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Hubbard model in infinite dimensions
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We present an exact mapping of the Hubbard model in infinite dimensions onto a single-impurity
Anderson (or WollA model supplemented by a self-consistency condition. This provides a mean-field

picture of strongly correlated systems, which becomes exact as d ~. We point out a special integr-
able case of the mean-field equations, and study the general case using a perturbative renormalization

group around the atomic limit. Three distinct Fermi-liquid regimes arise, corresponding to the Kondo,
mixed-valence, and empty-orbitals regimes of the single-impurity problem. The Kondo resonance and
the satellite peaks of the single-impurity model correspond to the quasiparticle and Hubbard-bands
features of the Hubbard model, respectively.

Despite intensive theoretical work, the physics of
strongly correlated fermions still contains numerous un-

solved problems, even in its simplest formulation such as
the single-band Hubbard model. In particular, there is no

widely accepted mean-field theory which becomes exact in

some limit. In a number of statistical-mechanics prob-
lems (including spin glasses, fully frustrated models, and
lattice gauge theories) the mean-field theory obtained by
taking the limit of large space dimensionality provided
great insights. I n a pioneering paper, ' Metzner and
Vollhardt pointed out that this limit is also of great in-

terest for quantum many-body models, which simplify re-
markably while retaining the main features, making their
physics nontrivial. In this paper, we construct a mean-
field picture of the Hubbard model, which becomes exact
as d ee and unravels a connection with the single-
irnpurity Anderson model. This analogy elucidates many
features of the Hubbard model in infinite dimensions. A
different mean-field approach has been recently proposed
by Van Dongen and Vollhardt for the Falicov-Kimball
model.

As usual in statistical mechanics, the limit d ~ must
be taken while scaling the parameters in a definite way, in

order to avoid the situation that a single term in the Harn-
iltonian dominates all others. For the Hubbard model on
a d-dimensional hypercubic lattice with nearest-neighbor
hopping t;, the on-site U need not be scaled, while t;j must
be scaled as I/Wd in order to keep both the kinetic and
potential energy per site finite. Specifically, we shall
choose

H= P (C; Cj +H.c.)+U+n;ln;1.
2jg tij)e , i

With this scaling, the model remains an itinerant system
with correlations. The free (V=0) density of states
(DOS) acquires a Gaussian form' in the d ~ limit:
D(s) = I/Jxe '. It displays band tails extending from
—~ to +, but in many instances, the effective band-
width is given by the variance of the density of states.

Metzner and Vollhardt's observation stimulated a num-

ber of subsequent works, concentrating mainly on the
study of variational wave functions and weak-coupling ex-
pansions, which simplify enormously in d =. Further-
more, in a remarkable piece of work, Brandt and Mielsch
(BM) obtained the exact solution of the infinite-di-
mensional Falicov-Kimball model, a simplified Hubbard
model in which only one of the two spin species is allowed
to hop. For reasons which will appear later, the infinite-
dimensional Hubbard model cannot be solved exactly, but
the BM method does provide a very useful framework for
its study. The goal of the method is to find a set of equa-
tions allowing the calculation of the self-energy Z, defined
from the interacting single-electron Green's function
G(k, iro„) by

G(k,iro„) =[iro, +p —
ei,

—Z] (2)

(Unbroken translational and spin symmetries are assumed
here, see the discussion below. ) In d =~, the self-energy
depends only on frequency ' in Fourier space, Z =Z(i to„).

To compute Z we consider an auxilliary impurity prob-
lem with the single-site action:

~p
S = U d. n, (.)n 1(.)

~p ~p
dr dr'gc (r)Go '(r —r')c (r'). (3)

The mean-field equations require that the site-diagonal
Green's function of the Hubbard model [equal to the sum
of (2) over momenta, P&G(k,iro„)] actually coincides

Here, Go, the "bare" Green's function of this local dy-
namics, contains the information of all the other sites
which have been integrated out. Go does not coincide
with the noninteracting site-diagonal Green s function of
the Hubbard model. This impurity problem has a self-
energy Z; „[Go,iro„] defined from the interacting Green's
function G(iro„) of (3) by

G(iro„) =(ct(iro, )c(iro„))g =[Gp '
Z; p(Gp, iro—„)l

(4)

6479



6480 ANTOINE GEORGES AND GABRIEL KOTLIAR

with (4), provided Z=Z; „(i'„).This reads

p + oo D(c)
G(iso„) = dc

im„+p —Z; p(i&0„) —c
(5)

Notice that the nature of the lattice enters the mean-field
equations via the density of states D(c) only.

