system is related to the Green's inatrix G (z) characteriz-
ing the unperturbed system via the following Dyson equa-
tion

G(z)=G (z)+G (z)(BH z—AS)G(z), (17)

where the subscripts have been suppressed for simplicity.
In (17), b,H =H H—=At +5 V and b S=S—S indicate
matrix differences. Note that the perturbation in (17)
does not depend only on the physical perturbation
b, V=V —V as it does in the operator formulation (1),
but it also includes the dependence on the basis-set
change explicitly. This additional perturbation can be of
longer range than the real physical perturbation.

Due to the loss of translational invariance in the defect
problem, the direct solution of the infinite set of algebraic
equations (8) or (12) is in general not possible. However,
the Dyson-equation formulation (17) allows one to com-
pute the quantities of physical interest by solving finite
sets of algebraic equations, provided the perturbation in-
duced by a defect is localized, i.e., it has the form

(hH zb S)„„(b—,H zhS )„~—
(bH zbS )ti„(bH— zbS )ss—
(hH zhS )„„—0

p

where the subspace A is finite. The solution of (17) is
given by

(14) G(z) = [1 G(z}(b,H —zh—S )] 'G (z ) . (19)

The contour c(s~) in (14) encloses all the occupied one-
electron states and therefore crosses the real axis at the
Fermi energy c,+. From the density matrix one can ob-
tain the electron density

n, (r)= g P (r}p,Pt't(r)
a,P

(15)

and all the quantities that are needed to perform a self-
consistent iteration and compute the total energy.

We describe an unperturbed system characterized by a
potential V (r) with a basis set jP (r) j and a perturbed
system characterized by a potential V(r) = V (r)+b, V(r)
with a basis set [P (r}].The matrix elements of the per-
turbing potential b V(r) are given by

b, V & = fd r[&'(r) (Vr)P&(r) P(r—) V—(r)P&(r)] . (16)

The Green's matrix G(z) characterizing the perturbed

Tr[ G(z )S ]=—Tr (zS H) ' (zS —H)—
dZ

Tr ln(zS —H) .=d
dZ

(20)

Using (20), one obtains ' the following expressions for
the change in the density of states b,N(z ):

The matrix difference b,G(z)=G(z) —G (z) is in general
not restricted to the subspace A. On the contrary, the
changes in the individual wave functions or in the density
matrix are usually considerably more extended than the
small subspace A that is used in practical applications.
However, if (18) is satisfied, the change in the density of
states as well as the change in the sum of the occupied
one-electron eigenvalues h(g;f, E,. ) can be obtained ex-
actly from algebraic manipulations involving only the
finite subspace A. ' This follows from the identity

b,N(z)= [Tr[G(z)S]—Tr[G (z}S ]]= — . Tr1 0 0 1

27ll 27Tl
G (z}(bH zbS) [1—G (z}(&H—zbS—)]

dZ

. Tr G„„(z)(bH zhS)„„[l—G„„(z)(AH——zbS)~„]2&l dZ

1 d
ln det[1 —G„z(z)(bH zhS )„z] . —0

27Tl dz
(21)
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In any of its equivalent forms, (21) is restricted to the
subspace A as a consequence of (18). The total change in
the number of states AN and the change in the sum of the
occupied eigenvalues are given in terms of AN(z) by

b,N= J dz bN(z) (22)

and by

6 '

g f;c;=J dz z b N(z ),
l

(23)

respectively. Both b,N(z ) and b (g;f;E; ) are therefore
restricted to the subspace A.

The change in the electron density hn, (r) is related via
(15) to the change in the density matrix bp, which is a
quantity not necessarily restricted to the subspace A.
However, since in a self-consistent calculation the change
in the total electron density b,n, (r) cannot have longer
range than the total potential it gives rise to, it is
sufficient to compute Ap in the subspace A, i.e., Ap» to
obtain hn, (r) in a way that is consistent with the as-
sumption (18).

So far, all the elements needed to perform a full self-
consistent calculation have been given using only expres-
sions that involve finite matrices. At a given iteration,
(22) is used to define the contour c(EF ), then bp„„ is com-
puted using (19) and (14). From (15) we then obtain
b, n, (r), which is represented numerically on a cubic real-
space mesh. Poisson's equation is solved using fast
Fourier transforms (FFT's) to find the Hartree com-
ponent of the new potential b, V(r), which is represented
on the same cubic mesh. The exchange-correlation po-
tential is evaluated numerically on the mesh. Matrix ele-
ments of the perturbation At &, AS &, and, where prac-
ticable, of AV &, are evaluated analytically; otherwise,
they are calculated numerically by numerical summation
of the integral in (16). Full use is made of the point-
group symmetry to calculate the unperturbed Green's
matrix, to calculate matrix elements of the perturbing po-
tential, and to solve the Dyson equation (19). Contour in-
tegration in the complex plane is advantageous over ener-

gy integration along the rea1 axis, since the Green's func-
tion varies rapidly on the real axis, whereas it is well
behaved and smooth for complex energy values. ' All
the necessary sums over the occupied states are carried
out by numerical integration around a contour in the
complex energy plane. When self-consistency is
achieved, the change in the density of states can be ob-
tained from (21), and the single-particle contribution to
the total-energy difference from (23). Further technical
aspects of the evaluation of the total energy with the
local-density approximation using first-principles
Green's-function schemes, which have been discussed in
the literature, will not be discussed further here.

According to (18), all long-range effects are neglected
as if the self-consistent potentials for all defects were

completely screened. This is, however, incorrect, since in
a semiconductor the potential of a charged defect has a
long-range Coulombic tai1 and even the potential of a
neutral defect generally contains some long-range mul-
tipole contributions falling off with distance as some in-

verse power of r. Neither is hn, (r), in principle, com-
pletely localized, since it contains some small long-range
oscillatory contributions. It is certainly not possible to
follow these long-range effects all the way out numerical-
ly. However, many physical quantities depend only
weakly on these long-range effects, and converge rapidly
as r~ ~. It is therefore a perfectly permissible pro-
cedure to truncate the potential 6V(r), i.e., to restrict the
matrix b V to a finite subspace A and to compute all the
quantities of physical interest using this truncated poten-
tial, in which case neither numerical nor analytical prob-
lems arise. By varying the dimension of the subspace A,
it is then possible to monitor the convergence of the vari-
ous physical quantities we want to compute. What
makes this procedure practicable in the defect problem is
the fact that usually the relevant dimension of A is small
and numerically manageable.

We want to make a comment on a special feature of
the Green's-matrix scheme that illustrates the great flexi-
bility of the method. In writing (17), we implicitly as-
sumed that the perturbed and unperturbed basis sets have
the same dimensions. At first this may appear to be a
serious limitation of the method, since in many problems,
e.g. , an interstitia1 impurity or a substitutional transition
atom impurity in an sp host, the perturbed basis set is
larger than the unperturbed one. However, the difficulty
is only apparent, since it is very easy by means of the so-
called adspace ' concept to construct a fictitious G hav-
ing the appropriate dimension for the matrix equation
(17).

For instance, a suitable G for an interstitial impurity
is given by the matrix

G„(z) 0
G (z)=

Gc(z)
(24)

(H„)~p=e„5~p, (S„)~@=5,p, (25)

where we choose c~ to lie in the conduction bands of the
unperturbed crystal in order to avoid adatom contribu-
tions to the unperturbed density matrix (and electron
density).

Another problem can arise when the perturbed system
consists of fewer atoms than the unperturbed one, as for
example in the case of a vacancy. Here the unperturbed
system contains orbitals on the vacant site, where they
are not needed in the perturbed system. In this case, it is
possible to reduce the dimension of the unperturbed
Green's matrix by means of the so-called ideal' concept.

Gc is the unperturbed crystal Green's matrix and G~ is a
Green's matrix for the impurity adatom. Notice that it is
not required that G„should describe a real atom. G~
should only have the right dimension and have a form
that makes it easy to construct an appropriate perturba-
tion AH —zb,S to bring the initial fictitious system into
the final physical one. In our implementation we find it
convenient to use the following definitions for the adatom
Hamiltonian and Green's matrices:
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This consists of decoupling the orbitals centered on the
vacancy site from the rest of the problem, so that (17) is
solved in a space having reduced dimensions. The unper-
turbed Green's matrix in such a problem is the so-called
ideal Green's matrix.

We refer to the original paper by Williams, Feibelman,
and Lang' for a more rigorous definition of the ideal
Green's matrix. This mathematical construction is only
really needed when the dimension of the subspace that we
want to decouple is itself infinite, as in the case of a sur-
face. In the vacancy problem where the dimension of this
subspace is finite, we can achieve the same result numeri-
cally, with a much simpler computational procedure.
Indeed, the ideal construction is equivalent to introduc-
ing a perturbation of the form

U~p=Q5~p, Q ~~ (27)

where a or P is one of the orbitals that we want to elimi-
nate. Rather than performing the limit implied in (27)
analytically, we can obtain the same result numerically
by simply adding a potential of the form (27) with a finite
but very large u in our calculation. The ideal Green's-
matrix scheme was implemented and yielded the same re-
sult for the vacancy formation energy within the numeri-
cal precision of the calculation.

In the calculations to be discussed in this paper, nonlo-
cal norm-conserving pseudopotentials' were constructed
by fitting the results of an all-electron atomic calculation
following the scheme given in Ref. 31. According to this
scheme, v, is written in terms of a long- and a short-
range component:

u„,(r)=v, (r)+u~, (r),
where

(28)

LR(r)— 2Zv r
erf

r r„

and

2Z ( —r' /r„)
u e

3/2r 3
r~

(29)

III. CALCULATIONS

There are two basic convergence issues we can identify:
one is convergence with respect to the number of atomic
sites that must be included in the self-consistent calcula-
tion for a given set of basis functions. When the energy is
converged in this respect it can be compared to the ener-
gy calculated using a better basis set. The criterion for

u, (r)= g (a&+b&r )e "P&= g v&(r)P& . (30)
1 l

Here Z, is the atomic valence charge, and P& are projec-
tion operators over the angular momentum states l. r„
and r, &

are core radii depending on the particular atom
being considered, and a& and b& are fitting parameters
(two for each ( value). Explicit values of these parameters
and of the core radii are given in Table I for Si, P, and O.

