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Electronic charge distribution in crystalline silicon
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Using the multipole-expansion formalism and recently published millielectron volt-level-accuracy x-

ray structure factors, a detailed description of the crystal-bound silicon atom is derived. A 0.5% expan-
sion of the L shell is detected, in addition to the known -6% expansion of the M shell. A nonrigid
thermal motion of the atom is also found, with the valence charge vibrating with a much reduced ampli-
tude. Strong evidence is also found for a twofold reduction over the theoretical prediction for the mag-
nitude of the anharmonic force constant in the effective one-atom potential. The R factor of our im-

proved model is only 50% that of the best previously published one, and the goodness of fit is close to
unity, indicating that the model exhausts the accuracy of the measured data. Deformation and valence-

charge-density maps are presented and found to be in good agreement with previous results. %'ave-

function- and model-specific influences such as wave-function quality and relativistic and exchange-
potential effects are also discussed. It is concluded that their inhuence on the conclusions of the present
study is marginal.

I. INTRODUCTION

The electronic structure of crystalline silicon has re-
ceived extensive experimental and theoretical attention
over the past two decades. The availability of large, per-
fect silicon crystals allowed for the development and ap-
plication of sophisticated dynamical techniques for
measuring the structure factors of silicon to millielectron
volt-level accuracies' better by 1 order of magnitude or
more than any other crystal. Furthermore, accurate
measurements of the important "forbidden" structure
factors, which provide direct information on deformation
electron densities, could be done. These measure-
ments allowed for very detailed crystal-structure deter-
minations ' and provided a highly accurate yardstick
against which ab initio theoretical crystal-binding calcula-
tions' could be tested. The theoretical activity was
further spurred by renewed interest in band-structure cal-
culations, ' ' linear combination of atomic orbitals
(LCAO), ' ' and linear muffin-tin orbital (LMTO)
methods. From these studies emerged an unprecedenta1-
ly detailed qualitative and quantitative description of the
crystal-bound silicon atom. Some of its noteworthy
features are a —6% expansion of the valence M
shell, ""' nonspherical charge distortions of octopolar
and hexadecapolar symmetries, '" ' and a double-
peaked valence charge density along the covalent silicon-
silicon bond. ' ' On the theoretical side, the Kohn-Sham
local-density-functional approach ' proved to be very
successfu1 in predicting details of the crystalline structure
at the atomic level, as well as macroscopic static (bulk
modulus and elastic constants' ''

) and dynamic (phonon
frequencies ""')properties. The hard-core pseudopo-
tentia1 was shown to yield better valence charge densities
than those of the traditional soft-core one. '

Several important issues, however, still remain out-
standing. The Debye parameter B derived from high-
order ( l (sin 0/A, ( l.6 A ) x-ray structure factors"

was found to be significantly lower than that of low-order
reflections, a result also supported by electron channeling
measurements. These results cast doubt on the validi-
ty of the rigid-atom approximation, hitherto employed in
all structure determinations, in accounting for the
thermal motion of the atoms at millielectron volt-level
accuracies. Further, Spackman, ' in his recent detai)ed
charge-density analysis, detected a consistent trend in the
fit residuals, which he ascribed to a deformation of the
core I. shell. The accuracy of the data available to him
was, however, insufficient to allow for a determination of
the nature and magnitude of the deformation. Another
controversial issue is the existence and magnitude of an
anharmonic term in the effective one-atom potential. To
the lowest anharmonic term, the effective potential is
given by

V(r)= Vo(r)+y(x +y +z )/2+Pxyz,

where y and p are the harmonic and anharmonic force
constants, respectively. While y is related to 8 and can
be, therefore, determined accurately, the smaller p is
much more difficult to determine and estimates vary by
more than a factor of 4.' ' Several "forbidden"
reflection neutron and x-ray measurements of Batterman
and co-workers ' yield values ranging from 1.38 to 3.38
eV/A, while x-ray measurements' ' indicate an upper
limit of -0.8 eV/A . The ambiguity in the neutron re-
sults parallels that of the separation of the various contri-
butions to the "forbidden" 442 and 622 structure fac-
tors 8 12

Recently, a consolidated set of structure factors was
published, and its accuracy carefully assessed. The accu-
racy of this set, at least twice that of previous data, al-
lowed us to address the issues above within the frame-
work of the Dawson-Stewart-Coppens ' multipole
expansion formalism and obtain definite rulings on some
of them. Our results, presented in the following, reveal
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an expansion of -0.5%%uo of the core L shell of the atom in
addition to the above-mentioned -6%%uo expansion of the
valence M shell. A much smaller 8 value is found for the
valence shell as compared to that of the core, indicating a
reduced thermal motion. The x-ray derived upper limit
on p is strongly supported by our results.

The data set, the models employed in the analysis, and
the results obtained are described in Secs. II—IV. A com-
parison of the values derived from our results for the 442
and 622 "forbidden" structure factors and the measured
values is also presented. Our conclusions are given in
Sec. V.

