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The Feynman inequality Eo & E„;,t+li me (8 —8„; l) /p for path integrals provides a powerful

upper bound on the ground-state energy E~ of a large variety of systems. Et„.al is the ground-state
energy of some trial system with action St„. i for imaginary values of the time variable, and S is the
action (also expressed in imaginarg time variables) of the system under study. P = 1/knT, where kn
is the Boltzmann constant and T the temperature. However, the Feynman inequality is not a priori
justified for a system in a magnetic field, because imaginary terms subsist in the action also after
transforming to imaginary time variables. Replacing or extending this inequality when magnetic
fields are present has therefore been a long-standing problem. In the present paper we solve this
problem. %e first derive an inequality, providing an upper bound for the ground-state energy, that
is valid even in the case of a nonzero magnetic field,

EG & Etrial + (oo~&{Utriat(ooi oo)[V(0) Vtrial(0)]) I ~}
for a system with Hamiltonian IIO + V. 7 is the time-ordering operator, and Ut„. l is the time
evolution operator of a trial system with Hamiltonian IIO + Vt„,l in the interaction representation,
with the interactions V(t) and V„;,l(t) switched on adiabatically. Because of the time ordering,
retardation effects are also properly taken into account. The contribution of the magnetic field
is included in the unperturbed Hamiltonian IIO. If the time-dependent integrands occurring in
the matrix element in the right-hand side of our generalized inequality satisfy certain analyticity
conditions in the complex-time plane, this inequality reduces to the Feynman inequality for path
integrals. If these analyticity conditions are not satisfied, our generalized inequality may introduce
supplementary terms E in the right-hand side of the Feynman upper bound,

EG & Etrial+»m (B —~trial}/P+ E
p-+ oo

because diferent branch lines or singularities have to be taken into account in the transformation
to imaginary time variables. As an important illustration, our generalized inequality is applied to
the problem of the Frohlich polaron in a magnetic field. From the generalization of the Fegnman
inequality derived in the present paper, we determine the conditions to be imposed on the variational
parameters in the trial action, such that the Feynman upper bound in its original form remains valid
for a polaron in a magnetic field. Some limiting cases are studied analytically to illustrate the
relevance of our additional constraints on the variational parameters of the trial system. In the
free-particle limit and for a particular value of one of the variational parameters, we explicitly derive
the contributions from the branch lines in the complex-time plane which arise if these additional
constraints are not satisfied.

I. INTRODUCTION I 'Dz( ) exp(Strial)

f 1 & exP(Strial)
(1.2)

The Feynman path-integral formulation of quantum
mechanics provides the following upper bound for the
ground-state energy of a system:

(S Strial) trial' tria~ + llm
phoo

if S and St„, i are real In (1.1), Et.,-, i is the ground-state
energy of some "trial" model with action functional St„. l

for imaginary values of the time variable. 9 is the ac-
tion functional of the system under study (also after the
substitution t ~ —~7.A, in the time integral over the La-
grangian). The path-integral average ( .}«,ai is defined
with a probability density exp(St, ,ai)/I Dz exp(St„,ai)':

where the denominator is the path integral (for imagi-
nary time variables) of the "trial" model. The condition
that S and 9t,., ~ are real implies the applicability of the
Jensen inequality (e }) el l of probability theory (of-
ten called Jensen-Feynman inequality in its path-integral
application), which is valid for real random variables X
with some normalized probability density.

As an example, it is well known that the Feynman
path-integral method with the application of the Jensen-
Feynman inequality provides a superior upper bound
to the ground-state energy and the free energy of the
Frohlich polaron for arbitrary coupling strength.

But the requirement that the action and the trial ac-
tion of the system under study are real functions of imag-
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inary time variables is not satisfied for all physical sys-
tems. Indeed, for the path integral describing a polaron
in a magnetic field, for instance, the condition of a real
action functional for imaginary time variables is not ful-
filled. Therefore, the Feynman inequality (1.1) could not
be applied to the study of a polaron in a magnetic field,
and until now the accurate upper bound to the ground-
state energy for ~, = 0 could not be generalized for a
nonzero magnetic field.