For a Gaussian D(c), the Hilbert transform on the
right-hand side of (5) equals —i Jne ~ erfc( —i(),
where erfc denotes the complementary complex error
function and (=iro„+p Z—

; „(i'„). Equations (3)-(5)
are the mean-field equations for the Hubbard model
which are exact in infinite dimensions, and fully determine
G, Go, and X=GO —G ', in principle.

Equations (3)-(5) generalize the BM equations to the
case of the Hubbard model. They follow from the obser-
vation, of Miiller-Hartmann, ' that the skeleton functional
expressing the dependence of the Hubbard model self-

energy on the interacting Green's function actually de-
pends only on the site diagon-ai Green's function in d =~.
As a result, only frequency conservation has to be insured
in the skeleton expansion, and all the action takes place on

a single site.
It is instructive to check these equations in the two solv-

able limits U =0 and t;~ =0. In the former, the solution of
(3) and (4) is trivially G =Go, thus 2 =0 and (5) correct-

ly assigns its free value to 6; in the latter, D(c) becomes a

8 function: Thus, (4) and (5) imply Go(ice„) =(iso„
+p) ' and (3) indeed reduces to the (Hamiltonian)
atomic limit.

We would like to point out that Eqs. (3)-(5) have a

very natural physical interpretation as a mean geld p-ic

ture of a quantum many-body system; they mean that due

to the freezing of spatial fluctuations, one-particle proper-
ties can be understood by looking at a single fixed site of
the lattice. Because the model is itinerant, the occupation
of this site undergoes quantum IIuctuations (in imaginary
time) between empty, occupied by an "up" or a "down"

spin, and doubly occupied. The quantum dynamics of
these processes is described by (3), where Go is an

effectii e quantity determined by all the processes happen-

ing on the other sites. Go should be thought of as the ap-

propriate generalization to itinerant systems of the
eAective field h; acting on the sites of a localized spin

model. Equation (4) expresses the local Green's function

G(iru„) in terms of Go, in the same way as solving the
mean-field Hamiltonian P;h;S; yields the magnetization
in terms of h;: m; =tanh(Ph;) (for Ising spins). In this

framework, (5) can be thought of as analogous to the
self-consistency requirement h; =g, t;&J~m, . Of course, it

is always possible to think in terms of an eflective dynam-
ics for a single site: The simplification in d=~ is that
this dynamics factorizes into products of two-particle pro-
cesses described solely by Go.

The rest of this paper is devoted to a discussion of the

physics resulting from Eqs. (3)-(5). Let us point out that
these describe the paramagnetic solution only, which will

not be the actual one below the Neel temperature, if U
and the density are such that spin and/or translational
symmetry is actually broken. At half-filling, for example,
antiferromagnetic order is expected. However, the discus-
sion below is relevant even there, not only because follow-

ing the paramagnetic solution is interesting in itself, but
also because the critical U for ordering depends on the lat-
tice, and certain next-nearest-neighbor hoppings can push
it to a nonzero value while leaving (for d=~) the DOS
D(c) unchanged. As it stands, the local dynamics (3)
might a priori undergo a spontaneous spin-symmetry
breaking. Indeed, solving it in the Hartree-Fock approxi-
mation Ggt.' =Go ' —Un — and taking (5) into account
leads to the usual Stoner criterion UD(po) ) I for the ap-
pearance of ferromagnetism in the Hubbard model. How-
ever, this instability of the local model will be shown
below to be washed away by quantum fluctuations. This
does not mean that no ferromagnetic transition exists for
the infinite-dimensional Hubbard model, but rather that
the description of phases ~ith broken symmetries require
a slightly diA'erent impurity model. As in the Falicov
Kimball model the local dynamics (3) is unchanged ex-
cept for explicit spin dependence of Go, and the self-
consistency relation (5) is modified to account for a bro-
ken translational symmetry.