II. MEASURED DATA

Five high-precision sets of structure factors, f (hkl),
measured in three independent experiments are available
at present. We use only those reflections which have
been measured at least twice. The two sets of Aldred and
Hart, ' measured with Mo Ka and Ag Ka radiations us-

ing a wedge-Pendelosung method with film detection, in-
clude 15 such reflections. These sets, which were for
many years the "standard of the trade" and employed re-
peatedly in numerous studies, " ' ' ' ' ' were recent-
ly corrected for the (minute) efFects of strain gradients
and adjusted to 20'C. The two sets of Teworte aod
Bonse, measured with the same radiations and employ-
ing thin-crystal Laue-case rocking curves, include 16
reflections. The last set, that of Saka and Kato, mea-
sured using the rotating-plate thickness-Pendelosung
technique at a wavelength of 0.4 A, includes 17
reflections. A careful analysis indicates that all five sets
have similar average accuracies of 3-5 millielectrons, as
claimed by all but Saka and Kato. Their estimate of a
tenfold higher accuracy seems to be overoptimistic. All
sets were corrected for nuclear scattering using

f&=0.0038e and for anomalous dispersion using experi-
mentally derived f' values of accuracy commensurate
with that of the f data. The important "forbidden"

f (222), measured by Alkire, Yelon, and Schneider to
+1 me, was also included in our data set. The anharmon-
ic contribution to f (222) is negligible even for the larg-
est value of p given above. For 442 and 622, however,
this is a major contribution. In view of the ambiguity in
the value of p discussed above, the measured ' f~(442)
and f (622) were not included in our data set, but used
as control values as discussed in Sec. IV D. The f set of
Hattori et al. was also excluded due to insufficient accu-
racy. ' ' The only available set of high-accuracy, high-
order f values, measured by Deutsch and Hart, was
excluded as well, since high-order reflections are not
influenced by bonding effects which are the subject of the
present study. Furthermore, we wanted to confirm the
nonrigid thermal motion of the silicon atom, detected in
that study as discussed above, from independently mea-
sured structure factors. A preliminary fit, in which the
high-order structure factors were included along with the
low-order ones, indicated that they strongly bias the fit in
that respect.

Thus, the consolidated f set used in the present study
was generated from an average of the five f'- and fN-—
corrected sets discussed above, and f (222) of Alkire
et al. The estimated standard errors (ESD's) were calcu-
lated, using standard methods, from those of the indivi-
dual sets, excluding the estimated errors of Saka and
Kato for reasons mentioned above. A comparison of the
resultant ESD's to those of the original sets shows an
average twofold increase in accuracy. The f set is listed
in Table I along with its ESD's and other relevant data.
It includes 18 values in the range 0&sin&/A, (1.04 A
out of the 51 possible reflections in this range.

TABLE I. Measured structure factors f, their estimated standard deviations 0, and phase factors
for hkl rejections employed in this study.

hkl

111
220
311
222
400
331
422
333
511
440
444
551
642
800
660
555
844
880

sin 8/A,

(A )

0.15948
0.26042
0.305 37
0.31895
0.368 29
0.401 34
0.451 07
0.478 43
0.478 43
0.520 85
0.637 90
0.657 54
0.689 02
0.736 59
0.781 27
0.797 38
0.902 13
1.041 70

—1

0
1

—1

0
—1

0
1

—1

0
0

—1

0
0
0

—1

0
0

—1

0
1

—1

0
—1

0
1

—1

0
0

—1

0
0
0

—1

0
0

f
(e/atom)

10.602 5

8.388 1

7.681 4
0.182 0
6.995 8

6.7264
6.1123
5.780 6
5.790 6
5.332 4
4.123 9
3.934 9
3.655 8
3.248 5

2.9143
2.800 9
2.1506
1.532 5

(e/atom)

0.002 9
0.002 2
0.001 9
0.001 0
0.001 2
0.002 0
0.002 2
0.002 1

0.002 7
0.002 0
0.001 8
0.003 4
0.005 4
0.003 4
0.001 6
0.002 1

0.002 4
0.002 6
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III. THE MODEL

The at-rest spherical free-atom charge density p, de-
forms to follow site symmetry as the silicon atom be-
comes crystal bound. According to the Dawson-
Stewart-Coppens formalism, ' these deformations
are expanded in real spherical harmonics. Since the de-
formations are small, only terms up to the hexadecapole
need be retained. For silicon, having a diamond struc-
ture, the only nonvanishing terms are the octopole, p3,
the hexadecapole, p4, and the monopole. The last of
these represents a radial expansion or contraction of the
shell and is accounted for by scaling the position vector
x of the relevant shell by some value ~. The model charge
density is thus given by

and

p4(r ) =HNI, r "exp( —at, r )[160/(27&3m ) ]

X[(x +y +z )/r ,
'—] .— (4b)

f, (k)= g f„i(k/x„i)+Of3(k)+Hf4(k),
nl

(5)

Complying with common practice, "' based on corn-
parative studies by PMM and Spackman, we set
n, =nz =n =4 and a, =al, =a. The normalization fac-
tors are N, =Nt, =a"+ /(n+2)!. The exponential model
given by Eqs. (1)—(4) is denoted by EX in the following.

The corresponding stationary scattering amplitudes

f,(k) are obtained by Fourier transforming p„yielding

p, (r)= gtr tp t(tr tr)+Op3(r)+Hp4(r),
nl

(2) where ~k~=k=(2n/ao). (h +k +1 )' and ao is the lat-
tice constant. The terms in Eq. (5) are

where 0 and H are the respective populations and nl
designates the shell. The Slater-type orbitals of Clemen-
ti, ' extensively used in previous studies, were employed
to represent p„t(r):

2

p„t(r)=(4m. ) 'P«QN, C, r ' exp( g,r), —(3)
l

where P„l is the shell population,

and

f„t(k ) =g P«C;C/N, NJ d „„+(ok,g;+gj ),

f3(k)= —OA, (gn. )N, Z„+ 2,(k, a, ),

f, (k) =HA4[640I(27&3)]N„P„+,~(k, a„) .