Despite the lack of a generalization of the Feynman in-
equality for path integrals to the case of a nonzero mag-
netic field, Peeters and Devreese (hereafter referred to
as PD) developed an approximation scheme for the free
energy of a polaron in a magnetic field (for arbitrary
coupling, magnetic field, and temperature), based on the
working hypo]hesis that the Jensen-Feynman inequality
would also be valid for nonzero magnetic field. They
used four adjustable parameters: v~, m~, v~~, and mt~.
A related scheme, with an infinite number of variational
parameters, was developed by Saitoh. Although the PD
approach happens to reproduce many previously known
results in limiting cases for large and small coupling, high
and low temperature, and high and low magnetic field,
it is not based on an extremum principle and therefore
it does not a priori provide an upper bound for the free
energy of a polaron in a magnetic field. Further investiga-
tions leading to an extension of the Feynman inequality
for path integrals, valid for ~, g 0, are necessary. In the
present, paper we report such an extension of Feynman's
upper bound to the ground-state energy of a polaron in
a magnetic field.

The problem tackled in the present paper is not, limited
to the study of polarons. Feynman and Hibbs already
addressed the question of the (non)validity of the Feyn-
man inequality in 1965: "if the Lagrangian represents
a particle in a magnetic field" . . . "in this case (they]
suspect that the [Feynman] inequality (or some simple
modification of it) is still valid Howe. ver, this has not
been proved. "

To the present date, to the best of our knowledge, this
problem had not been solved, and the "simple modifiica-
tion" suspected to exist in Ref. 1 had not been given. It
is the purpose of the present paper to solve this prob-
lem, to provide the extension of the Feynman inequality
for the path integral describing a particle in a (static and
uniform) magnetic field, and to illustrate its usefulness to
study the Frohlich polaron in a magnetic field: a problem
of physical interest.

In what follows, a brief survey is given of previous stud-
ies dealing with polarons in a magnetic field and invoking
the use of Feynman path integrals in connection with the
Feynman inequality.

Although the validity of the Jensen-Feynman inequal-
ity for a polaron in a magnetic field had not been proved
for ~, g 0, it is known to be valid in the asymptotic
limit ~, ~ 0. As a consequence the physical proper-
ties of Frohlich polarons in a su%ciently weak magnetic
field —for all coupling o. and temperature T—can be an-
alyzed by taking the Feynman path-integral model for
zero magnetic field as a starting point. The results of
Hellwarth and Platzman for the diamagnetic properties

of the Frohlich polaron also derive their validity from
the applicability of the Jensen-Feynman inequality in the
asymptotic limit ~, ~ 0. For this weak magnetic-field
limit, it is stated in Ref. 5 that the Jensen-Feynman in-
equality remains valid if the diff'erence between the action
and the trial action is chosen to be real. PD also satisfy
this condition; their results for the free energy of a po-
laron in the presence of a magnetic field are therefore an
upper bound to the exact free energy in the limit ~, ~ 0.
Not surprisingly their analytical expressions for the free
energy and for the polaron mass in the asymptotic limit
~, ~ 0 indeed agree with the previously known limits
for o ~0 and o. ~oo.

The difIiculty with the Jensen-Feynman inequality for
general io, g 0 can be avoided by first introducing an
additional approximation, e.g. , based on the Bogolubov
inequality, which eliminates the imaginary terms in the
path integral, so that the Jensen-Feynman inequality can
be applied for the resulting (approximate) path integral.
Unfortunately, this type of approach leads to a consider-
able loss of precision, e.g, , the coefficient of o.~, in the
free energy differs by a factor of 2 from the standard
perturbative free energy for a ~ 0 and ~, ~ 0. The
resulting approximation is therefore inadequate.

Several aspects of the PD approximation, which is-
as stated above —based on the working hypothesis that
the Jensen-Feynman inequality remains valid for io, g 0,
have been discussed by various authors.