TABLE I. Values of the pseudopotential parameters defined
in (30) for silicon, phosphorus, and oxygen in Rydberg atomic
units.

Silicon
r„=1.09

20.3046
5.6365

—9.8525

—10.4769
—2.3370

2.4567

Pc(

0.81
0.92
1.00

Phosphorus
r„=0.90

28.4798
10.0363

—14.6143

—15.6429
—4.3686

5.1056

0.71
0.77
0.82

Oxygen
r„=0.50

47.4309
—41.6811

—112.6213
25.8710

0.40
0.33

EF( V) =—EQ( V)+Es;,
and for the self-interstitial as

EF(I ) =b.A(I ) —Es;,

(31)

(32)

where Es; is the total energy of a silicon pseudoatom in

the quality of a particular basis set is its ability to mini-
mize the total energy. These two aspects are to a large
extent independent, since the spatial extent of the physi-
cal perturbation ought not to depend strongly on the
basis set used in the calculation. We will discuss the un-
relaxed silicon lattice vacancy and substitutional phos-
phorus in silicon as examples of where this is true. In the
Green s-matrix scheme there is the additional complica-
tion that the perturbation depends explicitly on the
basis-set change, via the terms bt and b,S in (17). De-
pending on the decay lengths of the orbitals used, this
can introduce an effective perturbation that is longer
range than the physical perturbation. As examples of
this case we will discuss the tetrahedral self-interstitial in
silicon and the breathing relaxation about the silicon lat-
tice vacancy.

We consider the following specific defects, namely the
substitutional P+ impurity, the neutral and doubly posi-
tively charged lattice vacancies V and V +, the self-
interstitial I at tetrahedral and hexagonal symmetry sites,
and interstitial oxygen, all in silicon. These defects
represent different prototypical cases. The P+ impurity
is an example of a weak, long-range perturbation. Both
V and I are strong localized perturbations, one (the
self-interstitial) requiring the adspace construction, the
other (the vacancy) may be calculated with or without the
reduced space construction. The charged self-interstitial
I + is an example of a strong, long-range perturbation.
Interstitial oxygen is an example of a strong short-range
perturbation accompanied by a large lattice distortion.
By calculating the lattice relaxation of the vacancy and
the migration energies of the self-interstitial and intersti-
tial oxygen with different basis sets, we will see how well
energy differences are described when an incomplete basis
set is used for which the total energy is far from the con-
verged value.

For vacancies and self-interstitials, the usual quantity
of physical interest is the formation energy, which is
defined for the vacancy as
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60,—:AE —phN, (33)

where p is the chemical potential (the Fermi level) and
b,N IEq. (22)j indicates the electrons added to or subtract-
ed from the defect in order to get its appropriate charge
state. In other words, one has to allow for the possibility
for the defect to exchange electrons with a reservoir of
noninteracting electrons at the Fermi energy in order to
obtain a charge state different from the neutral one.

The difference in formation energies at two different
sites that correspond to energy maxima and minima
along a possible diffusion path represents a migration en-
ergy EM. For an impurity atom the heat of solution is
defined as

EF(P)=AD(P) (Ep —Es; ) .— (34)

Here Ep and Es; are total energies of pseudoatoms in free
space.

A. Pseudopotentials and basis sets

In the calculations reported in this paper, norm-
conserving pseudopotentials of the form (28)—(30) for
silicon, phosphorus, and oxygen have been used. Ap-
propriate values for the pseudopotential parameters and
for the core radii of these elements are given in Table I.

In choosing a basis set we must try to satisfy two (pos-
sibly) confiicting requirements. The first requirement is
that the basis functions should be as short range as possi-
ble in order that the change-of-basis perturbations AS
and At should be short range. The second requirement is
that the basis set should contain functions that are
sufficiently long range so that it can describe the atom in
ail configurations that are likely to be encountered, in-
cluding atomiclike configurations, where it may be neces-
sary to be able to describe the long-range "tail" of the
atom. An example of the latter is the undercoordinated
atoms of the simple vacancy. In addition, there should be

the perfect crystal. AQ is given in terms of the sum of
the electronic and ionic contributions to the energy of the
defect AE,

as few basis set orbitals as possible to enable large clusters
to be treated. In practice it is difficult to satisfy all of
these conditions simultaneously. The main problem
arises when we want to relax the atoms around a defect.
This introduces a physical perturbation that is fairly well
localized around the atoms that are disturbed. If the
basis functions being used have long range, the change-
of-basis perturbation may then dominate and require a
calculation with a very large cluster of atoms.

All our calculations were carried out using Gaussian
orbitals. We tabulate in Table II five representative basis
sets for silicon as characterized by the exponents y„& (7).
The values of the ground-state properties of the perfect
silicon crystal calculated with these basis sets together
with the results of an essentially converged plane-wave
calculation are also listed. '

The first and crudest basis set comprises two s and two
p Gaussian orbitals. The exponents 0.2 and 0.5 (in units
of ao, where the Bohr radius ac =0.529 A) are those ex-
ponents used in our first calculations of defect total ener-
gies. ' The second basis set demonstrates how the total
energy can be lowered by reducing the range of the
short-range s orbital. The short-range p orbital has only
a small effect on the energy, and it is economical to omit
it entirely. We have found that for Si it is advantageous
to include more s orbitals than p orbitals for a given
bound on the maximum range of the basis functions.
This may be simply understood in terms of the nodal
form of the Gaussian orbitals and the form of the
pseudo-wave functions. The third basis set has the same
s- and p-orbital exponents as set II, and in addition con-
tains a d orbital. The exponent of this orbital has been
chosen so as to minimize the total energy of the perfect
crystal. The fourth basis set was constructed with three s
and two p orbitals whose exponents were determined by
(approximately) minimizing the total valence energy of
the free silicon atom subject to the longest-range orbital
having an exponent y ~0. 14. Again, it was found that
there was very little to be gained by including an addi-
tional p orbital with exponent greater than 0.14. The
fifth basis set has the same s- and p-orbital exponents as
basis set IV and in addition contains a d orbital whose ex-

TABLE II. Comparison of calculated ground-state properties for different basis sets as described in
the text. The basis sets are characterized by the set of exponents [ y„l I. The plane-wave calculation
was carried out with a plane-wave kinetic-energy cutoff of 20 Ry. The lattice constant A and the bulk
modulus B were calculated by fitting the energies calculated at five lattice constants with a parabola.
Because of the very small energy differences involved, the determination of B, in particular, was not
very accurate.

Basis
set

I
II
III
IV
V

1=0

0.20 0.50
0.20 0.80
0.20 0.80
0.14 0.40 1.00
0.14 0.40 1.00

7 nl

0.20 0.50
0.20
0.20
0.14 0.40
0.14 0.40

1=2

0.20

0.40

A

(ao)

10.18
10.28
10.39
10.48
10.25

B
(Mbar)

1.07
1.04
0.9
0.69
0.95

E
(Ry)

—7.811
—7.840
—7.867
—7.899
—7.930

400 PW
Expt.

10.20
10.263

0.93
0.99

—7.949



GREEN'S-MATRIX CALCULATION OF TOTAL ENERGIES OF. . . 6549

ponent was chosen so as to minimize the total energy of
the perfect crystal. It is interesting to note that the re-

sulting exponent yd is different from that found for basis
set III.

Although even the worst basis set (I) yields 98.3% of
the total crystal valence energy, the remaining 1.7%
amounts to 0.138 Ry (=1.9 eV). The possibility of ob-
taining more precise results for energy differences with
such incomplete basis sets is one of the principle pro-
posed advantages of the matrix method. ' In this scheme
both the unperturbed and the perturbed systems are
treated in such a way as to maximize the cancellation of
errors when calculating the difference in energy. Care
must be taken in choosing a basis set that is suited to the
particular problem in hand. This may not always be im-

mediately obvious. For example, on removing an atom to
form a vacancy it might be argued that the orbitals of
that atom should also be removed, as discussed in Sec. II.
We will see later on that the orbitals in basis sets I and II,
while capable of describing the perfect crystal reasonably
well, do not describe the (second-nearest-neighbor) in-

teraction between the dangling bonds of the four atoms
neighboring the vacant site very well. In this case, in-

cluding orbitals on the vacant site allows this interaction
to be described, but introduces an uncontrolled error in
the absolute value of the defect energy by abandoning the
spirit of the matrix scheme, namely, that there should
only be orbitals centered on atoms. Alternatively, we can
use basis sets IV or V, which contain longer-range orbit-
als. It will be seen that the formation energy is then con-
siderably less sensitive to additional orbitals on the va-
cancy site, confirming that these basis sets describe the
dangling-bond interaction correctly. Basis set III, ob-
tained by augmenting basis set II with a long range d or-
bital, also gives a good description of the vacancy. In or-
der to calculate the formation energy of the tetrahedral
self-interstitial reasonably well, we shall find it necessary
to include orbitals with d angular momentum character.