(6b)

(6c)

N; =(2g;) ' ![(2n;)!]'i For a given hkl reflection,

and the constants n;, g, , and C, are given in Ref. 31 for
each shell. Following Price et al." (PMM), Spackman, '

Hansen and Coppens (HC), and others, the radial func-
tions of both higher multipoles were taken as single
r "exp( ar ) fu—nctions, yielding"

and

A =hkl/(h +k +I )

=[(h +k +I )/(h +k + l )2 —&

]

p3(r) =ON, r 'exp( a, r )(2xyi Ir )— (4a) and d" „.(s,z) is given by

cF „(s,z )= r j„(sr)exp( zr )dr-
t 0

=E2F, ((n —m+1)/2, (n —m+2)/2;(2n+3)/2; —(s/z) ),
(7a)

(7b)

where j„(x)are the spherical Bessel functions of the first
kind, 2F, (a, b;c,x) is the Gauss hypergeometric series,
and

Tt, (k, B)=exp[ —k ksT/(2y)]

=exp[ Bk /(4t—r) ], (Sa)

E =(s lz)"[(n+m )!/(2n+1)!!]z

X[1+(s/z) ]

Closed-form expressions for 8 „(s,z) were recently pub-
lished by Su and Coppens for m ~ 8 and n ~ m —1.

We now include the effect of thermal motion on the
charge distribution by invoking the convolution approxi-
mation. The at-rest distribution is convoluted with an
atomic smearing function, the form of which depends on
the effective potential seen by the vibrating atom.
Fourier transforming the temperature modified density to
obtain f yields temperature factors multiplying f, (hkl)
of Eq. (5). For the potential of Eq. (1), Dawson has
shown that two temperature factors are obtained:

which is the well-known harmonic Debye-Wailer factor,
and

T, (k,P,B ) = T&(k,B ) [2tr/(yao)] (kit T)2Phkl, (8b)

which is the anharmonic temperature factor. Note that
the last is much smaller than the first. Even for the larg-
est estimate of p given above, T, /Th --2.7X10 hkl at
room temperature. Hence, the difficulty in detecting its
contribution even in the most accurate low-order f
data.

Taking the phase factors a, b, c, and d, calculated by
Dawson and listed in Table I, into account, and allowing
for a different Debye-Wailer parameter for each shell,
the temperature-modified model f, (k) becomes
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f, (k) = g f„t(k/x„&) [aT& (k,B„t)+cT,(k,P, B„t)]
nl

+Of3(k)[bTt, (k,B,)+dT, (k,p, 8, )]

+Hf4(k)[aTt, (k, Bt, )+cT (k,P, Bt, )] . (8c)

This is the general expression for the models used in the
present study.

The temperature-modified f, (hkl) of Eq. (8) is now
least-squares fitted to the measured f (hkl ) values. The
refined fit parameters are then inserted into p, (r) to
determine the charge distribution. In principle, a
different 8„1 and ~„I can be assigned to each shell.
However, to keep the number of fit variables manageable
and to comply with more conservative practices, '" only
two of each were allowed; 8 i (n = 1,2 shells), 82 ( n =3),
tr, (n =2), and x2 (n =3) with 8, =8&=82. This allows
for a different thermal motion for the core and valence
shells, and a radial expansion of both the L and M shells.
Thus, the maximal number I of fit parameters in the
present model is 8: 0, H, a, 8„82,a„a2, and p. How-
ever, subsets of different size and choice (4~ m ~ 8) were
tested systematically to determine the relative importance
and manner of influence of the various parameters. The
best model, discussed below, was obtained using seven pa-
rameters.

IV. RESULTS AND DISCUSSION

A. Fit results

Details of the various fits along with their goodness-
of-fit (GOF) and R factors are given in Table II. Note
first that a model neglecting the M-shell expansion (a),
detected in earlier studies, results in an unacceptably high
GOF, which is reduced by a factor of 2 upon the in-
clusion of the expansion (b). Thus, the -6% expansion
of the M shell is reconfirmed. The model employed in
b d, which im—poses the rigid-atom approximation (i.e.,
a single 8) and allows for an expansion of the M shell in
addition to the higher multipolar deformations, is essen-
tially the same as the most detailed models of previous
studies, notably, those of Spackman, PMM, and HC. In
an effort to resolve the ambiguity discussed above in the
value of P, the fits of each model were repeated for P=O,
1.67, 3.38 eV/A, the x-ray prediction, and two of the
neutron values, respectively. The parameter values ob-
tained, listed in Table III, are all in good agreement with
those of Spackman and PMM. The GOF-5, however,
clearly shows scope for improvement. Note that the R
and GOF factors for the three values of p are roughly
equal and show no preference for any of the values. If
variation of p is allowed in the fit, convergence
deteriorates, the final p=O obtained has a rather large
ESD, and, more significantly, no reduction in R or GOF
results. The model of b —d is therefore insensitive to the
value of P, a conclusion also reached by Spackman (see
his note added in proof).

Relaxing now the rigid-atom requirement by taking ei-
ther 8,%82 (fits e —g) or keeping it but allowing an l.
shell expansion through v, %1 (fits h-j), a reduction of
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TABLE III. Parameter values refined for the "standard" model b —d and the improved one p —r.
The second line of each entry lists the standard deviation in the last digits of the value given above it.
Note the reduction in the standard deviation of all parameters in p —q as compared to b —d.