For sufficiently large magnetic fields, it was shown
numerically' that the PD approximation for the ground-
state energy of a polaron in a magnetic field is not an
upper bound for the true ground-state energy to first or-
der in the electron-phonon coupling, and even not in the
limit n = 0 (i.e. , for a free particle in a magnetic field).
The present authors confirmed this conclusion analyti-
cally. Furthermore, it was also suggested in Ref. 10 that
the Feynman inequality is valid if applied to a linearized
polaron model in a magnetic field —as studied and solved

by the present authors ' —and with a symmetrical trial
action of the PD type. (The linearized polaron model is a
mathematical tool without direct physical significance. )

Larsen' argued that the application of the PD method
to a two-dimensional polaron in a magnetic field does
not provide an upper bound for the ground-state energy
for ~, ~ oo and neo, ~ oo, and for ur, ~ oo and

n~~, 0. However, it has been suggested s '~ that the
Larsen approximation does not handle the asymptotic
limit of high magnetic fields exactly.

In order to explore the possible regions of validity of
the Feynman inequality for io, g 0, the present authors'i
applied t,he PD approach to a linearized polaron model in

a magnetic field, which they solved exactly. An analytical
proof was presented that the Feynman inequality is not
satisfied for this model, if io, is sufficiently large.

Also in the asymptotic limit of high magnetic fields,
it was argued in Ref. 15 that the Jensen-Feynman in-

equality does not hold for polarons in two dimensions
subjected to a magnetic field.

From the discussion above it follows that the PD treat-
ment is not based on a maximum principle (except in the
limit w, ~ 0) and does not a priori provide an upper
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bound for the free energy of the Frohlich polaron in a
magnetic field.

In the present paper we derive a more general inequal-

ity, which remains valid in the case of a nonzero mag-
netic field, and apply it to the Frohlich polaron. In other
words, we provide the "small modification" suspected to
exist by Feynman and Hibbs, which is required to gen-
eralize the Feynman inequality, e.g. , to a polaron in a
nonzero magnetic field.

The formulation and the formalism in the present pa-
per differ from the one used by PD. Contrary to PD, our
final expression is now based on a maximum principle
and provides an upper bound for the ground-state en-

ergy of a polaron in a magnetic field. Our derivation is

based on the variational principle of quantum mechanics,
applied with ordered operator calculus (i.e. , the operator
equivalent of the Feynman path integral), in which only
the Hermiticity of the Hamiltonian is required. At any
stage in the calculation, the corresponding path-integral
formulation is readily obtained.

If the following simple but crucial additional con-
straints on the variational parameters v~, to~, v~~, to~~

are satisfied,

II. ORDERED-OPERATOR FORMULATION
OF AN UPPER BOUND

FOR THE GROUND-STATE ENERGY
OF A PARTICLE IN A MAGNETIC FIELD

For a general Hamiltonian of the form

H= HO+V (2 1)

i0} = U(0, —oo)i —oo), (2.2)

g2

U(tt, tt) = t exp —— dt vent)),
t

(2.3)

V(ti I
—t[t( i Hot/rt V

—iHot jrt
c~p (2.4)

where 7 denotes the time-ordering operator. The
ground-state energy EG of H satisfies the variational
principle of quantum mechanics with some trial state ~tlt}:

the ground state ~0) can be described in the interaction
representation, starting from the unperturbed ground
state

~

—oo) of Hp at time t = —oo, by adiabatically
switching on the interaction:

max(ur, u, ) & w~ & v~, &u ( w~~ &
v~~ (1.3) @G —&0IH 10} & (@IHI@} (2 5)

(where u is the frequency of the longitudinal-optical
phonons) our upper bound for the ground-state energy
of a polaron in a magnetic field reduces formally to the
same functional expression (1.1) as obtained by PD.