It is useful to think of (3) as describing a single fermion
c coupled to a bath of "conduction electrons" which gen-
erate Go. This is precisely the Anderson model of a mag-
netic impurity hybridized with a conduction band:

&pM = z, EI; aI, al, +~I z, d d +Unq~ngf
I cr cr

++[VI,al, d +H.c.),

where we have kept the standard notation d for the im-

purity. H~M is quadratic in the ak 's which can thus be
integrated out, yielding a dynamics for d identical to (3),
with

Go (i'„) =ice„—cj—gM . —
~

. dc 6(c)
X l COp 6'

(7)

where d, (c) =ngq Vk8(c —Ek) is a combined measure of
the hybridization and of the DOS of the conduction elec-
trons. Equivalently, it may be more natural in the present
context to view (3) as describing a WolII' model (i.e., a
free lattice gas with a local Green's function Go and U
acting only on a single site).

The representation (7) is general enough to reproduce
any Go with a suitably chosen form of h(c); however, the
standard form discussed in the context of the Anderson
model is a constant h(c) =6 inside the conduction band
—IVO/2 (c( Wo/2, and zero outside. The Bethe ansatz
solvable case corresponds furthermore to Wo ~, i.e.,
Go '(co+iO+) =co —c,1+id Here, A(c) . is a self-con-
sistently determined quantity which evidently does not
have this shape in general. It is remarkable, however,
that, if D(c) was a Lorentzian L(c) =6/n[(c —co) +A ]
instead of a Gaussian, the self-consistency condition (5)
would imply that Go ' =co+p —ep+iA precisely has the
integrable form. Furthermore, it is easily shown in that
case that the free-energy coincides with the free-energy of
the impurity model. This means that Eqs. (3)-(5) can be
solved, in the case of a Lorentzian density of states to ob-
tain all the thermodynamics of the model in closed form.
This allows us to study in detail, in a soluble model, the
renormalizations caused by strong correlations. Detailed
results will be presented elsewhere; let us simply point out
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here that this model has a Mott transition at half filling at
U, =~. The spin susceptibility diverges g = I / JUt
x exp(nU/8t ), the compressibility vanishes i)n/i)p
=4t/nU'-. The Wilson ratio y/g stays finite as predicted
by Brinkman and Rice. There is no ferromagnetic phase
away from half filling at any finite value of U. We suspect
that the Lorentzian density of states corresponds to an
infinite-dimensional Hubbard model with a particular
form of long-range hopping. The fact that U, =~ is par-
ticular to this case in which the expectation value of the
kinetic energy is infinite.

In this paper we shall use the Lorentzian case mainly as
the starting point of a renormalization-group (RG) ap-
proach showing that the three known Fermi-liquid re-
gimes of the single-impurity Anderson model correspond
to three Fermi-liquid regimes of the paramagnetic solu-
tion of the Hubbard model in d=~ (with Gaussian
DOS). 7 The underlying idea is that the low-frequency
physics depends only on the low-energy properties of A(e),
and not on its detailed shape. More precisely, we write
D(e) =L(c)+8'D(e), where the parameters ep and
characterizing L(e) are to be specified below; then, from
(s),

G(to+i0+) =[to+p —
ep Z(to+—iO+)+iA] '+SG(to)

and Gp = [to+p op+id] '+ bGp(to). Let us first as-
sume that ImZ(iO+) =0 and that Z(iO+) is finite; then
we show that ep and h, can be chosen in such a way that
both bG and BGp vanish at zero frequency, namely,

Jzexp(gp )
ep =(p —2A/Jz e' dt, (8)

I gp 4 p
z+ e' dt.gp

gp =p —Z(ip+ ). 6 is thus seen to always be nonzero.
A perturbative RG in the hybridization h, has been dev-