P (eV/A )

Bl (A)

B2 {A)

a (a.u. ')

Ki

K2

0 (e)

O (e)

0
0.4658

19

2.502
79

0.9501
95

—0.1320
200

0.4310
330

1.67
0.4663

10

2.487
53

0.9481
95

—0.1361
240

0.4340
300

3.38
0.4667

19

2.472
56

0.9461
99

—0.1410
300

0.4370
310

0
0.4585

15
0
0.11
2.435

10
0.9949
6
0.9382

15
—0.1270
57
0.4484

62

1.67
0.4593

10
0
0.11
2.425
5

0.9951
2
0.9367

10
—0.1307

14
0.4499

36

3.38
0.4599

24
0
0.14
2.413

14
0.9951

10
0.9350

16
—0.1349
77
0.4521

70

-40% in R and GOF is obtained. R indicates a much
better fit for all p and a slight preference for low values of
P is observed. The GOF=3, however, indicates that the
accuracy of the data is still not exhausted. We include,
then, both effects and obtain the results shown under

p —r. The drastic reduction in R shows that the data
strongly supports the effects postulated. The refined pa-
rarneter values are listed in Table III. Note that the
ESD's obtained for the parameters are much smaller than
those of b —d, lending further support for this model.
Unlike the five-parameter models, b —d, a clear prefer-
ence for p=0 is seen, indicating a much reduced upper
limit on anharrnonic effects. The implications of this,
and the magnitude of the limit, are discussed below.

The results listed in Table II indicate, then, that model

p is the best model of this study. Its R factor is only-35% and -50% of those of Spackman and PMM, the
best models published to date. The GOF is close to 1, in-
dicating that the accuracy of the f data is practically
exhausted, and the inclusion of additional effects through
more fit parameters will probably result in an increase in
R and GOF. The fit residuals, f f„are all with—in the
limits of +2o. of the data and are randomly distributed.
No systematic trend like that observed by Spackman in
his residuals can be detected. The 6.2% expansion of the
valence shell agrees well with previous values ranging
from' 6.8% to 4.4%. The smail 0.5% L-shell expansion
is detected here for the first time, and is in concord with
the L-shell deformation suggested by Spackman. a is
close to 2.358 a.u. ' of Spackrnan and 2.2—2.7 a.u. ' of
PMM. While B, is somewhat lower than 0.4676(14) A
of PMM and 0.4632(ll) A of Spackman, it agrees well
with 0.461(3) A of Aldred and Hart' and is slightly
larger than Fehlmann's' 0.4515(27) A . We may there-
fore conclude that the general agreement with previous
refinements is fairly good, bearing in mind that strict
"within error" agreement cannot be expected due to the
difference in the models.

A significant feature of our model is the allowance
made for a possible deviation from the rigid-atom ap-
proximation. The fact that we obtain BLAB, clearly
demonstrates that this approximation is no longer
justified at millielectron volt-level accuracies. This sup-
ports earlier suggestions (see the Appendix in PMM),
electron channeling, ' and our high-order fm x-ray' '
results. The value obtained, B2 =(0+0.11) A, is consid-
erably lower than the theoretically suggested limit of
Bb,„d =0.5B„„=0.23 A, which is based on the assump-
tion of completely uncorrelated motion of nearest-
neighbor atoms. Now, B2=0 is in perfect agreement
with the temperature dependence measured by Trucano
and Batterman ~' for the "forbidden" f (422) which is
dominated by the bonding charge p3. The temperature
dependence of the strongest "forbidden" reAection, 222,
as measured by Batterman and co-workers ' also indi-
cates that Bb,„d & B„„and is consistent with Bb,„d =0,
although a higher value is also possible. Since a strict
zero value is physically unrealistic, our result should be
taken to indicate that B2 ~0. 11 A, which amounts to a

-30%%uo reduction in the thermal vibrational amplitude
relative to the theoretical prediction. Allowing for
more than two independent B„Icould perhaps bring the
various observations and predictions into better agree-
ment when more accurate data becomes available.

Turning now to the question of the upper limit on p,
we note that when p is also allowed to vary as a fit pa-
rameter in any of the p r fits, a final P=(—0+0.7) eV/A
is obtained. As discussed above for 82, this does not
mean a strict P=O, but rather that P~ 0.7 eV/A . This
upper limit is in good agreement with the previous x-ray
results' ' which yield p~0. 8 eV/A . It is, however,
considerably lower than the values derived from neutron,
and combined x-ray-neutron, rneasurernents of the tem-
perature dependence of "forbidden" reAection intensi-
ties. ' ' Nevertheless, our limit of P & 0.7 eV/A
represents a confidence interval of one standard devia-
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tion. Adopting a more conservative confidence interval
of 2o. would put our result barely in agreement with the
lowest "forbidden" reflection result, but not with the
higher values. Since the forbidden reflections are very
weak, their intensity determination requires correction
for multiple reflection effects, often larger than the signal
itself. Furthermore, the extraction of P from the temper-
ature dependence of the intensities requires the assump-
tion that the at-rest deformation density itself is tempera-
ture independent over a range of —1000'C and all tem-
perature dependence is included in the temperature fac-
tors. Small deviations from the expected T dependence
detected, especially around room temperature, ' "indi-
cate that this may not be the case. Also, the neutrons
probe the thermal motion of the nucleus while the x rays,
that of the electrons. Thus, either a rigid-atom approxi-
mation or a division into core and bond charges, where
the core moves rigidly with the nucleus, has to be in-
voked when determining the value of P from the com-
bined measurements. Evidence that neither approxima-
tion may be valid at the millielectron accuracy level is
discussed in Refs. 22 and 23. Furthermore, different
measurements of the Batterman group yield different
conclusions on this point. Consequent to these
difficulties, even the very sophisticated and careful "for-
bidden" reflection measurements of Batterman and co-
workers ' ' yield values ranging from 1.38 to 3.38
eV/A . The bond charge densities obtained for the
higher-order "forbidden" 442 and 622 reflections by
Spackman in his recent comprehensive refinement'
strongly supports P= 3.38 eV/A3. Clearly, further work
is indicated to resolve the discrepancies among these
values as well as our lower limit. It should, however, be
noted that the conclusions concerning the L-shell expan-
sion and the nonrigid thermal motion remain in effect
even if the high value of P is adopted. This is clearly seen
by intercomparing the results of the fits done for P=3.38
eV/A, i.e., d, g, j, and r, and noting the drastic reduction
in R and GOF achieved by including the above men-
tioned effects.