The variational parameters v~~, vg, w~~, and wg are
the natural generalizations of the parameters v and w

in Feynman's upper bound to the ground-state energy
of a polaron without a magnetic field. In the Feynman
model, m accounts for the retardation effect due to the
elimination of the phonons, and v is the frequency of
the coupled harmonic oscillators of the model system,
imitating the internal excitations from the interaction
with the phonons. The introduction of a magnetic field
breaks the spherical symmetry of the polaron HamiIto-
nian. Therefore, two different sets of variational param-
eters (for the direction parallel and orthogonal to the
magnetic field) constitute a quite natural extension of
the Feynman model in the presence of a nonzero mag-
netic field.

The constraints (1.3) are sufficient conditions for the
Feynman inequality in unmodified functional form to re-
main valid for a polaron in a magnetic field; if these con-
ditions are not satisfied, additional terms E —still to
be investigated in general —will in principle occur in the
right-hand side (rhs) of the Feynman inequality (1.1):

If one chooses a trial state ~iIt} which is the ground state
of an exactly solvable model Hamiltonian Hp+ V«, ~l with
ground-state energy Et,., i, (2.5) can be rewritten as

EG ~ Etri al

+ (oo (2 (U,„, i(oo, —oo) [V(0) —V,„;~(0)])[ —oo) .

(2 6)

The time-evolution operator Ut„ l corresponds to the
path integral over exp(iS, „; t/h) in the path-integral for-
mulation, with the action St„,@ expressed in real time
variables. The generalized inequality (2.6) is therefore
intimately connected to the Feynman inequality. How-

ever, it is based on the Hermiticity of the Hamiltonians H
and H«,.~l, but it does not require that the corresponding
actions are real functions of the imaginary time variables.

If the matrix element, in the rhs of (2.6) satisfies cer-
tain analyticity conditions in the complex-time plane, de-
rived below, our generalized inequality (2.6) reduces to
the Feynman inequality. We explicitly derive these condi-
tions for a Frohlich polaron in a magnetic field. However,
if these analyticity conditions are not satisfied, the in-
equality (2.6) remains valid, and in principle introduces
additional terms in the rhs of the Feynman inequality
(1 1)

For the study of the Frohlich polaron in a (uniform
and homogeneous) magnetic field 8, we first consider
the more general Hamiltonian:

EG + Etri@ + lim + ESttiat)
phoo (1 4) H: Hp + V(r) + ) [Wk(r)ait + WJ(r)ak],

k
(2 7)

In the free-particle limit and for mg ——0, we evaluate
these additional terms explicitly.

1 e
Hp — p ——A + ) hwa„ak,

2&1 C
(2 8)
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or, in the gauge A = (0, Bz, 0) with the z axis in the
direction of the magnetic field:

Ho = [p + (py + ~,&) + p, ] + ) hula»tak,
k

(2 9)

field.
With ordered-operator calculus, the phonons can be

eliminated in the expectation values. The derivation
is given in the Appendix. The procedure is equivalent
to Feynman's elimination of the phonons in the path-
integral formulation, as, e.g. , discussed by Platzman.
Denoting

where ~, = ~eB~/mc is the cyclotron frequency, and a»
and ak are the phonon annihilation and creation oper-
ators. Note that the unperturbed Hamiltonian Hp in-
cludes the interaction of the electron with the magnetic

(t) iHot/s —i Hot/s

t, he interaction term becomes

(2.10)

OO

0 ) [Wk(r)a»+ Wk(r)a&] 0
2h

dt e ' I'I 'I'I ) (ool?'[U(oo, —oo) W»(r(0)) Wkt(r(t))] I

—oo). (2.11)

The polaron Hamiltonian H&" for a polaron in a magnetic field is a particular case of the Hamiltonian (2.7):
~i + ) (Vpeii rag+ V'e it ra„)

k

(2.12)

Ho — [p& + (py + ma, z) + p, ] + ) h~aiI ak i

k

with the electron-phonon interaction term VI, given by

z/a
.her f 4+a h

k ( V 2m'))

(2.1S)