ised by Haldane for the Anderson model" for h, ((U. The
same approach can be followed here, further treating bGp
in perturbation theory. Because BGp(to+iO+) vanishes
as co 0, it only induces irrelevant terms in the RG equa-
tions. [Equivalently, in an approach like the Anderson-
Yuval-Hamman one, bGp(r —r') is less singular than
I/(r —r'), and thus does not contribute to the Coulomb
gas charge. ] The scaling equations to one-loop order are
thus identical to Haldane's, and yield two scaling invari-
ants: 6 and Ed =et(W)+6/trln(W/6) [=ep —p+8/
trln(U/5) at the bare level]. ed(W) increases upon scal-
ing, and thus scaling is eAectively towards small U. The
low-frequency behavior then obeys all T =0 Fermi-liquid
requirements, described by Langreth for the Anderson
model and recently by Miiller-Hartmann ' in the present
context; in particular, ReZ(to+iO+) =Z(0)+ (I —I/
Z)to+, ImZ(to+ip+) =@to + . Luttinger and
Ward identities imply that Luttinger theorem is satisfied:
p —Z(ip+) =pp(n), where n is the total density of elec-
trons, and pp(n) =erfc '(2 n) is th—e noninteracting
chemical potential. Using this in (8) yields the explicit
dependence of h, and ep on density; note furthermore that
the low-frequency behavior of the Green's function is un-
changed by the interaction. The above proof of the
Fermi-liquid nature of the paramagnetic phases of the

infinite-dimensional Hubbard model is not based on per-
turbation theory in U, in contrast with previous work;
rather, it is based on a perturbation expansion in 5/U, and
therefore can be viewed as an expansion around the atom-
ic limit U/t » I (a RG is needed because this limit is
singular). Note that it is based on a single assumption,
namely, ImZ(iO+) =0 and that Z(ip+) is finite, which is
certainly always correct for the paramagnetic solution, ex-
cept perhaps at half filling, where a nonzero imaginary
part might signal a transition to a Mott insulating state
for U & U, Indeed, whether a finite U, . exists should be
clarified in future work.

Next, we discuss the various Fermi-liquid regimes re-
sulting from the scaling analysis, together with the finite
frequency structure of the T =0 one-particle spectral den-
sity: p(to) = —

I/trodi, ImG(k, to+ ip+). Quantitatively,
the latter depends on the detailed shape of h(e); however,
the same qualitative diAerences between various regimes
as for the Anderson model with a structureless h(e) are
expected here. For very small U (well below the Hartree-
Fock instability), p(to) has a shape close to the nonin-
teracting one D(to+ pp), with some narrowing of the peak
(by the factor Z & I), and some of the spectral weight
transferred to the tails. [Note that because of (8), p(0)
remains "pinned" for all U at its noninteracting value, '

p(0) =D(pp)]. For larger U, there are three distinct re-
gimes, " depending on the ratio of the two scaling invari-
ants.

(i) When Ed*/6« —
I (i.e., close to the particle-hole

symmetric half-filled case p = —a~=U/2), p(to) has a
three-peaked structure: a narrow quasiparticle peak (the
Abrikosov-Suhl resonance) of width the Kondo tempera-
ture TI;, and two "satellite peaks" roughly centered at the
position of the two magnetic Hartree-Fock solutions. In
the Hubbard mode) framework, those correspond to the
upper Hubbard band for particles and holes, respectively.
In this "local moment" regime, the empty state ~0) (and,
of course, ~t, f)) is almost decoupled, and the single-site
dynamics consists of spin fluctuations between

~ 1) and
~ )),

with almost frozen charge fluctuations. These spin fluc-
tuations are quenched by the Kondo eA'ect below the Kon-
do temperature Tg. The quasiparticle residue Z (which is
also related here to the effective mass by m*/m = I/Z)
is of the order of T~.

(ii) For ~Et*/6( & I, there is a "mixed-valence" regime
with both on-site charge and spin fluctuations (between
)0), ~ t), and ~J)). p(to) has two peaks in this regime: a
somewhat broadened quasiparticle peak, and the "upper
Hubbard band" for co & 0.

(iii) The last regime Ed /5» I corresponds to the dilute
limit, where a given site is most of the time empty. p(to)
has a broad single peak in this regime, with possibly some
shoulder reflecting the transfer of spectral weight to high
energy.

We believe (and we have confirmed below by weak-
coupling calculations and by the exact solution of the
model with a Lorentzian density of states) that for
moderate and large U, the paramagnetic solution of the
Hubbard model on the square lattice displays all three re-
gimes as the density is varied. p has a very steep variation
with n close to half filling and for U large, and thus the lo-
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FIG. 1. Local spectral density for U =2.5 and densities
n =0.6, n =0.2 (from left to right), obtained by the procedure
described in the text.