B. Deformation density

(a) I
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FIG. 1. At-rest charge density maps in the 110 plane of sil-
icon. (a) Deformation density p&,f=p3+p4 for model p. Con-

0 3
tour interval is 0.025 e/A . (b) Difference in p~,f between mod-
els p and b. Contour interval is 0.0025 e/A . Map area is 4X4
0 2
A for both figures. The zero level is indicated by dash-dotted
line and negative levels by dashed lines. The atoms are marked
by +.

The at-rest charge deformation density pz, f=p3+ p4 in
the plane of bond, (110), obtained from fit p is given in
Fig. 1(a). Its general shape is similar to those of PMM
and Spackman; an elliptical peak elongated both in the
bond direction and normal to it, and an almost circular
dip behind the atoms. The main difference is that, in our
model, the elongation is larger in the bond direction
while, for Spackman and PMM, the elongation is larger
in the normal direction. Our result demonstrates that a
(111)-elongated bonding charge can be obtained even
with a nonzero M-shell expansion, contrary to PMM's
conclusion. We find a midbond peak of 0.221 e/A
height and a —0.068e/A deep dip at R =0.96 A behind
the atoms. This is in perfect agreement with
Scheringer's'3 0.22 e /A and slightl~ higher than the cor-
responding 0.206 and —0.090 e /A of Spackman. Most
of the difference results from our -0.020 e/A larger p4
contribution at the peak and dip regions, due to our

larger 0 value, —0. 1270 e, as compared to the average—0. 102 e of Spackman. The lower peak height of 0.13
e/A obtained by PMM was shown' ' to result from the
exclusion of the "forbidden" f (222), whose contribu-
tion of -0.07 e/A would bring the peak height to0-0.20 e/A in reasonable agreement with the values ob-
tained by us and others.

The only theoretical deformation density map pub-
lished to date (to the best of our knowledge), that of
Wang and Klein, ' shows an almost rectangular shape
elongated in the direction normal to the bond. This
shape is not supported by any of the experimental stud-
ies, including ours, although the elongation direction
agrees with PMM and Spackman but not with our re-
sults. The peak value, -0.16 e/A, is too low but the—0.08 e/A dip behind the atom is in good agreement
with our and Spackman's results. Inspection of the
difference map given in Fig. 1(b) reveals that, on going
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from the "standard" model b to our improved model p,
some of the charge density is removed from the bond
ends close to the atoms and is redistributed in the (001)
direction both above and below the atom, leaving the
peak and dip heights virtually unchanged. The changes

0
are, however, small and involve -8 me/A at most.

C. Valence density

The valence charge density in the (110) plane is shown
in Fig. 2. The characteristic square shape with twin
peaks along the bond is clearly seen. The valence charge
density derived here is in excellent agreement with that of
Spackman. The elliptic, single-peaked shape obtained us-

ing Fourier summation by Yang and Coppens' were
shown by Spackman and Scheringer' to result from the
inclusion of the less accurate structure factors of Hattori
et al. in his data set. Along the bond direction we ob-
tain peak and saddle heights of 0.602 and 0.596 e/A, re-
spectively. This compares well with the corresponding
average values of 0.597 and 0.576 e/A of Spackman.
The different saddle heights result, again, from p4. The

0
crescent-shaped peaks behind the atoms are 0.341 e/A
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high, somewhat lower than the average 0.393 e/A of
Spackman but in good agreement with some of the
theoretical results. ' ' Our peak-to-saddle height
difference, 0.006 e/A, is smaller by a factor of 2 —3 than
that of the standard model as

driven
in fit 6 (0.012 e /A )

and by Spackman (0.020 e/A ). This considerably im-
proves the agreement with the numerous theoretical re-
sults, ' almost all of which predict a Oat midbond
charge density. In the fewi6(c), i9, 2o(b), zo{c) which exhibit a
double-peaked shape, the saddle seems extremely shal-
low. Unfortunately, no numerical values are quoted by
the authors. The difference map given in Fig. 2(b) indi-
cates, again, that, on going from the standard model b to
the improved one p, some of the charge is removed from
the bond ends and redistributed closer to, and around,
the atom. The maximal density changes are —20
me/A, about 2—3 times those found in the deformation
density.

The large number of theoretical valence density maps
published for silicon makes a comprehensive comparison
of our results with theory impractical. We will therefore
restrict our comments mostly to a few of the more recent
studies. The peak heights predicted range from' 0.535
to' "0.65 e/A, and generally agree with our result.
The nonlocal pseudopotential calculations of Zunger and
Cohen, ' ' ' 0.600 e/A, yield the best agreement. The
new LMTO (Ref. 20) and LCAO [Ref. 17(a)] methods
tend to underestimate the bond peak height, and yield
values of 0.55 —0.56 e/A . They are, however, rather
successful in reproducing the general shape of the valence
charge density. In particular, Weyrich " and Meth-
fessel et a1. "' ' reproduce well the double-peaked
shape of the bond along the (111) direction, following
the Hamann' demonstration that the single peaked
charge density obtained in earlier calculations is an ar-
tifact due to the soft-core pseudopotential employed. An-
dersen et al. ' ' show that a similar effect, although of a
smaller magnitude, results from adopting the pure-Im ap-
proximation for the tight-binding orbitals in the LMTO
calculations. The full-potential results of Hamann'
reproduce extremely well our charge density in the
difficult regions close to the atom, where a slight decrease
in density along the bond is seen accompanied by a small
increase in density close to the atom in the (001) direc-
tion both below and above it. Finally, Yin and Cohen' ' '

obtain a saddle-to-peak difference of 10 me/A in good
agreement with our 6 me/A, although their peak height
of 0.575 e /A is somewhat lower than our 0.602 e /A .