One might ask, what Gaussian orbital basis set [ y'„, ) is
capable of yielding as good a description of the ground-
state properties of bulk silicon as given by 400 plane
waves? While we cannot give a definitive answer to this
question, we have found that adding one more p or d or-
bital whose exponent lies in the range 0. 14—1.00 only
reduces the total energy per atom by a few mRy. Use of
exponents with longer range (y (0.14) led to a small
reduction of the crystal energy, but in calculations for de-
fects, this advantage was offset by problems arising from
the resulting long-range change-of-basis perturbation.
For example, calculations for the silicon tetrahedral self-
interstitial with a basis set including an orbital exponent
y, =0. 1 were only converged with a cluster of 67 sites.
To demonstrate this convergence, it was necessary to per-
form a calculation for a cluster including 83 sites. There
was no significant diA'erence in the formation energies
calculated with this basis set and the basis set IV de-
scribed above. We conclude that basis set V can only be
improved significantly by using a [ 4 Xs, 3 Xp, 2 X d J

basis, whose longest-range exponents are less than 0.14.
We note that basis set V gives a total crystal energy as
low as that obtained with about 200 plane waves per unit

cell. In a plane-wave calculation, an additional 200 plane
waves are required to reduce the total energy by the

remaining 19 mRy.
There is no single commonly accepted way of choosing

the Gaussian-orbital exponents. ' ' ' ' All of these
authors, with the exception of Feibelman, use individual
uncontracted atom-centered Gaussian orbitals as basis
states. Rather than choosing the exponents so as to fit
the eigenvalue spectrum ' or the atomic pseudo-wave
function, ' we have chosen them so as to minimize the
total energy, ' since this is the quantity we are primari-
ly interested in. The lack of a systematic way of improv-
ing the Gaussian-orbital basis is probably its most impor-
tant shortcoming.

The use of contractions of Gaussians as well as non-
atom-centered (fioating) orbitals has recently been advo-
cated by Feibelman, although earlier work found single
atomic orbitals inadequate for describing the valence
wave functions in solids' and that atom-centered Gauss-
ians yielded a simpler and more accurate description of
the eigenvalue spectrum than Qoating orbitals.

B. The unrelaxed neutral lattice vacancy

In this section we begin by examining the convergence
with respect to cluster size of the formation energy of the
ideal neutral lattice vacancy, where the four nearest-
neighbor atoms occupy perfect lattice sites. Their relaxa-
tion will be discussed in Sec. III E. To examine the con-
vergence with respect to cluster size, we proceed as fol-
lows. A cluster is defined by all the atoms within a shell
of some radius about the defect center. For the lattice
vacancy there are shells containing 4, 12, 12, 6, 12, 24,
. . . atoms at radii of, respectively, 4.443, 7.255, 8.507,
10.260, 11.181, 12.566, . . . ao from the tetrahedral site
and they define clusters of 5, 17, 29, 35, 47, 71, . . . atoms
(where the central vacant lattice site is included in the
count). The Green's matrices, perturbing potential, and
change in charge density are all represented in terms of
the orbitals centered on these sites. The representation of
these quantities on a regular mesh in real space then
necessarily requires that the mesh be as extended as the
longest-range orbitals on the outermost atoms of the clus-
ter, as discussed in Sec. II. The formation energy for the
vacancy (31), calculated using basis set II, is plotted as a
function of the cluster radius in Fig. 1. The total energy
is seen to be essentially converged for a cluster of 17
atoms: inclusion of an additional shell of atoms leads to a
change in the energy of 0.5 mRy. The energy changes by
less than 0.1 mRy for clusters of 35, 47, and 71 atoms.

The calculations shown in Fig. 1 were carried out re-
taining on the vacancy site the orbitals of the silicon
atom that was removed to form the vacancy. As dis-
cussed in Sec. II, it is possible to perform the calculation
without these orbitals. Doing this reduces the variational
freedom, and the resulting formation energy is 0.039 Ry
larger. It is not a priori clear which of these formation
energies is the more reliable, since the energy under con-
sideration is an energy dijference to which variational ar-
guments cannot be applied. The source of the problem
lies in the incompleteness of the basis set II. In Fig. 2,
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FIG. 1. Formation energy of the neutral lattice vacancy as a
function of the radius of the cluster on which the perturbation is
represented in the Green's-matrix formalism. The calculations
were performed with basis II and orbitals were included on the
vacant lattice site. The number of atoms included in each calcu-
lation is indicated on the upper horizontal axis. Lattice relaxa-
tion was not included, and the defect has tetrahedral symmetry.

0.50—

0.45—

E~( V ) as calculated with all five basis sets detailed in
Table I is plotted as a function of the crystal energy cor-
responding to the same basis set. Each calculation is con-
verged to better than 0.0005 Ry with respect to cluster
size. For all basis sets, a 29-atom cluster is sufficient to
achieve this degree of convergence. The calculations
were carried out with and without orbitals on the vacan-
cy site.

The most noteworthy features of Fig. 2 are that (i)
EF( V ) decreases as the basis set is improved and appears
to level off to a value of about 0.32 Ry, and (ii) the effect
of removing the orbitals on the vacancy site diminishes to
a value of 7 mRy for basis set V. This is one measure of
the degree of convergence of EF( V ). A more conserva-
tive measure of the absolute convergence error of the va-
cancy formation energy is 19 mRy, or the amount by
which the total energy for a lattice atom may be reduced
for a fully converged basis set.

Our best estimate for the formation energy of a neutral
unrelaxed vacancy is between 0.319 and 0.326 Ry. This
energy is independent of the position of the Fermi energy
p. For the unrelaxed doubly ionized vacancy V +, our
best estimate of the formation energy lies between 0.271
and 0.280 Ry, where the Fermi level is taken to be pinned
at the top of the valence band (p =0).

C. Charged defects

The results of b,E(P+) for the ionized substitutional
phosphorus impurity obtained with basis set IV for vari-
ous cluster sizes are given in Fig. 3. In order to eliminate
the "change-of-basis perturbation, " the same basis is used
here on the P and Si atoms. The long-range nature of the
perturbation is apparent by comparison with Fig. 1. The
energy increases monotonically with each shell of atoms
added, although the absolute increase in the total energy

0.40—
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p
0.35-- -5.290—

I

17 29 35 47 71

0.30—

400 pw V IV III II I

0 25
-7.98 -7.93 -7.88 -7.83

Energy (Ry)

CC

-5.295--P
LU

-5.300—

-5.305
3.0 6.0 9.0 12.0

Cluster radius (a.u. )
FIG. 2. Formation energy of the neutral lattice vacancy for

the different basis sets detailed in Table II. For each basis set,
the total energy was converged with respect to the cluster size
to better than 1 mRy. The x coordinate is the total energy per
Si atom for the perfect crystal. The values calculated with the
five different basis sets are indicated by arrows. For comparison
the total energy obtained for the perfect crystal with a plane-
wave basis is included. Calculations where the basis functions
on the vacant site were removed (retained) are denoted by open
(closed) circles.

FIG. 3. Total-energy difference for an ionized substitutional
phosphorus impurity atom in silicon as a function of the radius
of the cluster on which the perturbation is represented in the
Green's-matrix formalism. The calculations were performed
with basis set IV. The number of atoms included in each calcu-
lation is indicated on the upper horizontal axis. Lattice relaxa-
tion was not included, and the defect has tetrahedral symmetry.
The dashed line is only a guide to the eye.
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becomes very small. Increasing the cluster size from 47
to 71 atoms leads to a change of 1 mRy. The fact that
the defect is positively charged and we truncate the
Coulombic tail of the potential may be seen more clearly
by looking at the plot of the electronic charge perturba-
tion for the P+ impurity. In Fig. 4 we have plotted the
two quantities

q, (r)—:f dr" bn, (r) (35)

and

Q, (r)—=f "dr'r' q, (r') .
0

q, and Q, represent, respectively, the spherically aver-
aged electronic density perturbation and the radially in-
tegrated charge perturbation.

From the plot of the integrated charge perturbation, it
may be seen that screening is quite effective in silicon,
since at a distance of approximately one bond length, i.e.,
4.44a from the defect, the total integrated screeningQp,

fcharge is already very close to its asymptotic value o
1 —1/eo, given by the dashed line in the figure. The
remaining oscillations around this asymptotic value sirn-

ply reAect the microscopic inhomogeneity of the unper-
turbed medium. Adding more shells of atoms in the self-
consistent Green's-function calculation simply extends
further out the effect of these small oscillations around
the asymptotic (macroscopically averaged) value. From
the calculated formation energy it does not seem, howev-
er, that these long-range oscillations of the charge density
have any great importance.

The truncation of the long-range Coulombic tail of the

(36)
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FIG. 4. Radial dependence of (a) r q, (r) calculated with a
71-atom cluster, and (b) Q, (r) calculated for different sizes of
cluster for substitutional P+ in silicon. q, (r) and Q, (r) are
defined in Eqs. (35) and (36), respectively. The shells of atoms
about the impurity are indicated on the upper horizontal axis.
The dashed horizontal line in (b) indicates the asymptotic value
1 —1/eo.

potential has also another effect; namely, for any given
cluster size, the screening charge oscillates around its
asymptotic value up to the outer surface of the cluster,
where there is an additional charge approximately equal
to 1/ep. This has the effect of minimizing the self-
consistent potential that extends further outside the clus-
ter and is truncated in the calculation. In the limit of an
infinite cluster, this effect will disappear. In a finite clus-
ter, it constitutes an unphysical size-dependent effect.
However, only the outermost surface of the cluster is
affected, and the net effect on the relevant physical quan-
tities is very small. 34

The existence of different charge states for a given de-
fect provides another way of testing the numerical accu-
racy and internal consistency of the calculations by

35-37checking how well the relation

(37)

which is exact for local-density functionals, is satisfied.
Equation (37) is the basis for the so-called Slater
transition-state rule, namely38

(38)

which is known to hold very well for atoms and mole-
cules. Here E(f; =1 or 0) is the total energy of a many-
electron system in which the occupation number of the
ith single-particle (Kohn-Sham) state is equal to 1 or 0,
respectively, whereas E;(f; = —,

'
) is the ith Kohn-Sham ei-

genvalue when the occupancy is —,'.
The total energy E(f) and the eigenvalue E(f) were

calculated for the charge states of the unrelaxed silicon
vacancy corresponding to the occupancies J 2

11 —' 2
—', and 3 of the t2 gap state. These calculations were per-
formed using basis set II and including three shells o
2, an

f
neighbors. The results of these calculations are given in
Table III. Also given in the same table are the total-
energy differences E(f+ ,' ) E(f—

—,
'

) —for—comparison
with the eigenvalue s(f ). As can be seen, the errors are
very small ( —1 mRy), giving a check on the internal con-
sistency of the total-energy calculation. The largest
discrepancies occur when c., is close to the valence- or
conduction-band edges, and they are related to an inaccu-
rate determination of the position of the bound state
when it is close to the continuum of band states.

