
PHYSICAL REVIEW B VOLUME 45, NUMBER 12 15 MARCH 1992-II

Polarization, band lineups, and stability of SEC polytypes
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We calculate the spontaneous polarization of wurtzite-structure SiC, using the recently proposed su-

percell technique of Posternak, Baldereschi, Catellani, and Resta [Phys. Rev. Lett. 64, 1777 (1990)]and a
first-principles pseudopotential approach. The macroscopic polarization is found to be 4.32X10
C/m, and is mainly due to the electronic-charge-density redistribution rather than a relaxation of the
positions of the ions. The valence-band offset at the interface between the wurtzite and cubic forms is

determined using the same supercell calculations, giving 0.13 eV, with the wurtzite-structure SiC
valence-band edge being higher in energy. Our calculations also predict the crystal-field splitting of the
top of the valence band of wurtzite-structure SiC to be 0.12 eV, and give some insight into the nature of
the dipole created by a single stacking fault. Finally, the effect of the macroscopic electric fields on the
relative stability of SiC polytypes is discussed and found to be negligible.

I. INTRODUCTION

SiC exists in many polytypes, namely the cubic zinc-
blende structure ( ~ ) (3C), wurtzite structure (1) (2H),
and the polytypes (2) (4H) and (3) (6H), with many in-
termediate phases, such as (23) between the last two.
These polytypes can be generated by certain patterns of
stacking faults along the [111]direction of an otherwise
perfect cubic structure ( ac ). Apart from the ( oc )
structure, other lower-symmetry polytypes are expected
to possess an intrinsic spontaneous polarization (SP):
since the four tetrahedral bonds are no longer equivalent
bond-to-bond charge transfer and ionic relaxation' may
cause SP along the stacking direction.

The present paper has three main purposes. Firstly, to
study the SP of ( 1 ) SiC, using a quantum-mechanical ap-
proach. The interpretation of the SP is of fundamental
importance in the theory of dielectrics, and is still an
open problem: the localized dipoles used in the classical
treatment have not been justified from quantum-
mechanical calculations. Quantum-mechanical treat-
ments of the SP in pyroelectrics have only just begun,
and more work is obviously needed to enhance our un-

derstanding of its origin. Secondly, to calculate the band
offsets at the interfaces between SiC polytypes: the im-
portance of their determination comes from the large
variation of the band gap of SiC between different poly-
types. Thirdly, to investigate the effects of the SP and
band offsets on the relative stability of SiC polytypes.
The relative stability of these polytypes has been
thoroughly studied using a first-principles approach. '
It has been shown that the ( 1 ) structure has a
significantly higher energy than the (2) and (3) poly-
types and yet SiC can be crystallized in that form.
Another striking feature is the existence of polytypes
with very long repeat distances. %'e will discuss the pos-
sibility that these polytypes are stabilized by the presence
of their intrinsic SP.

Our calculations were performed using a first-

principles pseudopotential technique and the local-
density approximation for the exchange-correlation po-
tential. In Sec. II we describe our method and the com-
putational details.

The SP of crystals is very diScult to determine both
experimentally and theoretically. It leads to an electric
potential difference between the two ends of a finite crys-
tal, along the polarization axis. This is usually compen-
sated by attracting charges from the air, and/or by the
migration of electrons and holes due to impurities from
inside the material. Furthermore, the SP of a finite slab
depends on the state of the crystal surfaces, which makes
the SP dependent on sample preparation and external
conditions. Some quantities do not depend on the state
of the crystal surfaces, such as the variation of the SP
with respect to strain, temperature, or a zone-center opti-
cal phonon, because these do not alter the condition of
the surfaces. On the other hand, the use of Born —von
Karman boundary conditions to recover the thermo-
dynamic limit makes the SP inaccessible to first-
principles calculations performed for a unit cell of a bulk
material. Very recently another approach has been pro-
posed by Posternak, Baldereschi, Catellani, and Resta
(PBCR). PBCR have shown that the SP in a slab of ( 1 )
BeO, with faces normal to the polarization axis, can be
determined as the difFerence between the SP in such a
slab and in a similar slab of the ( ao ) form (which has
zero bulk SP, by symmetry). The two structures are per-
fectly matched at the (111)interface, which is a very nat-
ural boundary, indeed the only sensible one, for defining
the SP. The two slabs are then infinitely repeated to al-
low for a quantum-mechanica1 treatment of the problem
in a supercell geometry; see Fig. 1. PBCR have conclud-
ed that the SP in (1 ) of BeO is mostly due to the ionic
relaxation. The work of PBCR has opened the door to
first-principles studies of the macroscopic polarization of
pyroelectric and ferroelectric materials. In the present
paper we will focus on the SP in the ( 1 ) form of SiC
which has the largest hexagonal character among the po-
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lytypes. The results will be discussed in connection with
the valence electronic-charge-density redistribution and
ionic relaxation in Sec. III, and we conclude that the SP
is mostly due to the electronic-charge-density redistribu-
tion.