FIG. 2. Local spectral density of the paramagnetic solution at
half filling (n =1) for U=0, U= 1.5, and U =2.5.

cal moment regime for large U is likely to arise only quite
close to n =1 for large U. Most densities are then in the
mixed-valence regime, with the dilute regime setting in

roughly near the Hartree-Fock boundary.
Finally, we present results obtained by solving (3)-(5)

using second-order perturbation theory for the single-site
dynamics (3). A previous weak-coupling study was car-
ried out by Muller-Hartmann, ' using self-consistent per-
turbation theory, i.e., inserting the full propagator 6 into
the calculation of the second-order proper irreducible
self-energy. Our method and results differ significantly
from this approach. Indeed, it has been shown by Yosida
and Yamada'' that perturbation theory in U is quite well
behaved for the Anderson model, provided the expansion
is made around the nonmagnetic Hartree-Fock solution,
i.e., that U(n1 n/2)(—n —

1 n/2) is treated as a perturba-
tion. Only this procedure is able to handle correctly the
position of the resonance (see Ref. 12 for subsequent work
along these lines in the asymmetric case). Thus, given a

Go, we use modified "Hartree-Fock" propagators
GHr' =Go ' —Un/2 to calculate the second-order correc-
tion Z

'-to 2=Un/2+1 ' This is th.en used in (5) to
find G, and define an alternate Go from Go ' =G +Z.
The process is iterated numerically until it converges, so
that the self-consistency condition (5) is satisfied. The
same techniques than in Ref. 10 can be used here to
reduce the computation to one-dimensional Fourier trans-
forms, thus making the solution numerically easy. In

Figs. 1 and 2, we present some results for the spectral den-
sity p(ru): Fig. 1 gives the result for V=2.5 and the two
densities n =0.6 and n =0.2, which are clear examples of
regimes (ii) and (iii), respectively. For the paramagnetic
solution at half filling, the results for U =0, 1.5, 2.5 in Fig.
2 clearly show how regime (i) is reached from the weak-

coupling side. These results diff'er considerably from
those of Ref. 10, in which a single-peaked structure is al-
ways found, together with much larger values of Z close to
half filling [the values of Z estimated from the results of
Fig. 2 at n =1 are Z(U =1.5) =0.65 Z(U=2. 5) =0.32].
A very recent work' involving bubble and ladder summa-
tions gives values much closer to ours for Z, but still fails
to reproduce high-energy (Hubbard band) features: We
believe that this is a general flaw of fully self-consistent

approaches, in contrast to direct perturbation theory. The
Hartree shift is responsible for the appearance of the
upper-band satellite peaks, as also pointed out recently by
Schweitzer and Czycholl at half-filling in a related con-
text [Ref. 14 has results qualitatively close to ours; the
effect of satisfying (5) is to push down the upper band to
lower energies and to somewhat reduce Z further].

As a conclusion, we believe that the infinite-dimensional
H ubbard model provides a very natural mean-field
description of strongly correlated Fermi liquids. It cap-
tures both the itinerant and atomic aspects and their inter-
play, which is at the heart of the strong correlation prob-
lem. The connection to a single-impurity problem clarifies
the analytic structure of the perturbation theory in the
weak- and strong-coupling regimes, it explains how the
Hubbard bands emerge in the spectral function of the
H ubbard model, and suggests useful approximation
schemes to extract the essential physics of the Hubbard
model in infinite dimensions. The exactly soluble
Lorentzian case illustrates in a soluble example how
Fermi-liquid theory works in the presence of strong corre-
lations. It also allows us to understand the incoherent re-
gime above the Kondo temperature which is characterized
by strong correlations but small mass renormalizations
and is dominated by spin fluctuations. The
renormalization-group approach to the strong-coupling
d =~ Hubbard model outlined in this paper should allow
one to make considerable quantitative progress in the near
future: Numerical methods' allowing a direct T =0
study of impurity models seem very promising in this
respect. Magnetic phases should also be a subject of fu-
ture investigation, as recently done by Brandt and Mielsch
for the Falicov-Kimball model. Finally let us emphasize
that the above method can also be used to devise approxi-
mations to finite-dimensional systems [the simplest one
being just to replace the Gaussian D(a) with the finite-
dimensional DOS; see also Ref. 14].
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