To conclude, the theoretical calculations best repro-
ducing our results seem to be those of Zunger and
Cohen' "and Yin and Cohen. ' ' ' The LMTO results of
Weyrich "and Methfessel et al. "'"' while in excel-
lent agreement as regards the shape of the charge density
maps, need to be modified to yield better quantitative
agreement in the bond regions.

O. The forbidden 442 and 622 reflections

FIG. 2. Same as Fig. 1 but for the valence density. Contour
0 3

interval for (a) is 0.05 e /A .

Batterman and co-workers ' measured, in a series of
tour de force experiments, the structure factors of the
three lowest-order basis-forbidden refiections (222, 442,
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F(hkl ) =Fb,„d
—F,„„

=Of3(hkl)T s(h kl, B, )

(9a)

g f„,(hkl )T, (hkl, 13,B„i)
nl

+Hf 4(hkl ) T, (hkl, 13,Bs ) (9b)

and 622) of silicon. Their integrated intensities are 3

(222) to 6 (442, 622) orders of magnitude smaller than
low-order-allowed reflections, rendering their measure-
ment an extremely demanding task. The finite scattering
atnplitudes f of these reflections are due to two effects.
One is the antisymmetric bond charge deformation p3,
and the second is the anharmonic thermal motion of the
centrosymmetric charge distribution g„&p„i+p4. Free
volume considerations, ' ' strongly supported by the ex-
perimental results, " ' ' indicate that the two contribu-
tions have opposite signs. Taking into account the
relevant temperature factors, the temperature-modified
structure factors per atom for these reflections can be
written as

where T, and T& are the anharmonic and harmonic tem-
perature factors, respectively, of Eqs. (Sa) and (Sb). Thus,
knowledge of P and the centrosymmetric structure ampli-
tudes allows the separation of the measured structure fac-
tor F into the bond and anharmonic components of Eq.
(9a). Equation (9b), on the other hand, can be used to
synthesize the same quantities from fitted models. Note
that the relative magnitude of the two components in Eq.
(9) varies strongly with hkl. 222 is dominated by Fb „d
and F,„& is negligible. By contrast, Batterman and co-
workers found that, at room temperature, Fb,„d(442)
dominates over F,„t,(442) by a factor of 2 only, while

Fb,„d(622) and F,„z(622) have roughly the same magni-
tude and almost cancel one another.

Values of F, Fb,„d, and F,„& calculated from Eq. (9b)
using parameters obtained in several of the fits of Table II
are listed in Table IV, along with measured values of F
and their separation into Fb,„d and F,„z as proposed by
the authors. As the separation depends crucially on P,
its value as used in each work is also listed. The internal
agreement among all measured F's is good. The same
holds, to a lesser extent, for the Fb,„„and F,„z. Note
that all (but one) studies employ a high value of P=3.4

TABLE IV. Measured and synthesized values of the structure factor, F, and its anharmonic, F,„z,
and bond-charge, Fb,„a, components for the "forbidden" reflections 442 and 622, in units of
millielectrons/atom. Standard deviations are given in the second line of each entry. Values of the
anharmonic force constant P employed in separating the components and in the model synthesis are
also listed.

This work
b

1.67

3.38

1.67

3.38

—12.0
2.0

—8.10
2.3

—4.16
2.5

—11.17
0.58

—7.61
0.48

—3.93
0.93

442
F,„

3.37
0.2
6.84
0.22
0

3.18
0.11
6.46
0.12

Fbona

—12.0
2.0

—11.5
2.3

—11.0
2.5

—11.17
0.58

—10.79
0.47

—10.39
0.92

—3.34
0.62

—0.96
0.73
1.47
0.77

—3.13
0.18

—0.91
0.17
1.35
0.31

622
F,„

2.22
0.10
4.50
0.14
0

2.09
0.09
4.24
0.10

Fbond

—3.34
0.62

—3.18
0.72

—3.03
0.76

—3.13
0.18

—3.00
0.15

—2.89
0.29

Experiment
Trucano'

Mills

Tischler'

Tischler

3.45

3.38

1.65
1.41'
3.38

—4.38
0.25

—5.25
0.38

—4.63
0.29

—4.63
Q.29

5.12
0.33
4.88
0.50
3.31
0.33
6.95
0.33

—9.50
0.75

—10.13
0.61

—7.91
0.44

—11.58
0.44

+0.63
0.50
1.10
0.14
1.10
0.14

3.25
0.38
1.68
0.21
4.10
0.21

—3.88
0.63

—0.58
0.25

—3.00
0.25

'Reference 8(c).
Reference 8(d) ~

'Reference 8(b).
For 442.

'For 622.
'Reference 8(b), as rescaled in Ref. 12.
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eV/A althou hg some neutron and x-ray measurements
indicate a lower value of 1.4—1.7 eV/A . The only ex-
ception, the work of Tischler and Batterman 8(b) was
shown by Spackman to yield results strongly conflictin

e refinement analysis. When separated using
ic ing

p= .38 eV/A, as given in the last entry of Table IV,
Fb,„d and F,„„are in excellent agreement with
Spackman's analysis as well as with the values derived
from other measurements.