Interestingly, the band gap of SiC is found to increase
almost linearly with the percentage of hexagonal charac-
ter:~ it varies from 2.39 eV in the ( ~ ) structure to 3.30
eV in the ( 1) form. In other materials, such as ZnS (Ref.
8) (which also exists in many polytypes) and CdS (Ref. 10)
(which can be grown in the ( 1) and ( oo ) structures), the
electronic band structures of the (1) and ( ~ ) struc-
tures are found to be very similar and in these cases the
difference in band gaps is less than 0.1 eV. Any polytype
can be thought of as being made out of small units of
( 0o ), ( 1 ), ( 2 ), and ( 3 ), and therefore we are interested
in the band offsets between these simple polytypes. Since
the total-energy differences between the different poly-
types are very small, the ratio between the valence- and
conduction-band offsets is also expected to be very small.
Very recently Heine, Cheng, and Needs" have used the
argument of a vanishing valence-band offset (VBO) to dis-
cuss the stability of ( ao ), ( 1 ), and other polytypes in the
presence of donor and acceptor impurities. The most
time consuming part of a calculation of the VBO is the

Unit —cell length

FIG. 1. Upper panel: Si-C bond chains along the stacking
direction in the unrelaxed 3( ~ ) /6( 1) SiC superlattice used in
our calculations. Small and large solid circles represent C and
Si atoms, respectively. 1 and 2 refer to the bonds along which
the charge density is plotted in Fig. 5. Dashed lines: the inter-
faces defined by Northrup, Ihm, and Cohen (Ref. 16); dashed-
dotted lines: the interfaces considered in this work (see text).
The + and —signs refer to the positions of the maximum pile-
up of holes and electrons, respectively, as shown in Fig. 6.
Lower panel: Averaged charge density (solid lines) n and aver-
aged total potential (dashed lines) V„„ofthe above superlattice.
The halfway points between the interfaces in the ( IIII ) and (1)
regions are indicated by short vertical solid lines. The arrow
shows the direction of the SP in the ( 1 ) slab of SIC.

determination of the difference in the averaged total po-
tential in the two materials, which requires a supercell
containing both materials. However, this difference can
be determined easily from the same supercell calculations
used to calculate the SP. In Sec. IV we present and dis-
cuss our results obtained for the VBO at the ( oo ) /(1)
SiC interface, and discuss the possibility of using these re-
sults to obtain the VBO at the (111) interfaces between
any other pair of SiC polytypes.

The presence of SP and the consequent electric Selds in
SiC have not been considered before in relation to the rel-
ative structural stability of different polytypes. A poly-
type may be considered as a particular stacking of atomic
double layers (hereafter referred to as layers) in what
would be the [111] direction of the cubic zinc-blende
structure. Each layer can be placed on top of the one
below on one of two different ways, to which we can as-

sign a plus sign and a minus sign, respectively. An arbi-
trary polytype can be considered as a band of n, layers
stacked as in a cubic crystal, to which we assign a plus
sign, followed by an antiphase boundary and n2 layers
stacked in the minus sense, ' and so on. Since there can
be no SP in cubic zinc-blende-structure materials, we may
associate the SP with the antiphase boundaries. The
point is that there are substantial electric fields and volt-
age variations set up in real polytypes analogous to our
very artificial supercell structure in Fig. 1. Two questions
arise. First, the computations of the relative energies of
various polytypes reported in Refs. 1 and 4—8 used
periodic boundary conditions in the normal way. Such
periodic boundary conditions are usually considered a
convenient mathematical device devoid of physical reali-
ty, and one may wonder whether their use incorporates
correctly the electrostatic effects associated with a real
crystal. We shall consider this issue in Sec. V and con-
clude that the periodic boundary conditions are in fact
appropriate for bulk structural energies. Second, we see
from Fig. 1 that in a polytype with a long repeat distance
there will be a substantial potential variation. In real SiC
materials at the temperatures of crystal growth there will
be mobile free electrons and/or holes which can flow
from regions of high to regions of low potential energy,
and thus lower the total energy of the system. The poten-
tial variation would be screened out by such free-carrier
motion, and one wonders whether the effect can give a
long-range interaction to stabilize long-period polytypes,
in addition to the mechanisms already considered previ-
ously. ' This will be also discussed in Sec. V, and
again we shall conclude that there is nothing in it. Final-
ly, a summary of our main results and conclusions will be
given in Sec. VI.