(2.14)

where V is the volume of the crystal, and e the dimensionless Frohlich coupling constant. Note the difference in

phonon frequency between Hp and Hp '.
With ~4i' ') and U& '(t2, ti) denoting the ground state and the time-evolution operator for the polaron, the ground-

state energy EG
' can thus be written as

E~" = (4' '(oo)i7 [U '(oo, —oo)HO "(t = 0)]i@ '(—oo))

——„) )Vy~' dt e-'-I'I-'I'l(e~" (~)P [U~"(~, —~)e'" ('('1-'('»]~4'"(—~)).
2h

(2.15)

This means that the polaron ground-state energy is exactly described by the retarded potential (in the interaction
representation)

Vi oi(t )
' ) )V2~Z- dt e-i~l'I-~l'lei~ l~(')-~("ll

2h
k

(2.16)

Consider then a model Hamiltonian H"" (which will contain linear electron-phonon interaction terms only, and
which will be specified in detail below), with corresponding time evolution operator U""(t2, ti), ground-state energy
Ez", and ground state ~4'"). If we impose that H"" has the same unperturbed electronic contribution [Eq. (2.1S)] as
the polaron Hamiltonian, no ambiguity can arise in the meaning of the time evolution r(t) of the electron coordinate
(2.10) in the interaction representation:

r(t) iHO i/& iHg i/ i00 "t/s— i HO
"i/s— (2.17)

We then find that an upper bound for the ground-state energy of the polaron in a magnetic field is obtained if V(0)
in Eq. (2.6) is replaced by V& '(0):

dt e i~lil —~l&l (@»n(~)P-[Uii~(o ~)eik. (~(i)—~(all]i@»~(

E ' ( (i''"(oo))T[U'"(oo, —oo)H~ '(t = 0)]~i''"(—oo))
Z——).Iv„

2h
k

(2.18)



45 EXTENSION TO THE CASE OF A MAGNETIC FIELD OF. . . 6463

Equation (2.6) and its application (2.18) to the polaron
in a magnetic field are the core of the present paper.
They provide an extension of the Feynman inequality,
specified to the case of a polaron in a nonzero magnetic
field. Note that Eq. (2.18) involves an integration over
reat time variables, contrary to Feynman's path-integral
formulation of the Feynman inequality. In transforming
the integrations over real time variables to integrations
over imaginary time variables, the domain of analyticity
of the integrand must be explored and taken into account.
The reason for the difI'erence with the Feynman inequal-
ity is that for u, g 0 branch points and poles can occur
in the complex-time plane, related to the intersection of
the Landau levels with the continuum; for ~, = 0 such
singularities do not arise.

If the time-dependent integrand in (2.18) satisfies cer-
tain analyticity conditions discussed below, (2.18) ex-
pressed in terms of Feynman path-integrals, leads to the
result that

(a) an upper bound is obtained for the ground-state
energy of a polaron in a magnetic field of the same func-
tional form as the one deduced from the Feynman in-

equality; i.e. , if S& ' and S""denote the action functional
of the polaron and of the model, system at imaginary
time P and with the expectation values evaluated with
the probability density exp(S"n)/ j'Dz exp(S"") of the
model, the Feynman inequality

/SPol Slin
@pol & colin+ lm (2.19)

remains valid, but in general only if
(b) supplementary conditions, derived in the present

paper, are imposed on the variational parameters in the
trial action. These additional constraints arise as a result
of the analyticity requirements for the integrand in the
right-hand side of the inequality (2.18) when choosing an
integration contour in the complex time plane. Contrary
to what happens in the case ~, = 0, the direct substitu-
tion t -+ —ihr is no longer allowed for u, g 0.

(c) If the supplementary conditions mentioned in (b)
are not satisfied, it is still possible —at least in principle-
to derive an upper bound for the ground-state energy of
a polaron in a magnetic field. But its form will in general
differ from the Feynman inequality (2.19) because of ad-
ditional terms appearing in the rhs of (2.19). These terms
arise from choosing a Cauchy contour in the complex time
plane which circumvents poles and branch lines.