The Slater transition-state rule has been frequently
used to obtain the difference in total energy between two
different charge states of a defect at the cost of a relative-
ly simpler eigenvalue calculation. Eigenvalues obtained
from Green's-function calculations have been used, in
conjunction with the Slater transition rule, to obtain
total-energy differences in defect calculations, before the
development of working schemes for total energies, lead-
ing to some important results. ' Implicit in the use of
(38) is that the charge-state dependence of the local relax-
ation may be neglected.

D. Silicon self-interstitial

As an example of the use of the adspace, we first con-
sider an unrelaxed self-interstitial IT at the interstitial site
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TABLE III. Test of the Slater transition-state rule for different charge states of the unrelaxed silicon
vacancy. Energies are in Rydbergs.

3.0
2.5
2.0
1.5
1.0
0.5
0.0

E(f, )

0.4543
0.4209
0.3939
0.3728
0.3564
0.3439
0.3386

&r
2

0.0614
0.0486
0.0374
0.0283
0.0210

E(f, + ,') -E—(f, —
—,')

0.0604
0.0482
0.0375
0.0289
0.0179

difference

0.0010
0.0004

—0.0001
—0.0006
—0.0031

of tetrahedral symmetry. The formation energy for the
doubly positively charged self-interstitial E~(IT+ ), calcu-
lated using the different basis sets listed in Table II, is
shown in Fig. 5 as closed circles. The Fermi energy is as-
sumed to be positioned at the top of the valence band.
Just as in the treatment of the vacancy, the total energy
was converged with respect to the range of the perturba-
tion by adding shells of atoms around the self-interstitial.
There are shells containing 5, 11,23,31,43,67,83, . . . sites
about the tetrahedral site. To obtain convergence in the
energy of —1 mRy, it was necessary to use clusters of 31,
31, 31, 43, and 43 atom sites for basis sets I, II, III, IV,
and V, respectively. Larger clusters were needed with the
last two basis sets because of the contribution to the ht
and hS terms in (17) arising from the long-range basis
functions. In the latter case the convergence was deter-
mined by performing calculations for clusters containing
67 atoms.

From Fig. 5 it may be seen that if only s and p basis
functions are considered, EF(IT+ ), which is approximate-
ly 0.39 Ry, is not very sensitive to either the number or
range of these functions. Including d orbitals, however,
leads to a large reduction of -0.15 Ry in the formation
energy. This may be attributed to the inability of sp hy-
brid orbitals to describe the fivefold coordination of the
nearest neighbors of the tetrahedral self-interstitial. Al-
though the change in the energy per atom of the perfect
crystal when d orbitals are included is only -30 mRy
(see Table II), the change in the formation energy of the
self-interstitial is a factor of 5 larger. Adding yet another
d-orbital changes the energy of the host by —5 mRy per
atom. Assuming the formation energy may change by as
much as a factor of 5 times this amount implies a possible
change in the formation energy by as much as 25 mRy.
Such a calculation would take a factor [(14+5)/14]
-2.5 longer than the calculation with basis set V and
was not attempted. Our best value for the formation en-
ergy of IT+ (without relaxation of the neighboring atoms)
is thus 0.255 Ry.

The formation energy was also calculated for a silicon
self-interstitial IH at the hexagonal symmetry site using
different basis sets. The results for the doubly positively
charged state IH+, shown in Fig. 5 as open circles, display
the same sensitivity to inclusion of d orbitals as those for
the tetrahedral self-interstitial. The path connecting the
tetrahedral and hexagonal symmetry sites has been pro-
posed as one possible migration path that may play a role
in self-difFusion in silicon. " '

Assuming that the ener-

0.6—

0.5—
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0.4
0)
C

LLI

0.3

400 pw V

T0.2
-7.98 -7.93

IV III II I

-7.88 -7.83
Energy (Ry)

FIG. 5. Formation energy of the doubly positively charged
self-interstitial at the tetrahedral (closed circles) and hexagonal
(open circles) symmetry sites for the different basis sets detailed
in Table II. For each basis set, the total energy was converged
with respect to the cluster size to better than 1 mRy. Relaxa-
tion of the neighboring atoms is not included here. The x coor-
dinate is the total energy per Si atom for the perfect crystal.
The values calculated with the five different basis sets are indi-

cated by arrows. For comparison, the total energy obtained for
the perfect crystal with a plane-wave basis is included.

gies at these two sites are extrema, then the migration en-

ergy is given by the difference in formation energies at
the two sites. This is given by the height of the vertical
lines connecting the circles in Fig. 5. A substantial can-
cellation of errors occurs when we calculate this
difference (Table IV), but a significant sensitivity to the
inclusion of d orbitals remains. The best estimate (basis
set V) for the migration energy of the doubly ionized
self-interstitial, neglecting lattice relaxation, is 0.117 Ry
(=1.6 eV).

At the tetrahedral interstitial site, the unoccupied p
states of the I + form a localized triply degenerate e,
state in the upper half of the band gap. In order to form
the I+ and I charge states, this single-particle eigenstate
must be populated. As a result of the Coulomb repulsion
between the electrons populating it, the position of the t2
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TABLE IV. Formation energy of three different charge states of the self-interstitial at tetrahedral
and hexagonal sites for different basis sets, assuming the Fermi energy is placed at the top of the
valence band. The difference in these energies is the migration energy. Relaxation of the lattice atoms
(nearest neighbors only) is included in the last column only. Energies are in Rydbergs.

Basis set IV V V

I2+ EF(IH )

EF(IT )

EM

0.570
0.394
0.176

0.401
0.281
0.120

0.557
0.386
0.171

0.372
0.255
0.117

0.324
0.234
0.090

EF(Ia )

EF(IT )

EM

0.570
0.459
0.111

0.401
0.342
0.059

0.557
0.440
0.117

0.372
0.304
0.068

0.324
0.290
0.034

EF(IH )

EF(IT )

EM

0.578
0.548
0.030

0.401
0.406
0.005

0.557
0.503
0.054

0.372
0.355
0.017

0.324
0.348

—0.024

state depends on its occupancy f, s, =s, (f), and it may'2 '2

happen that the localized state moves into the conduction
band to become a resonance. In a LDA calculation prob-
lems arise because the fundamental band gap in the
single-particle eigenvalue spectrum is smaller than the ex-
perirnental gap, and states that should be localized in-

stead occur as conduction-band resonances. For silicon,
the calculated band gap is found to be 0.038 Ry (=0.52
eV) compared to the experimental value of 0.086 Ry
(=1.17 eV). The electronic structure of the unperturbed
system may be modified so as to give agreement with the
experimental band gap, but a correction must then be
made to the total energy. ' This correction may be large,
depending on the way in which the gap is modified. This
approach, for which there is no formal justification, has
not been adopted in this publication. All the results
presented here have been obtained with an unmodified
band gap and represent straightforward local-density-
approximation energies.

In the case we are considering, the p state becomes a
resonance in the conduction band for an occupancy of
f =2. The extra electron used to form IT from IT+ occu-
pies the lowest unoccupied state, which in this case is a
delocalized effective-mass-like state. We do not attempt
to calculate the position of such a state, but instead use
the Slater transition-state rule (38) to derive the forma-
tion energy of IT from that of IT+. Neglect of the
charge-state dependence of the local relaxation is
justifiable because of the delocalized nature of the state
occupied by the extra electron. The error inherent in this
procedure is of the order of the shallow-donor ionization
energy, —3 mRy. The results of calculations performed
for the formation energies of the I+ and I at both
tetrahedral and hexagonal symmetry sites are tabulated
in Table IV, together with the migration energies. The
effect of including lattice relaxation will be considered in
the following section.

E. Lattice relaxation

1. Lattice vacancy

As our first example of the calculation of the lattice re-
laxation about an impurity, we consider the case of the

symmetric breathing-mode relaxation of the four atoms
surrounding a silicon lattice vacancy. This problem has
been examined previously. ' ' In Ref. 39 the relaxa-
tion about a neutral lattice vacancy was not calculated,
but by analogy with the Si(111)surface it was assumed to
be outwards (away from the vacant lattice site) or to-
wards a more planar sp -like bonding configuration of
each of the four nearest-neighbor silicon atoms to their
three remaining neighbors. Later, Lindefelt ' and
SchefBer, Vigneron, and Bachelet found an outward
breathing relaxation for the V using their first-principles
Green's-function force calculations. We have found, ' '

on the contrary, an inward breathing relaxation. More
recently, an inward breathing relaxation has also been
found in repeated supercell calculations. It is
worthwhile examining the vacancy relaxation in more de-
tail, both because of its intrinsic interest and because it
serves as a test case for many first-principles calculations.

The force on the four atoms surrounding the unrelaxed
vacancy, which is the slope dE/d5 of the total-energy
function, is given in a finite-difference approximation
hE/6'6 in Fig. 6. For different cluster sizes, the energy
of the unrelaxed vacancy E(5=0) and for a small inward
displacement of the four atoms E(5= —0. lao) is shown.
The results shown were calculated with basis set II. Clus-
ters containing 17, 29, 35, 47, and 71 atoms are defined
by choosing all atoms within a certain radius of the cen-
tral site. This procedure assumes that the range of the
perturbation is determined by the central-site contribu-
tion. If, however, the range of the perturbation is deter-
mined by the four displaced atoms, then it may be more
ef5cient to define clusters containing all atoms within a
certain radius of the four displaced atoms. This defines
clusters containing 41 (all next-nearest neighbors of the
displaced atoms), 59, 71, . . . atoms, which we will denote
by 41*, 59*, and 71* to distinguish them from the clus-
ters made up of complete shells of atoms centered on the
vacancy site. For a small cluster, for which the total en-
ergy is not converged, the force is outwards, correspond-
ing to an outward breathing relaxation (away from the
vacant lattice site). As the cluster size is increased, the
force changes, and when the calculation is converged
with respect to the cluster size, the force is, as described
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FIG. 6. Formation energy of the neutral lattice vacancy
without radial relaxation (5=0) and with a small inward relaxa-
tion (6= —0. lao) of the four silicon atoms around the vacant
lattice site. The slope approximates the force on the four atoms.
The calculations were performed with basis set II for a number
of different cluster sizes, outside of which the perturbation was
truncated. The cluster sizes are explained in the text.

above, inwards. A changeover in behavior occurs for 35-
and 41*-atom clusters, which differ in that the 41* cluster
includes all of the next-nearest-neighbor atoms of the
four atoms displaced in the breathing mode. Inclusion of
more shells of atoms leads to only small differences, and a
59* cluster is sufficient to calculate the breathing relaxa-
tion with mRy convergence. In all of the calculations to
be discussed, the cluster size is sufficiently large that the
total energy is converged to —1 mRy.