II. METHOD AND COMPUTATIONAL DETAILS

The macroscopic polarization of an electronic-charge-
density distribution in a crystal, n (r), is by definition the
electric dipole moment per unit volume,

Modern first-principles techniques are capable of deter-
mining n (r) with very high accuracy, as has already been
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done for many materials. One might therefore think that
P could be determined easily using Eq. (1). Unfortunate-
ly, this is not the case: for an infinite crystal without a
center of inversion the polarization obtained according to
Eq. (1) is an ill-defined quantity. ' For a finite piece of
material, P is well defined but it depends crucially on the
truncation at the surfaces. In addition, surface-induced
effects, caused by surface reconstruction and the accumu-
lation of extra charges, can affect P.

In order to eliminate the truncation and surface effects,
PBCR proposed that the polarization in a finite slab of
the polarized material, with faces normal to the polariza-
tion axis, can be obtained as the difference in the polar-
ization AP in this slab and in a similar slab of an arbi-
trary reference material, which has no bulk SP by sym-

metry, and which is perfectly matched to the polarized
slab normal to the polarization axis in order to eliminate
any chemical (e.g. , broken bonds, ionic or electronic
charge transfer) or geometrical (e.g. , reconstruction)
effects. The ideal reference material for the ( 1 ) and oth-
er polytype structures is the cubic ( ~ ) form of the same
material with lattice parameter equal to that of the polar-
ized structure normal to the stacking direction as shown
in Fig. 1. AP can then be calculated by performing first-
principles calculations for a supercell which has the
above two slabs (the polarized and the reference) as the
basic building block. PBCR found that AP converged
very rapidly with respect to the size of the unit cell.

The (1) structure has three independent structural pa-
rameters, which we take as the lattice parameter a nor-
mal to the stacking direction, the c/a ratio where c is the
lattice parameter along the stacking direction, and the
internal relaxation parameter u defined as dL /c with di
is the length of the longitudinal (L) bond along the stack-
ing direction. The ideal values of c/a and u are 1.633
and 0.3750, respectively. The equilibrium parameters for
the (1) form of SiC have been calculated using a first-

principles pseudopotential technique by Cheng, Needs,
and Heine, ' giving values for c/a and u of 1.640 and
0.3755, respectively.

Following PBCR we have used a supercell approach to
calculate from first-principles the SP in the ( 1 ) structure
of SiC. The unit cell from which the results reported in

Sec. III were extracted is shown in Fig. 1. As a conse-
quence of the SP in the ( 1) region and the depolarization
field (which results from the use of periodic boundary
conditions), the averaged potential along the polarization
axis is expected to show a sawtoothlike shape. However,
in reality, because of the finite width of the interface, the
averaged potential at the edges becomes smooth as shown
in Fig. 1. The averaged potential from which AP can be
extracted will be discussed below. The averaging was

performed using the moving-slab averaging method of
Baldereschi, Baroni, and Resta. ' The integration limits
along the polarization axis for the slab averaging were
—c/4 and c/4 from the point under consideration.

The calculation of hP was done first with the Si and C
atoms occupying the ideal tetrahedral atomic positions
(hereafter referred to as the unrelaxed configuration), and
then we relaxed the structure such that the (1) slab had
the calculated equilibrium values of c/a and u, ' see

above (hereafter referred to as the relaxed configuration).
For the unrelaxed configuration the sum of the averaged
ionic ( V;,„)and exchange-correlation potentials ( VEC ) is
equal to a constant (assuming a sharp interface and a con-
stant averaged charge density in the two regions) or a
very weakly varying function of z along the stacking
direction, as found in the real calculations. In the unre-
laxed case, hP can therefore be extracted from the aver-
aged Hartree potential (VH). Whereas in the relaxed
configuration hP must be extracted from V;,„+VH. In
practice VEC is found to be a sufficiently weakly varying
function of z that in both cases one can use the averaged
total potential

Vtot= Vo + VH+ VEc (2)

including the exchange-correlation term. This is con-
venient because V„, is also the quantity we use in the cal-
culations of the band offsets. Therefore, AP is extracted
for both the relaxed and unrelaxed configurations from

V„, using the relation (in SI units)

hP = —eohE =—eo
a V...(IV) a V...(C)

az az
(3)

where 8'and C refer to the wurtzite and cubic regions of
the supercell. In this way what we are really calculating
is the difference in the polarizations, hP, between the two
slabs included in the supercell. By increasing the width
of the slabs until hP is well converged, bP can then be as-
sociated with the difference in the polarizations of the
two bulk materials, which gives directly the SP in the
(1) structure.