In general it can be stated that (2.19) remains valid
for a nonzero magnetic field if the analyticity require-
ments for the Cauchy integration in the complex-time
plane, necessary for our generalization in (2.18), are cor-
rectly taken into account. For a specific choice of the
trial action (here S"") the analyticity conditions result
in constraints on the variational parameters occurring in
the trial action.

Note that, if in Eq. (2.18) real times are directly sub-
stituted by imaginary times (t ~ —ihr), exactly the PD
approximation for the ground-state energy of a polaron
in a magnetic field results. However, as stated above,
such a substitution is not legitimate in general, and this
is the reason why the PD approximation does not a pri-

ori provide an upper bound to the ground-state energy
of a polaron in a magnetic field.

III. CONSTRUCTION OF A DIAGONALIZABLE
LINEARIZED POLARON MODEL

corresponds in the path-integral formulation to the action
functional:

P 7

S"— dr do W(r(r) )W' (r(cr) )G (r —o ),
0 0

where the memory function G (r —o ) is due to the
phonon elimination and is given by

cosh(&~ —u) hw

sinh(&2)hw

To account for the spatial asymmetry due to the pres-
ence of a magnetic field, it is natural to introduce two in-
dependent sets of phonon degrees of freedom, with a dif-
ferent frequency and a different interaction coeKcient in
the directions parallel or orthogonal to the magnetic field.
In so doing one obtains a model which corresponds to the

asymmetric trial action proposed by PD. These consider-
ations suggest to introduce the following linearized model
Hamiltonian:

Hlln 011n + Hlln
II

H~ —— p + (pv+ m~c&) +
h p

lin
'

2 2

2m- hwg

+ ) (hw~aktak+ [ik pZ~(k)ay+ H.c.]),
kGK&

(3 2)

~11n Pi + II
2C

II

+ ) (hw[[a&am + [ik, zg[[(k)ak + H. c.]),
kgK&

where p is the two-dimensional position vector with com-
ponents (z, y) in the plane perpendicular to the mag-
netic field. )Ci and K2 are two spherical symmetric com-
plementary subsets of the phonon degrees of freedom in
wave-vector space. The terms linear in Cg and CII are
introduced to ensure the translational invariance of the
model if the following conditions are imposed:

k2
2&~ = ). 3

l&~(k)l'
kgKg

(3 4)

In analogy with Feynman's quadratic trial action St-„@
in his treatment of the polaron, we require a Hamiltonian
H'" for which in the absence of a magnetic field the path-
integral formulation and phonon elimination would result
in the action S,„; ~. Note that a Hamiltonian of the form

0"+ hwata+ [W(r)a+ H.c.]
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k2
2CII

—) —[ZII(@)['.
kgK

(3.5)

1
Bg = — ) k~Lg(k)ag, (3.6)

1
BII = — ) k, LII(1")ag (3.7)

These relations couple the strength of the harmonic inter-
action in the model with the electron-phonon interaction.
Without electron-phonon interaction the electronic part
of the unperturbed linear Hamiltonian is identical to the
electronic part of the unperturbed polaron Hamiltonian,
as required in the previous section.

On the one hand, this linearized model has been stud-
ied with Green's-function techniques by Bogolubov and
Bogolubov~7 (who take into account the phonon disper-
sion, but only consider ~, = 0). On the other hand,
the model has been explicitly diagonalized with canoni-
cal transformations by the present authors~s (with dis-
persionless phonons, and ~, g 0).

The main step in our diagonalization procedure of H""
consists of the introduction of "collective boson annihi-
lation and creation operators, " which allow us to replace
the phonon bath by a "fictitious particle" as far as its
interaction with the electron is concerned: H

P)

' —H"" y ) h(~ —w~)a„ak
kQ A".

1

~ —iV'2'~ (Bi —B,) I

(2'
(hug

+ ) Tl(4) —wII)ai ak
kgK&

z —i 2CII z(BII —B (3.11)

equivalent to H& + H~~.
H" accounts for the remaining phonon degrees of

freedom after the introduction of the collective opera-
tors. The diagonalization of H" is discussed in detail in
Ref. 18, where it is also shown that H" commutes with
both H~ and H~~, and that it does not contribute to the
equations of motion of the electrons and of the collective
ope a ors 8& nd +II' Therefore, H" can be considered
as a constant for the purpose of the present paper. Its
relevance is limited to providing the same degrees of free-
dom in the linear model as in the polaron Hamiltonian.