A comparison of the measured F values to our syn-
thesized ones shows the best agreement for p =3.38
eV/A, for which the synthesized F values have the
correct sign as well as magnitude. This is in contrast
with the strong support provided by the allowed
reflection for a lower value of p as discussed above. No
explanation can be offered at this time for this dichoto-
my. Note, however, that the agreement between all the

wh'
experimental Fb,„d's and the synthesized ones are dgoo
w ich lends further credibility to the deformation charge
density derived in this study. While no clearcut support
for the superiority of the improved model (p r) over the-
"standard" one (b d) is —provided by these results in
Table IVa e, the improved Fb,„d(442) is somewhat lower
than the standard one. Hence, it agrees slightly better
with the experimentally derived Fb,„d(442), which is
influenced only a little by the value adopted for p. These

hihv
results, and the conclusions of Spackman in f fn in avor o a

tg value of P, further indicate the deep need for a
better assessment of the relative importance of anhar-
monic effects.
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Although of the wrong asymptotic shape, and leading
to divergences in the calculations of higher-order gra-

fun
dients of the microscopic crystal electric fi ld '" ' h
unctions of Eq. (9) were found to represent well the de-

formation densities of silicon in several studies. ' We
have, therefore, repeated the full series of fits of Table II
for the GA model. The general conclusions derived from
the EX model above are fully supported by the GA mod-
el fits as well. Again, the best R and GOF parameters are
obtained for the fit equivalent to p in Table II. The ex-
pansion parameters ~, and ~2 obtained, 0.9955 and
0.9362, are equal within error to those of p in Table III.
The same holds for B

& D =0.4610(17) A and

BzD=0.00(11) A. This indicates that the nonrigid
thermal motion, the absence of anharmonic effects, and
the expansion of the core L shell, found using the model
of Sec. II, are not model-induced artifacts. The best R
and GOF values obtained are 0.053 and 1.94, respective-
ly. While this R factor is 40% lower than that of the
most recent Gaussian refinement for silicon, ' it is still al-
most twice as large as that of the corresponding best
refinement using exponentials, p in Table II.

E. Deformation model dependence

Daawson employed Gaussian, rather than exponential,
radial functions to represent the deformation densities:

and

p, D(r) =ODr'exp( aDr')(xyzlr')— (loa)

p4 D(r)=HDr'exp( aDr )r—(x +y +z )/r '] . — —
5

(lob)

Fourier transforming, one obtains '

f3(k)= —OD A 3JK3(k, aD )

and

f4(k) =HD A4ikt4(k, aD ),

(1 la)

(1 lb)
gib / / / /

where

JR„(k,a)=( —k/2)"m. a

X [I (v)/I (g)]M(v, r) —k /4a) (12)

ere v(5+n)/2, 1=m+ —'„ I (x) is the usual y func-

tion and M(a, b, c ) is the confluent hypergeometric series
for which tables and computer routines are available.
Th e model using the same Clementi wave functions em-

ployed above for the spherical charge distribution but the
Gaussian Eqs. (10)—(12) for the deformation densities is

denoted GA in the following.
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FIG. 3. 3. (a) Same as Fig. 1(a), but using Dawson-type (GA)
Gaussian radial functions in the deformation density rather
than the Stewart-type (EX) exponentials. (b) Difference between

the maps of Figs. 1(a) and 3(a). Contour interval is 0.0015 e /A .
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A more detailed assessment of the difference between
the two mode s can e o1 b btained from an examination o

p f hthe deformation (pd, f) density mapa in the 110planeo t e
GA model, given in Fig. 3(a), and its comparison wit
that of the EX model, shown in Fig. 1(a). While the gen-
eral shape is simi ar,'1 GA yields a less elongated ellipse
along the bond direction, and a considerably sma er neg-
ative density region e in e
b d ies are almost identical everywhere except c oseoun aries
to the atoms. The map of the difference in pd, f

Fi . 3(b), clearly shows the increasedg g.
c arge ch oncentration in the bond region in, a e

ostl but notf lar er negative density region mos y,pense o a arg
~ ~

and its com-only, behind the atoms. The variation of pdef and
'

ponents along the bond, given in Fig. 4, shows, in addi-
tion to the i eren cd'ff t charge concentrations, the narrower

d minima of the GA model, which are ue to
red tothe faster decay of the Gaussian functions as compared o

the exponentia ones. e
'

1 Th peak and dip values are now
0.200 and —. e—0.058 e/A, as compared with 0.221 and
—0.068 e/A for EX. The dip also moved ou o
R =1.21 A behind the atom as compared to 0.96 A for
EX Th variations result in subtle differences in p„» asese v

same rec-The GA map in Fig. 5 shows the same
ve thetangular bond shape and crescentlike peak above e

0. 1-
0)

—0, 1

FIG. 5. Valence-charge-density map for tfor the Dawson (GA)
model. The units are the same as for Fig. 2(a).

atom as that of the EX model, Fig. 2(a). The charge dis-
tribution a ong e on,ion the bond, shown in Fig. 6 reveals, howev-

h t is practically flat in the midbond region in
model.contrast with the twin-peaked shape of the EX mo

k h
'

ht
'

26 me/A lower. Furthermore, bot

behind the atom along the bond direction are higher t an
in the EX model: 0.354 and 0.298 e/A as compared to
0.341 and 0.274 e /A, respectively.