The SP calculated in this manner is the polarization
one would measure in a thick slab of the (1) structure
sandwiched between two semi-infinite crystals of the cu-
bic structure ( ~ ) of the same material. This polariza-
tion is independent of the thickness of the (1) slab, pro-
vided that it is reasonably thick. Therefore, the calculat-
ed SP corresponds to that of a finite piece of the ( 1 )
structure after eliminating, in a particular way, the trun-
cation and surface-induced effects. One should stress
again that the calculated SP is not the intrinsic SP, P;„„
of the ( 1 ) (the so-called transverse SP in Ref. 2), but it is
the sum of the intrinsic and induced SP's. It is not
difficult to write down and solve the classical macroscop-
ic equations of electrostatics for our geometry, including
the induced polarizations due to the electric fields present
in the (1) and ( ao ) regions. We obtain

P;„,=e AP, (4)

However, the first method is much easier, since o. is very
sma11 compared with the total valence charge density, as
one can see from Fig. 1.

where e „is the dielectric constant (assumed the same for
the (1) and ( ~ ) materials) equal to 6.52 for SiC. '4

Another way of extracting hP is by calculating the net

pile-up of charge cr at the interfaces between the two

structures, and using the relation

AP = —o. .
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FIG. 2. Averaged electrostatic potential with zero (solid line)
and finite (dashed line) potential lineup 5V(schematic), see text.
The averaged electrostatic potential assuming zero SP is shown

by dotted lines, and the interfaces are shown by vertical
dashed-dotted lines.

Details of the method of calculating VBO's are de-
scribed in Ref. 15. In the present case the VBO is the
sum of two terms: (i) the difference between V„, in the
two structures (the so-called potential lineup), and (ii) the
difference in the energy of the top of the valence band
calculated relative to a constant averaged total potential
(V„,=O) in each of the two structures. Contributions
from spin-orbit splitting and the many-body corrections
to the local-density approximation are expected to be
negligible in the present case, because they are very simi-
lar in the two structures. The PBCR approach to calcu-
late the SP is completely analogous to the method usually
used to calculate the potential lineup. In fact, both quan-
tities can be obtained from a single supercell calculation.
If the potential lineup is zero, then V„, changes sign at
the halfway points between the two interfaces in each of
the two regions, and is expected to have a maximum or
minimum at the interface. If the potential lineup is not
zero, then V„, will not change sign precisely at the half-

way points, and the potential lineup is then equal to the
difference in the values of V„, at the halfway points, or
equivalently to the discontinuity at the interface obtained
by linearly extrapolating V„, around the halfway points
(as would be the case if there were no interface smoothing
resulting from the finite width of the interface), as shown
schematically in Fig. 2. The second contribution to the
VBO can be obtained from separate calculations for the
two bulk structures.

For an accurate determination of the VBO a sharp in-
terface must be unambiguously defined. Using the argu-
ment that the Si and C atoms on opposite sides of the in-
terface are affected by the change in the structure at the
level of the fourth-nearest neighbors in the other struc-
ture, Northrup, Ihm, and Cohen' have defined a sharp
interface between the (1) and (ao ) structures of the
same material shown by vertical dashed lines in Figs. 1

and 3. However, this definition seems to be inconsistent
with the electric dipole crated by a single stacking fault, '

which is found to be across the T bond and not across the
central L bond as one would expect from the Northrup,
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FIG. 3. Interfaces between an isolated antiphase boundary
and its surrounding cubic regions. Dashed vertical lines
represent the interfaces of Northrup, Ihrn, and Cohen (Ref. 16);
the dashed-dotted lines are the interfaces defined in present
work (see also Fig. 1). The arrow indicates the direction and lo-
cation of the expected electric dipole.

III. RESULTS FOR THE SPONTANEOUS
POLARIZATION AND VALENCE CHARGE DENSITY

The averaged valence charge density n and averaged
total potential V„, along the polarization direction for
the unrelaxed superlattice structure are also shown in
Fig. 1. The important features to note are (i) the

Ihm, and Cohen' interfaces between the stacking fault
and the surrounding cubic regions (see Fig. 3). One can
also argue that the interface should be at the middle of
the L bond, since the polytype structure is determined by
the direction of its T bonds. From our calculations we
have found that the second choice is more physical but
the interface is closer to the Si end of the interface L
bonds than to the C end (see Sec. III).