In Fig. 7 we show the formation energy for a neutral
lattice vacancy as a function of the displacement 6 of the
four atoms surrounding the central (vacant) site in a sym-
metric breathing mode. These results were calculated
with basis set II and a 71-atom cluster both for the case
where orbitals were included on the vacancy site (closed
circles) and where these orbitals were omitted (open cir-
cles). Although an inward relaxation is found in both
cases, there are differences in detail resulting from using a
minimal basis set. In particular, the amplitude of the
breathing relaxation is found to be 0.47ao and the energy
gain is 0.039 Ry when the vacancy site orbitals are omit-
ted. When they are included, the breathing relaxation is
calculated to be 0.35ao and the energy gain is only 0.018
Ry. The corresponding results calculated with basis set
IV, containing more extended orbitals, are shown in Fig.
8. The breathing relaxation is found to be ——0.48ao
both with and without orbitals on the vacant site, and the
energy gain is found to be 0.034 and 0.032 Ry, respective-
ly. The discrepancies are seen to be reduced significantly
by using the improved basis. The effective force constant,
given by the curvature of E(6), becomes smaller as the
basis set is improved. Performing a least-squares fit to a
cubic polynomial in the displacement 6, the equilibrium

FIG. 7. Formation energy of the neutral lattice vacancy as a
function of the radial relaxation 5 of the four silicon atoms
around the vacant lattice site. The calculations were performed
with basis set II and a cluster of 71 atoms was used to represent
the perturbation. The total energy was converged with respect
to the cluster size to better than 1 mRy. Calculations where the
basis functions on the vacant site were removed (retained) are
denoted by open (closed) circles.
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FIG. 8. Formation energy of the neutral lattice vacancy as a
function of the radial relaxation 5 of the four silicon atoms
around the vacant lattice site. The calculations were performed
with basis set IV and a cluster of 71 atoms was used to represent
the perturbation. The total energy was converged with respect
to the cluster size to better than 1 rnRy. Calculations where the
basis functions on the vacant site were removed (retained) are
denoted by open (closed) circles.
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relaxation 50, the energy gain E(0)—E(50), and the force
constant ks= ,'d—E/d5 ~s s are obtained. These are

0

given in Table V for the results of the calculations with
basis sets I, II, III, and IV for the neutral lattice vacancy
V, both with orbitals included on the vacant site and
without. Our best estimate of the formation energy of
the neutral lattice vacancy including symmetric breathing
relaxation of the nearest-neighbor atoms only is the aver-
age of 0.282 and 0.293 Ry (Table V, basis set IV) or 0.288
Ry (=3.9 eV).

In addition to the symmetric breathing relaxation, the
neutral lattice vacancy undergoes a symmetry-lowering,
Jahn-Teller distortion. In a previous publication, where
we calculated it from first principles, we found a gain of
0.007 Ry arising from the pairing of the four silicon
atoms surrounding the vacancy site. Using this latter
value and the value 0.288 Ry just quoted, we find a value
for EF( V ) of 0.281 Ry (=3.8 eV).

The corresponding results for the doubly positively
charged lattice vacancy are given in Table VI. The mag-
nitude of the inward breathing relaxation is smaller for
the charged state, which is consistent with the positive
deformation potential de, /d5~s —p found for the t2 sym-'2

metry gap state in this and other LDA calcula-
tions. '"' We see (Table VI, basis set IV) that the for-
mation energy of the doubly positively charged vacancy
lies between 0.251 and 0.262 Ry, where the Fermi level is
assumed to be pinned at the top of the valence band
(@=0). For the doubly positively charged vacancy there
is no Jahn-Teller distortion, and we take as our best esti-
mate for EF( V +) the average of 0.251 and 0.262 Ry or
0.257 Ry (=3.5 eV). Experimentally, it is known that,
with p=O, EF(V ) EF(V +)=—0 006 R. y, whereas we
find that Ez( V ) EF( V +)=—0.281 —0.257=0.024 Ry.

A possible cause of this discrepancy is the neglect of
long-range lattice relaxation. This may be estimated us-
ing the Keating model. For the doubly positively
charged vacancy, the energy gain resulting from inclusion
of long-range relaxation is about 0.010 Ry. Our best esti-
mate for EF( V +) including this becomes 0.257 —0.010
Ry=0.247 Ry (=3.4 eV). Because the inward breathing
relaxation and force constants for t/' are larger

(50= —0.48ao, ks =0.26 Ry/ao) than for V +, the effect
of the long-range relaxation is also larger; it is estimated
to reduce the energy by about 0.015 Ry. Including long-
range relaxation in the same simple fashion for the pair-
ing mode increases the Jahn-Teller energy gain from
0.007 to 0.032 Ry. Using this latter value, our best esti-
mate for EF( V ) is 0.288 —0.015—0.032=0.241 Ry
(=3.3 eV), which is now 0.006 Ry less than EF(V +).
With a slightly smaller contribution of the long-range re-
laxation in the Jahn-Teller energy gain, good agreement
with experiment would be obtained. The energy gain cal-
culated from first principles was only 0.007 Ry. The
remaining 0.032—0.007 =0.025 Ry, which was estimated
by means of the Keating model, is more than the amount
by which E~(V ) is lower than EF(V +). Clearly, the
distortion contributing most of the 0.025-Ry energy gain
ought to be calculated from first principles. Such a calcu-
lation is at present not feasible. Using the calculated
value of the formation energy of the doubly positively
charged vacancy, for which there is no Jahn-Teller dis-
tortion and only a small breathing relaxation, together
with the experimentally determined relation
EF(V )=EF(V +)+0.006 Ry, our best estimate for
EF( V ) is 0.263 Ry (=3.6 eV).

The best value of the force constant k& for a breathing
relaxation of the neutral vacancy is (Table V, basis set IV)
0.26 Ry/ao =12.6 eV/A . This value is obtained by in-
cluding nearest-neighbor relaxation only and is 70%
larger than the value of 7.5 eV/A estimated in Ref. 39.
When long-range relaxation is included using a Keating
model and the parameters of Ref. 39, a value close to
=7.5 eV/A is found.

2. Self interstitial-

In the previous section, the migration energy EM of a
self-interstitial along a path where the tetrahedral and
hexagonal sites are assumed to correspond to extrema in
the energy was calculated to be 0.117 Ry for I +, 0.068
Ry for I+, and 0.017 Ry for I (Table IV, basis set V).
No account was taken of the lattice relaxation in these
calculations. However, the distance from the self-

TABLE V. Parameters characterizing the relaxation of the four atoms surrounding the neutral lattice vacancy for four different
basis sets. The unrelaxed energy, E(0), for basis set V is included for reference. Energies are in Rydbergs. (To obtain the force con-
stants appropriate to normal-mode amplitudes, kz must be divided by 4.)

Basis

No orbitals on
central vacant
site

set

I
II
III
IV
V

o(ao }

—0.23
—0.47
—0.54
—0.47

E{0)

0.466
0.432
0.366
0.324
0.326

E(6o)

0.453
0.394
0.314
0.293

E(0)—&(6o)

0.013
0.039
0.052
0.032

kz {Ry/ao)

0.46
0.39
0.38
0.26

Including orbitals
on central vacant
site

I
II
III
IV
V

—0.12
—0.35
—0.52
—0.49

0.424
0.394
0.332
0.316
0.319

0.421
0.376
0.299
0.282

0.003
0.018
0.033
0.034

0.42
0.30
0.27
0.26
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TABLE VI. Parameters characterizing the relaxation of the four atoms surrounding the doubly positively charged lattice vacancy
for three different basis sets. The Fermi energy is assumed to lie at the top of the valence band. Energies are in Rydbergs.

Basis

No orbitals on
central vacant
site

set

I
II
IV

&o(ao)

—0.15
—0.40
—0.37

E(0)

0.415
0.391
0.280

E(6o)

0.411
0.366
0.262

E(0)—E(5o)

0.004
0.025
0.018

k & (Ry/p o)

0.37
0.23
0.14

Including orbitals
on central vacant
site

I
II
IV

0.02
—0.21
—0.43

0.365
0.344
0.271

0.365
0.339
0.251

0.000
0.005
0.020

0.34
0.23
0.18

interstitial at the hexagonal symmetry site to its nearest
neighbors is only 4.25ao. This is less than the equilibri-
um Si-Si separation of 4.44ao, so that we expect a
significant relaxation of the surrounding silicon atoms.
Using basis set II, the symmetric breathing relaxation of
the six nearest-neighbor atoms is found to reduce the for-
mation energy by 0.056 Ry, and the displacement of the
neighboring atoms is 0. 18ao, leading to an equilibrium
Si-Si separation of 4.43ao. This calculation was per-
formed with a cluster containing 65 atoms about the in-

terstitial site. The energy gain decreases from 0.105 to
0.059 to 0.056 Ry on increasing the number of atoms in

the cluster from 39 to 53 to 65, respectively. Including d
orbitals (basis set III) and using a cluster containing 53
atoms leads to a symmetric breathing relaxation of
0. 19ao and a smaller energy gain of 0.048 Ry. This relax-

ation is taken into account in the last column of Table
IV, where the formation energy calculated with basis set
V is corrected with the relaxation energy calculated with
basis set III.