Thus we may summarize that the GA model yields
sharper features in the deformation densi y map,
is not surprising in viewiew of the sharper Gaussian unc-

~ ~ ~

d It also has a lower density in the bond region,tions use . a s
and a hi her one almost everywhere else. ina y,an a ig e
bond has a single flat peak rather than e

'
pthe twin eaks of

EX model. The statistical indices, however, clearly
show that the EX model fits the measured a a
better, with a 40% smaller R and GOF values.

R (A)

0.6-

0.4-

0.60

0.55

vol

Dawson

Stewart

0.2-

0

R (A)

FIG. 4. (a) Deformation charge density an (and (b) its com-
ponents along the nearest-neighbor directio, ,'

n (111),for fit p
using the Dawson an e{GA) d Stewart (EX) models. The silicon
atoms are at R =0 and 2.3517 A.

R (A)

FIG. 6. Valence charge densities along t e
~ ~

t e nearest-neighbor
direction, 111, or ts p or), f fi f r Dawson (GA) and Stewart (EX)
models. A magnified view of the midbond region is shown in
the inset.
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F. Wave function dependence

As mentioned above, the free-atom form factors used
in the present study were those obtained from the
Hartree-Fock (HF) wave functions of Clementi, ' which
are generally considered to be among the best for silicon.
This choice has several advantages. First, it puts our re-
sults on equal footing with previous refinements, almost
all of which use the same wave functions. ' *' ' '

Moreover, Clementi's tables allow for the calculation of
shell-by-shell form factors which are essential for this
study. Other calculations, like those of Ref. 40 and the
bound-atom ab initio calculations, provide only neutra1-
atom form factors or Si + "core" ones at most. To test
the sensitivity of our results to the wave functions em-
ployed, we repeated the sequence of fits of Table II using
the improved set of wave functions of Clementi and Roet-
ti ' instead of the C1ementi ' ones. In a11 cases, identical
R and GOF values were obtained and the redefined pa-
rameter values deviated from the previous ones by less
than +0.3'. As no relativistic shell-by-shell structure
factors of silicon are available in the literature, the
influence of relativistic effects could not be checked.
However, Cromer has shown in a detailed comparative
study that the differences between f values obtained from
nonrelativistic HF wave functions and those obtained
from relativistic Dirac-Slater ones are negligibly small for
atomic numbers below 25. Furthermore, "standard"
model fits, similar to those of b —d in Table II were car-
ried out by PMM and Fehlmann, ' using relativistic HF
wave functions. The close agreement of their results
with those obtained from nonrelativistic HF wave func-
tions in R, GOF, and the fina1 values of the parameters
refined, strongly supports the conclusion that relativistic
effects are negligible for silicon even for high-accuracy
studies like the present one.

We conclude, then, that the effects discovered in this
study are most probably real and not artifacts due to
insufficiently refined wave functions. A direct test of rela-
tivistic effects on our conclusions, though most desirable,
will have to await the availability of high-quality relativ-
istic wave functions and corresponding shell-by-shell
atomic form factors f„&. Similarly, an understanding of
the role played by, and the importance of the exchange
potential and corre1ation effects also awaits theoretical
progress.

shells. The best model is found to describe the data to its
limit of accuracy, with an R factor two- to threefold
smaller than previous studies. The main features
discovered are the following.

(i) A -0.5% spherical expansion of the L shell. This is
in addition to the -6% expansion of the M shell, also
found in earlier studies. This strongly supports an
unproved suggestion by Spackman. '

(ii) A much reduced thermal vibrational amplitude for
the valence shell, indicated by a Debye parameter
Bz 0. 11 A . While the value derived for Bz is smaller
than some of the predictions, the effect itself is supported
by high-order-reflection x-ray, electron channeling, and
some of the "forbidden" reflection measurements.

(iii) An anharmonic force constant P 0.7 eV/A at a
lo. confidence level. On this level, it is smaller by a factor
of 2 than the smallest neutron result, but is strongly sup-
ported by high-order reflection x-ray measurements. On
a more conservative 2o. level, our results agree marginal-
ly with the lowest neutron result but still disagree with
the higher "forbidden" reflection derived values.

The last conclusion, though strongly supported by the
fit results, leads to calculated "forbidden" F(442) and
F(622) structure factors which disagree with the mea-
sured ones. These, in turn, rather support a P=3.38
eV/A . While this dichotomy requires future study and
clarification, it has no bearing on the other conclusions,
which remain unchanged regardless of the value adopted
for P, as discussed in Sec. IV A.

The at-rest deformation and valence charge densities
derived from the model are found to be in good agree-
ment with recent experimentally derived results. The
agreement with ab initio calculations is improved particu-
larly in the midbond region. The Stewart-type exponen-
tial radial functions are shown to be superior to the
Gaussian Dawson-type ones for faithfully reproducing
the deformation density.

This study indicates that more work is required, in par-
ticular, in ascertaining the role played by, and impor-
tance of relativistic, exchange, and correlation effects in

the wave functions. Theoretical prerequisites for further
progress are the availability of highly accurate shell-by-
shell f„f values obtained from wave functions including
the effects mentioned above. On the experimental side,
the resolution of the discrepancies among presently avail-
able values of P is essential. Perhaps an independent,
unambiguous experimental determination is called for.

V. CONCLUSIONS

A detailed analysis of the charge distribution in crys-
talline silicon is presented. It is based on the best avail-
able set of low-order structure factors recently published
by Cummings and Hart, and one datum by Alkire et al.
The multipole expansion formalism is employed to ac-
count for crystal bonding deformations. Allowance is
made for expansion of shells other than the valence shell
and for different thermal motion of the valence and core
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