Our calculations were performed using the self-
consistent pseudopotential technique and the local-
density approximation' for the exchange-correlation po-
tential. For the exchange-correlation potential we used
the Ceperley-Alder' form as parametrized by Perdew
and Zunger. For the Si and C pseudopotentials we
have taken those previously used in the SiC calcula-
tions. ' In the supercell calculations, the wave func-
tions were expanded in a plane-wave basis set including
all waves up to 20 Ry in energy, while in the bulk ( ~ )
(six atoms per unit cell) and (1) (four atoms per unit cell)
a 32-Ry cutoff was used. The effect of these cutoffs was
checked by increasing them to 32 and 45 Ry, respective-
ly, and they were found to have negligible effects on both
the SP and the VBO (less than 1%). The Brillouin-zone
integrations were performed by sampling on regular
4X4X2, 4X4X6, and 4X4X4 Monkhorst-Pack '

meshes for the supercell, ( I ) and ( ~ ), structures, re-
spectively. The last two meshes were chosen such that
the same set of special points is used for the two bulk
structures. We increased the size of the supercell until
the averaged charge density converged to its bulk value
and until V„, became a linearly varying function with
respect to the distance around the halfway points. We
found that three layers of ( ao ) and six of ( I ) in the su-
percell were enough for excellent convergence, as can be
seen from Fig. 1.
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sawtoothlike shape of V„„which indicates the presence
of SP in the (1) structure; (ii) the sharp interfaces postu-
lated from simple arguments' do not coincide with the
location of the maxima and minima of V„, at the inter-
face region: the latter seem to be shifted by about one T-
bond distance along the stacking direction; (iii) V„, does
not change sign at the halfway points between the two in-
terfaces, which shows that V„, is not identical in the bulk
( ~ ) and ( 1) forms (in the absence of the polarization).

The calculated intrinsic SP, P,„, in ( 1 ) SiC according
to Eqs. (3) and (5) and Fig. 1 is 3.33X10 C/m . This
value is larger than the value (1.57X10 C/m ) ob-
tained by PBCR for the unrelaxed ( 1) Beo (Ref. 2) using
the self-consistent full-potential linearized augmented-
plane-wave method. This is mainly due to the large
difference in the values of the dielectric constants of BeO
(2.99) and SiC (6.52). Since the ionic relaxation is not yet
included, this SP is due only to the electronic-charge-
density redistribution, resulting from the introduction of
the stacking faults required to transform the cubic ( ~ )
structure into the ( 1) form. In Fig. 4 we show a contour
plot of the valence charge density along the bond chain of
our SiC supercell structure. Figure 4 shows that the
charge densities along the L and the T bonds in the ( 1 )
region are very similar and, in turn, are similar to those
in the ( oo ) region, which demonstrates that the charge
density redistribution is really very small. To highlight
this feature we show in Fig. 5 the charge density along
the L and T bonds and the difference between them.
From Fig. 5 it appears that the L bond has on average a
higher charge density, contrary to what one expects from
the relaxation of ( 1) SiC. ' Total energy and force calcu-
lations' have shown that the T bond is shorter than the L
one, suggesting that there is a flow of electrons from the
L to the T bonds on going from ( oo ) to (1). In order to
get more insight into the electronic charge transfer and to
show that there really is a transfer of electrons from the
L to the T bonds, we show in Fig. 6 the difference be-
tween the charge densities of the bulk ( 1 ) and ( ~ )
forms averaged in the planes normal to the stacking
direction. The important features to note are (1) in the
T-bond regions there is an excess of charge in agreement
with the relaxation of the (1) form; (2) most of the
charge transfer takes place in the L-bond region or across

40.0

30.0

0

V

/

20.0 i

10.0

0.0 i s & & I

0.2

0. 1

Si

0.0

the T bonds, contrary to what one might think from the
relaxation of the ( 1 ) structure of SiC.

Figure 6 may also give some insight about the electric
dipole to be expected from an isolated antiphase bound-
ary shown in Fig. 3. Using the arguments of Northrup,
Ihm, and Cohen, ' one can define the interfaces between
such a boundary and the surrounding cubic regions
(shown in Fig. 3 by dashed lines). The charge-density
redistribution in the L bond of the antiphase boundary
can be approximated by that of a similar bond in the bulk
(1) structure; this is probably a good approximation
since the next two bonds on both sides of this bond are
the same in the two structures. Assuming that the charge
distribution goes very rapidly to its cubic form away from
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FIG. 5. (a) The valence charge density nb along bonds 1 and
2 shown in Fig. 1, which are indistinguishable on the scale of
the figure. (b) The difference between them, Anb, defined as
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FIG. 4. Contour plot of the valence charge density of the un-

relaxed configuration of Fig. 1, in the plane of the bond chains,
normalized to eight electrons per unit cell (i.e., multiplied by a
factor of —'). The successive contours are equally spaced and

are separated by five electrons per unit cell.