For the self-interstitial at the tetrahedral symmetry site
with a deep level in the gap, we find a charge-state-
dependent radial relaxation of its four nearest neighbors.
The resulting energy gain is calculated to be 0.021 Ry for
Iz-+, 0.014 Ry for Iz, and 0.007 Ry for Iz using basis set
II and a 43-atom cluster. The cluster size was checked by
using a 67-atom cluster. The corresponding displace-
ments of the nearest neighbors are 0.15, 0.13, and 0.10ao,
respectively. The formation energies calculated with
basis set V corrected with the relaxation energy calculat-
ed using basis set II are also given in the last column of
Table IV. The effect of long-range relaxation is not in-

cluded in these results.

6
NNN
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6NN

6NN
u

6NNN

60
6NN 6NN

tial oxygen, defect calculations for oxygen in silicon
present considerable technical difficulties. Unlike the ex-
amples we have considered so far, oxygen does not have a
weak pseudopotential. However, a norm-conserving
pseudopotential can still be defined for the valence states
of oxygen, ' and the pseudopotential parameters we use
are given in Table I. Minimizing the total energy for the
free oxygen atom with respect to the orbital exponents

y„& of a 3 Xs, 3 Xp Gaussian-orbital basis resulted
in the set of exponents y, =(0.20, 0.75, 5.60) and

y =(0.20, 0.85, 4.00). The smallest allowed exponent
was pl =0.20. In our study of the Si self-interstitial, we
saw that the choice of s and p orbital exponents was not
critical, but that it was important to include d orbitals on
the host atoms. The calculations to be discussed below
were therefore carried out with host basis sets II and III.
The electronic relaxation was calculated on as many sites
as were necessary to converge the total energy to better

F. Migration energy of interstitial oxygen

So far we have been concerned with quantities that
have not been measured directly. In this section we will
calculate the energy required for interstitial oxygen (O, )

to hop from one bond-bridging site to an adjacent bond-
bridging site (Fig. 9). This energy has been measured by
stress-induced dichroism to be 2.56 eV (Ref. 47) and the
high-temperature diffusion of oxygen in silicon has been
successfully interpreted in terms of this mechanism.
Because the oxygen 2s and 2p states are so much more lo-
calized than the valence states of silicon, and because
there is a large lattice distortion associated with intersti-

FIG. 9. Sketch of the configurations used in the calculation
of the activation energy for diffusion of an interstitial oxygen
atom in a silicon host crystal showing the equilibrium (upper
panel) and saddle-point (lower panel) configurations. The large
open circles represent a chain of silicon atoms in the (110)
plane, and the small closed circle represents the oxygen atom.
The displacements that are indicated by arrows are discussed in
the text.
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than 1 mRy. Because of the large lattice distortion in-

duced by interstitial oxygen, up to 80 sites were included
in the calculations to demonstrate convergence. The size
of the defect cluster and the volume where the charge
density deviates significantly from that of the perfect
crystal determine the size of the cube on which the per-
turbed charge density and defect potential had to be cal-
culated. A regular real-space mesh was initially used to
perform numerical integrations over the cube involving
the silicon host and the (localized) oxygen-defect pseudo-
wave functions. The size of this cube (volume=L ) and
the real-space mesh interval l =0.26ao were chosen so as
to obtain convergence of the total energy to better than 1

mRy. The total number of points used was

(Lll) =(120) . The most time consuming steps in the
calculation were (i) the solution of the Dyson equation
(19) by matrix inversion, (ii) the calculation of the charge
density (15), and (iii) the calculation of matrix elements of
the perturbing potential (16). In all these steps, full use
was made of symmetry to reduce the computation to a
minimum. Steps (ii) and (iii) required almost an order of
magnitude more computer time than in the calculations
discussed previously because the mesh required to obtain
comparable accuracy was a factor ( —', ) more dense.

In order to improve the efficiency of the calculation, a
"double-mesh" scheme for representing fast and slowly

varying charge densities, solving the Poisson equation,
and calculating matrix elements of the Hartree and
exchange-correlation potentials, was implemented. In
this scheme, a dense inner mesh extending over a limited
region of space about the oxygen atom is used to describe
the rapidly varying oxygen charge density. This inner
mesh is commensurate with a coarser outer mesh that ex-
tends over the full volume of the defect cluster. This
scheme was tested by (i) displacing a single silicon atom
with this double-mesh scheme and comparing the results
to those obtained with a single mesh. Because only the
central atom was displaced, the defect cluster was small.
(ii) Calculations were carried out for the symmetric
breathing mode about a silicon lattice vacancy with the
double-mesh scheme and compared to the results of cal-
culations where a single mesh was used. (iii) Calculations
were performed for high-symmetry configurations involv-

ing oxygen with the double-mesh scheme and compared
with the results obtained with a uniformly dense mesh.
Because of the high symmetry and the short range of the
perturbation, very dense meshes could be tested. The
density of the inner mesh was chosen so that the
difference in the absolute total energy of a substitutional
oxygen atom calculated with the double mesh and with a
uniform dense mesh was less than 1 mRy. The calcula-
tion of the charge density and matrix elements is still
very costly when the symmetry is low. An alternative
scheme for solving the Poisson equation when the charge
density can be decomposed into fast and slowly varying
parts has been described in great detail by Feibelman.

The accepted model for 0& is that the oxygen atom in-
terrupts a normal Si—Si bond, as shown schematically in
Fig. 9. Assuming that the saddle-point configuration for
bond switching is as shown in the figure, evaluation of the
activation energy requires finding the energy minimum

for each configuration. The equilibrium configuration of
0& has only C» symmetry, while the assumed saddle-
point configuration has C2, symmetry. Because of these
low symmetries, no attempt was made to minimize the
energy simultaneously with respect to all the degrees of
freedom compatible with the given symmetry. To study
the equilibrium configuration, the energy was first mini-
mized with respect to 5~ as a function 5~~, keeping

5~~
=0. 5~ is the magnitude of the displacement of the

oxygen atom from the bond-center site, perpendicular to
the bond (maintaining C, h symmetry). 5~~ and 5~~ are
the displacements of the oxygen-atom's nearest-neighbor
and next-nearest-neighbor silicon atoms along the bond
directions. These displacements are indicated in Fig. 9.
In a second step, the energy was minimized with respect
to 5~~, again as a function of 5~~, but this time keeping
5~ =0. Long-range relaxation, which was included in
this second step by means of a Keating model using the
parameters given in Ref. 39, resulted in an energy gain of
less than 0.1 eV. Finally, the energy was minimized with
respect to 5~~, assuming that the energy gained by relax-
ation with respect to 5~ and 5~~ is additive. The calcu-
lated displacement of the nearest-neighbor Si atoms at
this minimum was 0.95ao, of the second-nearest-neighbor
Si atoms, 0.20ao, and of the oxygen atom, 5~, 1.15ao.
The resulting Si—0 bond length is 3.35ao, which is
about 10% larger than typical Si—0 bond lengths
found in Si02. The calculated Si—0—Si bond angle is
140'. At the calculated minimum there are no energy lev-
els in the gap and the defect is electrically neutral.

The total energy corresponding to the saddle-point
configuration is minimized in a similar manner. The cal-
culated displacement 5,' of the silicon atom on the (001)
axis from its lattice site is 0.3000, and the Si-0 separation
is 3.80ao. The separation to the two other neighboring Si
atoms is slightly smaller, 3.65ao. The saddle-point
configuration has no donorlike gap states. However, it
does have a deep acceptor level originating in the incom-
plete oxygen 2p shell at -E„+0.2 eV.

These calculations were performed without d orbitals
on the host atoms (basis set I), and the resulting
difference in energies between the neutral ground state
and saddle-point configurations is 2.2 eV. ' Repeating
the calculations with basis set III resulted in an activa-
tion energy of 2.5 eV. The only significant change in the
bonding is that for the saddle-point configuration, the Si-
0 separation along the (001) axis is reduced to 3.55ao. In
view of the spread of results found for energy differences
with different basis sets when the neighboring atoms of
the vacancy (Tables V and VI) and the self-interstitial
(Table IV) are allowed to relax, the near-perfect agree-
ment with the experimental activation energy of oxygen
must be regarded as fortuitous. However, in the absence
of a large discrepancy with experiment and because of the
relatively sma11 sensitivity to inclusion of d orbitals (2.2
versus 2.5 eV), we conclude that calculations with
minimal basis sets can provide useful information about
equilibrium geometries and electronic properties of
oxygen-related defects in silicon. The efficiency of the
search for equilibrium geometries of low-symmetry
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configurations can be improved by calculating the forces
acting on the atoms.

IV. DISCUSSION

The Green's-matrix method was introduced in order to
solve several problems encountered when attempts were
made to calculate defect total energies using the conven-
tional Green's-operator method. ' In one respect, the
method has been successful: the problems relating to the
unbound spectrum of the Green's operator, to represent-
ing accurately the perturbation introduced when atoms
are displaced and, to introducing orbitals that are un-
necessary in the host crystal (such as the extra orbitals
needed to describe a self-interstitial or the d states of a
substitutional transition-metal atom in an sp host materi-
al) are resolved quite simply. All the Green's-function
calculations of total energies that have been reported
have either been carried out with the original Green's-
matrix' ' ' ' ' or related methods ' and not
with Green's-operator methods. In this paper we have
shown that absolute values of the formation energies of
lattice vacancies and self-interstitials in a silicon host lat-
tice may be calculated with reasonable accuracy with a
quite modest basis set of only 14 orbitals per atom (basis
set V). The major shortcoming of the matrix method is
that the perturbation consists not only of a real physical
perturbation (16), but also of a component whose range
depends on the choice of basis set. Although basis set V
comprises only 14 orbitals per atom, the number of atoms
that must be included explicitly in the subspace A (18) in
order to obtain satisfactory convergence may be very
large. To demonstrate the convergence of the total ener-

gy when the four atoms neighboring a lattice vacancy are
relaxed, the subspace A would consist of a 71-atom clus-
ter. The corresponding dimension of the matrices in-
volved in solving the Dyson equation (19) are 71X14.
%hen the symmetry of the relaxation is low this becomes
prohibitive, and even for a symmetry-conserving relaxa-
tion the calculation would be very time consuming.