FIG. 6. Difference of the charge density averaged in the
planes normal to stacking axis (the x-y plane), An„~(z), between
the bulk wurtzite and cubic structures. The position of the Si
and C atoms are shown by vertical dotted lines, and z is given in
units of a.
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the interfaces, one would be inclinded to think that the
dipole due to an isolated antiphase boundary is localized
in the region of its L bond. However, this is not true. By
denoting the locations of the maximum pile-up of elec-
trons and holes as found in Fig. 6 by —and + signs, re-
spectively, in Fig. 1, one can see that the arrangement
shown in the lower chain is in good agreement with the
averaged charge-density profile of the supercell and the
direction of the net dipole in the ( 1) region (from right
to left), which shows that the dipole due to a single stack-
ing fault should be across the T bond shown in Fig. 3.
This finding is also consistent with the corresponding di-
pole of ZnS. ' The barrier height created by such a di-

pole in SiC is expected to be approximately one-sixth of
the barrier height shown in Fig. 1 (0.25 eV), giving 0.04
eV compared with 0.07 obtained in the case of ZnS. '

This suggests that the SP in ZnS polytypes is comparable
with that of SiC polytypes.

One may conclude that a better interface than that of
Northrup, Ihm, and Cohen' can be defined by the loca-
tion of the maximum pile-up of electrons and holes at the
interface regions, which is consistent with the above dis-
cussion about the net dipole created in the (1) region of
the SiC supercell shown in Fig. 1 and that of a single
stacking fault. These interfaces are found to be closer to
the Si side of the interface L bonds, which can be under-
stood in terms of the asymmetry of the Si-C bond. In
Sec. IV we will use the interfaces defined in this manner
for the VBO calculations.

We have also performed calculations for the relaxed
configuration (see Sec. II). The calculated P;„, in relaxed
(1) SiC is 4.32X10 C/m, which is about 30% larger
than in the unrelaxed configuration. In the case of BeO
the increase in the polarization from ionic relaxation was
about 300%. The modest increase in the macroscopic
polarization due to the ionic relaxation in SiC, compared
with that of BeO, reflects the much smaller internal relax-
ations in SiC [u, is equal to 0.3755 and 0.3785 in SiC
(Ref. 1) and BeO (Ref. 2), respectively, compared with the
ideal value 0.3750]. In fact, if we neglect the variation of
the total SP (we have used this quantity to facilitate the
comparison with the results of Ref. 2) of (1) SiC, b,P,
with respect to the c/a ratio [which is found to be very
small compared with that due to u (Ref. 2)], then we find
that db, P/du is equal to —2.98 C/m, which happens to
be close to the value in BeO (

—3.0 C/m ).

IV. RESULTS FOR THE VALENCE-BAND OFFSET

To investigate the VBO at the interface between
different SiC polytypes, we have calculated the VBO at
the interface between the unrelaxed ( oo ) and ( 1) forms.
The additional effect of the structural relaxation is ex-
pected to be small. Since the band gap of SiC varies al-
most linearly with the hexagona1 character, one can as-
sume a similar variation for the VBO and hence deduce
the VBQ between any two arbitrary polytypes.

Using the sharp interfaces defined in Sec. III (i.e., the
interfaces shown in Fig. 1 by dashed-dotted lines), the
calculated potential lineup is found to be very small,
about 0.02 eV. On going from the cubic ( oo ) to the ( 1)

structure, the triplely degenerate state at the top of the
valence band (I'») is split by the crystal field in the (1)
structure into a doubly degenerate state (I ~) and a singlet
state (I i), with the I'z state being higher in energy.
The di6'erence in energy between the I 5 state of bulk ( 1 )
and the I » of bulk ( oo ) SiC, calculated relative to a
common averaged total potential (V„,=O), is 0.15 eV.
This gives a VBO of 0.13 eV between these two states at
the interface between the ( 1 ) and ( oo ) structures, with
the I ~ state of the (1) form being higher in energy.
Bearing in mind that the difference between the band
gaps of the two structures is 0.90 eV, we conclude that a
very high percentage (86%) of the band-gap difFerence is
accommodated by a large conduction-band offset. Thus,
our calculations provide a justification for the approxima-
tion of zero valence-band offset used in Ref. 11 to discuss
the relative stabilities of the various polytypes in the pres-
ence of donor and acceptor impurities. Moreover, the
crystal-field splitting in ( 1 ) SiC is found to be quite
large, 0.12 eV, compared with that of other (1) materi-

22

As a result of the SP, an interesting situation may arise
when the polarized slab is thick enough such that the po-
tential difference between its two ends is larger than the
band gap of the cubic form. To reduce the potential
difference a transfer of electrons from the high-potential
end to the low-potential one will take place, by creating
interface states. These interface states are expected to be
quite localized and so they will not affect the linear varia-
tion of V„, far from the interface. Therefore, even in this
situation, both the SP and the VBO are well defined and
equal to the values obtained above, provided that the ap-
propriate interface just introduced is used for the latter.

V. INTRINSIC POLARIZATION AND PHASE
STABILITY

As pointed out in Sec. I, it is clear from Fig. 1 that the
intrinsic dipole moments in any polytype of SiC except
( oo ) lead to substantial internal electric fields. We need
to discuss more critically whether these fields contribute
to the energy of the polytypes, in addition to what has al-
ready been taken into account in earlier work. There
are two situations to consider, firstly the polytype
without free carriers, and secondly a long period polytype
with some free carriers being present at the temperature
of crystal growth. In the latter case the carriers can
lower their energy by responding to the voltage variations
analogous to that in Fig. 1, thus screening the field. As
we shall see, in both cases everything has already been in-
cluded in the existing calculations.

We start with some elementary considerations of elec-
trostatics for which no suitable reference could be found.
Consider the simple polytype (3) with a SP around each
antiphase boundary. The electrostatic potential in a finite
slab with free surfaces would be as shown in Fig. 7(a),
where for simplicity we have idealized the potential rise
at the dipole layer as a sharp step. However, this would
give an enormous voltage difference between the two sur-
faces of the slab. In reality this macroscopic voltage
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FIG. 7. Averaged potential V(z) in simple polytypes
(schematic). (a) V(z) in (3) as it would be for a finite crystal
with free surfaces and no screening. (b) The same after screen-

ing, or in a calculation with periodic boundary conditions. (c)
The same as (b) but for polytype (2).

FIG. 8. Periodic averaged potential V(z) in one unit cell of
the polytype (3332) (schematic). The sharpness of the rise due

to the intrinsic dipole moments at the antiphase boundaries is

exaggerated, as is the length ratio of the 3-bands and 2-bands.

(a) V(z) with very-long-range screening only. Note the Fourier
component of V(z) with wavelength 11cL, and the identical
slopes (electric field) in the 2- and 3-bands. (b) V(z) with the po-
tential in each 3-band and 2-band as it would be in the polytypes
(3) and (2). (c) The same as (b) but with a smaller screening
length.

would be screened out by ions attracted to the surface
from the air, and/or in SiC by the polarization of donors
and/or acceptors including the motion of free carriers at
the high temperature of crystallization. The resulting
voltage variations would therefore be those of Figs. 7(b)
and 7(c) of polytypes ( 3 ) and ( 2 ), respectively. The
reduction in the energy turns out to be

—P 2
S

2eo«I.
(6)

per 2-band or 3-band of length ncL (where cL is the
length of one layer, equal to c /2) and per unit area paral-
lel to the layers, where P, is the dipole moment per unit
area of the antiphase boundary. This energy turns out to
be comparable to the energy differences between poly-
types, and we believe it must be included in a proper
definition of the bulk energy.

Calculations of polytype energies employ periodic
boundary conditions, so that the potentials look like
those in Figs. 7(b) and 7(c). The energy calculations in-
clude correctly the electrostatic contribution and thus
implicitly include the correction term Eq. (6}. We con-
clude that they correctly represent the bulk energies of
the polytypes without further additions, at least for the
simple polytypes ( 1 ), ( 2 },and ( 3 }.

The situation is a little more complicated for a poly-
type of longer period such as (3332) shown in Fig. 8.
Subtracting to the constant macroscopic field for a finite
slab or performing a calculation with periodic boundary

E(per unit cell) =3E3+E2 (7)

for the polytype (3332} of Fig. 8. This means that the
energy given by Eq. (7) corresponds to the potential vari-
ation of Fig. 8(b) which is exactly what would result from
screening out the long-wavelength part of the potential in
Fig. 8(a). The energy lowering from the latter type of
screening is therefore already included in the zeroth-
order model [Eq. (7)j and therefore no further stabiliza-
tion of the long period polytypes is produced in this way.

Finally, we need to elaborate on some implicit assump-

conditions would give a potential as shown in Fig. 8(a).
Note that this still leaves a long-wavelength variation in
the potential shown by the dashed line in Fig. 8(a) with a
maximum variation of about 13 meV (using the results of
Sec. III) from A to 8. We presume that mobile carriers
would be sufficiently localized to take advantage of this
variation in the potential and move from around A to
around B, with a further drop in the total energy.