Simultaneously, with the introduction of Green's-
function methods to calculate defect energies, first-
principles repeated supercell calculations were also ap-
plied to the same problem. " Since then, this method
has been applied with considerable success to a large
number of defects in semiconductors (see Refs. 44 and
59—63 for a representative number of examples). One of
the reasons for this is the technical simplicity of band-
structure calculations with a plane-wave basis. Another
important reason is that the basis can be improved sys-
tematically. However, the most important advantage of
using a plane-wave basis is that total-energy di+erenees
can be calculated reliably long before absolute conver-
gence has been achieved. This property was exploited to
calculate the phase diagram of Si (Ref. 65) and in
numerous subsequent applications. Recently it has
been demonstrated in detail for the case of hydrogen im-
purities in silicon.

A. Comparison with previous work

1. Lattice vacancy

The silicon lattice vacancy has probably been studied
theoretically in more detail than any other defect in a

semiconductor. Because of the large number of such
studies, we will restrict ourselves here to discussing re-
cent work that has focused on the formation energy of
the lattice vacancy. Interest in this energy derives from
its importance for understanding the mechanisms respon-
sible for diffusion in silicon. The activation energy Q for
self-diffusion in silicon appears to be between 4.0 and 5.0
eV, with lower activation energies being observed at low
temperatures and higher energies at high temperatures.
Early on, the migration energy for the lattice vacancy
was established by experiment to be between 0.18 and
0.45 eV (depending on the charge state). With
Q =E~+EM, we obtain a value for EF between 3.7 and
4.7 eV. Recent positron-annihilation experiments sup-
port the lower value.

In their first published report of calculated activation
energies for self-diffusion, Car et al. quoted a formation
energy of EF( V ) =5.0 eV. ' This value was calculated
using basis set I including orbitals on the central vacant
site (Table V). In later calculations with an improved
basis set a formation energy of -3.8 eV was found.
In the present calculations, the formation energy of the
unrelaxed neutral lattice vacancy appears to be well con-
verged with respect to the basis set at a value of 4.4 eV
(see Fig. 2 and Table V). Including only nearest-neighbor
relaxation, we find (Sec. III E) a formation energy of
EF( V )=3.8 eV. The largest uncertainty arises in ac-
counting for the long-range relaxation accompanying the
Jahn-Teller distortion of the neutral vacancy, and this
uncertainty could be reduced by calculating the relaxa-
tion of next-nearest-neighbor atoms from first principles.
However, this is not at present feasible with the Green's-
matrix method. Combining the experimental value ' of
EF(V ) EF(V )=0.08—4 eV with a value for EF(V +)
of between 3.4 and 3.5 eV (depending on whether long-
range relaxation is included or not), we obtain a best esti-
mate for EF( V ) of between 3.5 and 3.6 eV. The relaxa-
tion energy is thus -0.8 eV.

The only other first-principles calculations of vacancy-
formation energies we are aware of were carried out using
supercell techniques combined with plane-wave basis sets.
Bar-Yam and Joannopoulos quote a relaxed formation
energy for V + of 3.7 —0.33=-3.4 eV when the Fermi en-

ergy is placed at the top of the valence band. From their
Table II, this value seems to be well converged with
respect to the size of supercell. It compares remarkably
well with our value of 3.5 eV (Table VI, basis set IV),
which is obtained with an inward breathing relaxation
that lowers the energy by 0.25 eV. These authors unfor-
tunately give no detail of their calculated relaxation.
Their value for EF{V ) was derived by combining their
calculated value for EF( V +) with the experimental value
of EF( V ) EF( V + ), and —their resulting value of
EF( V ) =3.6 eV is therefore in good agreement with the
values we have quoted above.

Antonelli and Bernholc have also calculated the neu-
tral vacancy-formation energy using a supercell tech-
nique together with a plane-wave basis. They find a
value of EF( V ) =4.4 eV. Although they calculate an in-

ward breathing relaxation that is in qualitative agreement
with our findings, these authors do not quote the associ-
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ated energy gain, and it is not clear whether their 4.4-eV
formation energy includes radial relaxation or not. Ni-
chols, van de Walle, and Pantelides ' have reported a for-
mation energy of 3.5 eV for the neutral lattice vacancy
calculated with the same method. It is not clear whether
relaxation or Jahn-Teller distortion were taken account
of, and, if so, whether they were calculated from first
principles or extracted from experiment. We discussed
earlier the discrepancy between our finding of an inward
breathing relaxation about the lattice vacancy and the
opposite finding by Lindefelt"' and Sche8ier, Vigneron,
and Bachelet. In view of Fig. 6, it is clear that a force
calculation based on clusters of 35 atoms or fewer can
easily be misinterpreted in favor of an outward breathing
relaxation.

We conclude that the formation energy of the relaxed
doubly positively charged vacancy is -3.5 eV. The for-
mation energy of the neutral lattice vacancy is more
problematic because of the difficulty of treating the
Jahn-Teller distortion in an adequate fashion. By com-
bining Ez( V +

) with experimental information, we arrive
at a best value for EF( V ) of 3.6 eV. Combining this with
the experimental migration energy results in an activa-
tion energy for diffusion of 4.0 eV.

2. Self interstitial

The formation and migration energies of the self-
interstitial are central to an understanding of its role in
self-diffusion. Unlike the vacancy, the silicon self-
interstitial has not been observed directly experimentally,
and there is considerable disagreement about how the ac-
tivation energy Q should be divided into formation and
migration energies. In the following discussion we will
restrict ourselves to considering self-interstitials in the
empty channels of the silicon lattice at positions of
tetrahedral or hexagonal symmetry, although, as pointed
out in Ref. 12, in order to mediate self-diffusion, the self-
interstitial must interchange with a lattice atom.

The calculations for the self-interstitial reported in Ref.
12 were performed with basis set I augmented with d or-
bitals (with an unoptimized exponent yz), which resulted
in a formation energy of EF(IT+ ) =4.9 eV with the Fer-
mi level placed at the top of the valence band, and
EF(IH ) =6.3 eV. Improvement of the basis set led to re-
duced values of Et;(Ir+)=3.8 eV and EF(IH)=5.2 eV.
Further improvement of the basis set and numerical pro-
cedures result in values of E~(IT+ )=3.2 eV and
EF(IH)=4. 4 eV (Table IV, last column). The depen-
dence of these formation energies (as well as that of the
other charge states given in the last column of Table IV)
on the Fermi level is shown in Fig. 10. The important
qualitative conclusions drawn in Ref. [12] remain true:
the self-interstitial displays negative-U behavior the
electronic structure supports athermal migration in the
empty channels " at high temperatures where the Fer-
mi level is positioned in the middle of the gap, the
minimum formation energy for a self-interstitial of 4.4 eV
is much larger than its migration energy of -0.3 eV and
about 1 eV larger than the vacancy-formation energy (3.5
eV).
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Green s-function calculations for the Si self-interstitial
have been reported by Baraff and Schluter. ' For the for-
mation energy EF(Ir+) with the Fermi level in the mid-
dle of the gap, they found a value of 4.7+0.5 eV, in
agreement with our value of 4.4 eV (Fig. 10). They find a
value of EM(I +)=1.2+0.5 eV without relaxation and

Est(I +
) =0.4+0.4 eV with relaxation, compared to our

values of 1.6 and 1.2 eV, respectively (see Table VII).
The latter value of 1.2 eV will be reduced somewhat by
including long-range relaxation. Nevertheless, the agree-
ment is only moderate. Baraff and Schluter used clusters
containing 27 sites for the tetrahedral interstitial calcula-
tion and only 19 sites for the hexagonal interstitial calcu-
lations. We saw in Sec. III E that these cluster sizes are
quite inadequate for calculating the "change-of-basis"
perturbation, and indeed we find that the unrelaxed hex-
agonal site interstitial is not converged with such a small
cluster. For the neutral self-interstitial they find a value
of E~(I )= —l. 1-i0.5 eV without relaxation and
Est(I ) = —1.6+0.5 eV with relaxation, compared to our
values of 0.2 and —0.3, respectively. In the absence of
more details, we attribute the discrepancies in large part
to a lack of convergence with respect to the cluster size in

TABLE VII. Migration energy, E~(I)=EF(IH ) —Ez(Iz ), of
two charge states of the silicon self-interstitial, with and without
relaxation. The entries labeled "this work" are taken from the
last two columns of Table IV. The values in parentheses are cal-
culated by estimating EF(IT) as E+(IT )+2Eg where Eg is the
experimental band gap equal to 1.17 eV. Energies are in elec-
tron volts.

E~(I +)

Unrelaxed

1.2+0.5
1.9+0.1

1.6

Relaxed

0.4+0.5
1.2+0.2
1.2

Reference

13
58

This work

EM(I )

—1.1+0.5
—0.5+0.3

0.2 ( —0.6)

—1.6+0.5
—1.2+0.3
—0.3 (

—1.1)

13
58

This work

) I I I

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Fermi level (ev)

FIG. 10. Formation energy of various charge states of the
self-interstitial at tetrahedral and hexagonal symmetry sites as a
function of the Fermi-level position in the gap. For the Fermi
level at the top of the valence band, the energies are taken from

the last column of Table IV.
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TABLE VIII. Comparison of formation energies EF(IT+ )

from a number of calculations where the Fermi level is assumed
to be in the middle of the experimental gap. Energies are in

electron volts.

F-F(IT+ )

4.7+0.5

44
4.0
3.6

Reference

13
This work (Fig. 10)

58
44

their calculation.
The migration energies for the self-interstitial calculat-

ed by Bar-Yam and Joannopoulos using a supercell
method" are also given in Table VII. Our values for
the migration energy of I + are in reasonable agreement.
For the neutral self-interstitial, the large apparent
discrepancy is almost entirely removed if, following the
same procedure as used by those authors, we calculate
EF(IT ) as EF(IT+ )+2E, where E = 1.17 eV is the ex-
perimental energy gap for silicon. The values thus calcu-
lated are shown in parentheses in Table VII. The relaxa-
tion energies found by these authors are roughly the
same as those considered in Sec. III E. For the hexagonal
self-interstitial, they considered in addition to the sym-
metric breathing relaxation a ring-buckling relaxation.
The total-energy gain from relaxation was 0.9 eV, com-
pared to our value of 0.65 eV. This latter value would be
increased if we took account of the ring-buckling and
long-range relaxation. For the formation energy
EF(IT+ ), Bar-Yam and Joannopoulos obtain a value of
4.0 eV, assuming the Fermi level is positioned in the mid-
dle of the (experimental) gap. This should be compared
to our value of 4.4 eV (Fig. 10) and the value of 4.7 eV
found by Baraff and Schliiter. ' These values of EF(IT+ )

are collected for comparison in Table VIII.
Antonelli and Bernholc have also reported formation

energies for self-interstitials based on plane-wave super-
cell calculations. They quote a formation energy of
EF(IT+ ) =3.6 eV, to be compared to our best value of 4.4
eV (Table VIII). For EF(IT) they find a value of 4.3 eV,
compared to our value of 4.7 eV. Nichols, van de Walle,
and Pantelides ' find a formation energy of 3.6 eV for a
neutral self-interstitial at the tetrahedral symmetry site
using the same supercell method.

The large spread in self-interstitial formation ener-
gies ' '" ' ' calculated using the plane-wave supercell
method is surprising, and the source of the discrepancies
is unclear. For neutral defects with no gap states, the su-

percell method should present relatively few problems,
since the supercell size ought not to be critical, and con-
vergence with respect to the kinetic energy cutoff (num-

ber of plane waves) and Brillouin-zone sampling should
be straightforward. For neutral defects with partly filled

gap states or for charged defects, the issue of supercell
size is more delicate. A gap state acquires a finite disper-
sion, which may be considerable for typical supercell
sizes. For example, van de Walle et al. find a gap state
with a dispersion of 0.5 eV (the local-density band gap is
0.52 eV) with a 32-atom supercell for H-related defects in

Si. To perform supercell calculations for charged de-
fects, a neutralizing background charge must be used to
avoid divergence of the electrostatic energy, and again
the supercell size must be chosen sufficiently large so as
to make the effect of this artificial construction negligible.
In both cases, where large supercells must be used, it then
becomes difficult to demonstrate convergence with
respect to kinetic-energy cutoff and the Brillouin-zone
sampling. It would clearly be useful if more details of the
calculations for the self-interstitial were available in order
to know where the difficulties lie.

The Green's-function approach does not suffer from
these problems, and the largest source of uncertainty re-
lates to the choice of basis set. A problem common to
both approaches is the underestimation by the local-
density approximation of the band gap. This may be im-
portant when comparing calculated results with experi-
ment, but may be neglected for the purpose of comparing
different calculations. It is, however, important to know
what gap was used when the Fermi-level dependence of
formation energies is being discussed or when the Slater
transition-state rule (Sec. III C) is used.

3. Interstitial oxygen

Almost all of the theoretical studies of interstitial oxy-
gen in silicon we are aware of have been based on cluster
calculations. Most of these cluster calculations were per-
formed using semiempirical Hartree-Fock based methods
such as complete neglect of differential overlap (CNDO),
modified neglect of differential overlap (MNDO),
modified intermediate neglect of differential overlap
(MINDO/3), etc. The difficulties associated with these
methods are well known and we will refrain from at-
tempting yet another evaluation of such calculations. In
this section, we will restrict ourselves to discussing first-
principles calculations where there are no free parame-
ters.

It will be most instructive to start by comparing our re-
sults with those of a recent local-density cluster calcula-
tion by Saito and Oshiyama. These authors have calcu-
lated the migration energy for an oxygen interstitial
along the same lines as in Sec. III F, using norm-

conserving pseudopotentials and Gaussian-orbital basis
sets. The equilibrium configuration is studied by means
of a Si,OO cluster (plus 20 hydrogen atoms to terminate
the cluster) and the saddle-point configuration by means

of a Si»O cluster (plus 24 hydrogen atoms). For the equi-

librium configuration, only the nearest-neighbor silicon
atoms are allowed to relax, and they find a Si—0 bond

length of 3.2ao compared to our value of 3.35ao and a
Si—O—Si bond angle of 152, compared to our value of
140'. In their calculation, the displacement of the neigh-

boring silicon atoms (6~~ in Fig. 9) is 0.85ao, compared
to our finding of 0.95ao. The smaller bond lengths they

find may be a result of not allowing the next-nearest-
neighbor silicon atoms to relax.

To examine the saddle-point configuration Saito and

Oshiyama allow the same displacements as shown in Fig.
9. They find a large displacement of the silicon atom on

the (001) axis, 5,'=0. 77ao, compared to our value of
0.30ao. The distance from this silicon atom to the oxy-
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gen atom in their calculation is 3.29ao, compared to our
value of 3.80ao. There is thus a substantial rebonding of
the saddle-point configuration in the cluster calculation
compared to the Green's-function approach. Their cal-
culated migration energy is only 1.2 eV, compared to the
experimental value of 2.56 eV and our calculated value of
2.5 eV. These authors attribute part of the discrepancy
to neglect of next-nearest-neighbor and long-range relax-
ation for the equilibrium configuration. This is confirmed
in our calculation, where we find that this lowers the en-

ergy by -0.55 eV. Another difference between the two
calculations is that we have examined the effect of includ-

ing d orbitals on the host silicon atoms. This led to an in-

crease in the migration energy of 0.3 eV and would

presumably lead to a comparable increase if they were in-

cluded by Saito and Oshiyama. Finally, there is the ques-

tion of whether the cluster size is sufficiently large to de-

scribe the electronic states, and in particular the host
semiconductor, adequately. In our calculation this is
done automatically by using a Green's function for a per-
fect crystal and then choosing a sufficiently large cluster
on which to represent this Green's function. This was
done in a systematic fashion by increasing the cluster size
until the total energy was converged to better than 1

mRy. In a cluster calculation a parallel procedure ought
to be followed, but this was not done in Ref. 73. At this
stage we must attribute the remaining discrepancy be-
tween our calculation and theirs to their use of an inade-

quate cluster size. One way of seeing how well the cluster
simulates the perfect crystal is by looking at how well the
eigenvalue spectrum of the crystal is represented in the
cluster calculation. For silicon, it is well known that the
local-density approximation results in a band gap of
-0.5 eV. In a calculation for a crystal fragment contain-
ing 11 silicon atoms (plus 24 hydrogen atoms), Saito and
Oshiyama find a band gap of 4.9 eV, i.e., almost an order
of magnitude too large. Thus a cluster containing this
number of atoms might be expected to have fundamental-

ly different screening properties and lead to different
bonding configurations than in a real silicon crystal.

Similar cluster calculations have been carried out by
Snyder and Corbett within the Hartree-Fock approxi-
mation. Using even smaller clusters than Saito and Oshi-
yama (SisO plus 12 hydrogen atoms for both equilibrium
and saddle-point configurations), they calculated a migra-
tion energy of 2.84 eV. More recently, the inadequacy of
these small cluster sizes has been recognized by these au-
thors.

U. CONCLUSIONS

We have seen that, although the Green's-matrix
method solves the problems it was designed to solve, it
does so at the expense of introducing another problem,

which we have termed the "change-of-basis perturba-
tion. " This artifact of the matrix method makes it impos-
sible to consider the relaxation of more than approxi-
mately ten atoms. For the oxygen interstitial atom it was
sufficient to be able to consider the relaxation of the two
nearest-neighbor and six next-nearest-neighbor host
atoms for the equilibrium configuration. The remaining
energy gain from long-range relaxation ( (0.1 eV) was
not critical to the description of the defect energetics.
For the case of the neutral silicon lattice vacancy, the en-

ergy gain from relaxing the next-nearest neighbors of the
vacancy site was estimated to be so large that it ought to
be calculated from first principles. Because of the
"change-of-basis perturbation, " a reasonable calculation
for such a large cluster is not possible, and the interesting
problem of the negative- U behavior of the silicon vacancy
unfortunately cannot be addressed by means of this first-
principles total-energy method. This problem also can-
not be addressed at present by the alternative supercell
method because the dispersion of the gap state is so large
for the size of supercells for which calculations can be
performed.

By performing calculations with different basis sets, we
have examined in detail the issue of convergence with
respect to cluster size for several different examples. The
main problem with using a basis of localized orbitals is
that a systematic improvement of the basis is not
possible —a well-known unresolved problem in quantum
chemistry. Thus, although it is plausible that our forma-
tion energies for native defects, neglecting relaxation, are
converged to about 0.1 eV using basis set V, it is not pos-
sible to establish rigorous error bars. A positive point is
that, in all the cases we have examined, the relaxation is
described qualitatively correctly even with the worst basis
set employed, so that such basis sets can be used to calcu-
late equilibrium geometries, and more sensitive quantities
can then be calculated using a better basis set.

A comparison with calculations performed using the
supercell method is inconclusive because in these calcula-
tions it is frequently not stated whether the formation
and migration energies reported were calculated includ-
ing lattice relaxation, or if relaxation is included, whether
it was calculated from first principles or derived from ex-
periment, where the Fermi level was assumed to lie, etc.
In particular, for the self-interstitial at the tetrahedral
site where lattice relaxation is minimal but the discrepan-
cies between different calculations are still very large, it
would be very useful if more details of the calculations
were made available.
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