At one time we thought this process gave an extra sta-
bilization of the long-period polytypes. However, the
screening of the dashed potential in Fig 8(a) is not the
correct approach to the point at issue. In previous
work on the complex polytypes made up of 3-bands
and 2-bands (i.e., sections from the structures (3} and

( 2 }}, we took as our zeroth-order model the reference
energy which simply adds up the energies of the relevant
number of 3-bands (E3 ) and 2-bands (E~ ), i.e.,
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tions about the screening, which can best be expressed in
terms of the screening length A,„. In going from Fig. 8(a)
to Fig. 8(b) or 8(c) we assumed A, to be less than the
macroscopic thickness of the finite slab, but longer than
3cL (and 2cI ). In the discussion of Figs. 8(a) and 8(b) A,

was assumed to be less than 11cL, or whatever the repeat
length of the complex polytype is. This is probably a
reasonable assumption froxn what one knows about the
localization of carriers in quantum-well structures and
the voltage amplitude of the 13 meV already mentioned.
Figure 8(c) shows the potentials if k becomes less than
2cL, here of order cL . This is not considered realistic but
Fig. 8(c) makes the point that any A,„much less than
llcL does not affect the argument of Eq. (7): the poten-
tial in Fig. 8(c) is manifestly made up of screened 3-band
and screened 2-band potentials such as they would ap-
pear in pure polytypes (3) and (2). Of course these ar-
guments are not exact if A,„is comparable to 11cL .

VI. SUMMARY

Using a first-principles pseudopotential technique and
the local-density approximation of density-functional
theory for the exchange-correlation potential, we have
studied the spontaneous polarization (SP) in wurtzite-
structure (1) SiC and the valence-band offset (VBO) at
the interface between the ( 00 ) and (1) structures. We
have also investigated the effect of the resulting macro-
scopic electric fields on the relative stability of SiC poly-
types. In the following we summarize our main results
and conclusions.

The SP in (1) SiC is predicted to be 4.32 X 10 C/m,
and it is mainly due to the electronic charge redistribu-
tion. The ionic relaxation is found to have only a small
effect, about 25% of the above value is due to this relaxa-
tion, contrary to the case of (1) BeO. This is a conse-
quences of the much smaller internal relaxation in (1)
SiC. ' The SP is expected to vary linearly with the den-
sity of stacking faults, which indicates that the SP in oth-
er SiC polytypes varies linearly with the degree of hexa-
gonality. Note that the cubic structure has no SP by
symmetry.

The electronic charge transfer in unrelaxed (1) SiC,
which causes the SP, is found to be rather complicated.
From the difference in the planar-averaged density (aver-
aged normal to the stacking direction) between the unre-
laxed (1) and ( ~ ) forms, we found that most of the
charge transfer takes place across the transverse bond re-
gions. Moreover, there is an excess of charge in the
transverse bond regions which is consistent with the form

of the structural relaxation. This is not evident in the
charge density plotted along the bond direction, which in
fact shows that the longitudinal bonds have higher
charge density along that line: the latter must be out-
weighted by the longitudinal to transverse bonds electron
transfer elsewhere in the three-dimensional region of the
bonds.

Our results give some insight into the electric dipole
due to an isolated antiphase boundary, which is expected
to be localized across the transverse bond of the anti-
phase boundary and gives a barrier height of around 0.04
eV.

The VBO at the interfaces between SiC polytypes turn
out to be rather small, with a maximum value of 0.13 eV
between the extreme cases of the ( 1 ) and ( oo ) struc-
tures. Thus almost the whole of the large difference in
the band gaps between these materials appears as a
conduction-band offset. Since the band gap varies nearly
linearly with the degree of hexagonality of the structures,
we expect the same behavior, suitably scaled, to apply to
the VBO between any two polytypes. This confirms the
argument" that acceptor impurities should contribute
very little to the relative phase stability of the (1) and
( ~ ) forms, but that donors should favor significantly
the one with the smaller band gap. " The crystal-field
splitting of the top of the valence band is found to be 0.12
eV in (1) SiC.

We have considered two electrostatic effects arising
from the intrinsic dipole moments, and the screening of
the resulting electric fields. In neither case have we
found any identifiable contribution to the relative phase
stability of polytypes.

Recently we performed self-consistent pseudopotential
calculations for the disturbance of the charge density
around an isolated tacking boundary in SiC polytypes.
In light of these additional calculations we were able,
among other things, to extract direct information about
the location, direction, and localization of the electric di-
pole due to an isolated stacking fault. These results were
found to be in good agreement with the predictions made
in this paper, which supports our choice of the interface.
Moreover, we have found that the SP varies linearly with
the degree of the hexagonality, as has been assumed in
this paper.
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