Assuming that the ground state ~4"") and the ground-
state energy EG" of the model Hamiltonian H"" are
known, the application of the maximum principle (2.18)
requires the evaluation of various matrix elements. Con-
centrating first on the expectation value of the non-

interacting part Ho~ [Eq. (2.13)] of the polaron Hamil-
tonian, it is useful to express this term in H"":

(and the corresponding creation operators B~z, BII). The
introduction of these collective operators in the linear
model Hamiltonian allows one to consider the linear in-
teraction of the electron with the phonon bath as a linear
interaction with a "fictitious particle. " In terms of these
collective operators the Hamiltonian of the linear model
can be re writ ten as

If w~ and w~~ are chosen to satisfy

tUg 0 4J, W)~ 0 4) (3.12)

H~ = H, +H~~+H", (3.8)

then obviously the following inequality holds for the ex-

pectation value of Ho
' in any state:

Hg = p +(py+m~c&) ]+ p= 1 2 2 2 -L 2

2m AWg

+hmgBq Bg —i 2' p (Bg —Bq),t (3.9) II 2 ~

AWI(
z —i 2CII z(BII —B

I
(3.13)

(Hp) & (H"") —( p —~/2Cip (Bi —BI))

Hll + + ~~IIBIIBII ' 2CII (BII —BII).
27TL 6W~~

The terms H~ and H~~ in the transformed Hamiltonian
of the linear model describe an harmonic oscillator sub-
jected to a, magnetic field and interacting linearly with
a second harmonic oscillator. PD also introduced a "fic-
titious particle" to imitate the phonon bath. The trial
Hamiltonian which they constructed and diagonalized is

The conditions (3.12) are not very crucial, and could
be omitted at the price of evaluating extra terms arising
from the expectation values of the phonon number op-
erators. In the actual minimization of the upper bound
however, these conditions happen to be satisfied in prac-
tice.

Using the maximum principle (2.18), with U""(tq&t2)
the time-evolution operator and ~4'"(t)) the wave func-
tion of the linear model at time t, the following upper
bound is obtained for the ground-state energy of a po-
laron in a magnetic field:
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Ep&~ ~ Evar
G ) (3.14)

E "= Eo" — 0e" (oo) 1 U""(oo, —oo) i p (0)+ z (0) i

rtr""(—oo))
t' 2C~ ~ 2CII

(hit)~ hit)II j
+ AC, (~'-( )P-&~'-(, — )~(0) [B.(0) - B',(0)])l~""(- ))

+i 2
))

4"" oo T U"" oo, —oo 0 B~) 0 —Bt 0

) (ltq(2 dt e-a~ltl-. ltl(@)in(oo)~7-[U(in(oo —oo)eii'[r(t)-r(0)l]~@)in( oo))
2h

(3.15)

The bosons described by the collective annihilation and creation operators B~, B~~ and Bz B(~ can be eliminated

(see the Appendix):

V'2' {~""(~)I&{~'"(~—~)~(0) . [B~(0)—Bi(o)l) l~""(—~))

= —2C~ d)) e '~d-I'I- I I(@ {oo)p V""(oo,—oo)p{0) p{g) [4 '"(—oo)), (3.16)
2h

and similarly for the contributions parallel to the magnetic field. The upper bound (3.15) to the ground-state energy
of the polaron in a magnetic field then contains matrix elements of electron operators only:

0P'"(0) p'(0) + " *'(0) 0'""(0))
2' 2C
fl CD' hiU~~

+—2Uz f dte ' ~0 0 ~(0r""(oo)~~T 'U""(oo, —oo)p(0) p(t), )9' (—oo))

+—2CI Ch e ' (il I- I l(y""(oo)IT U""(oo, —oo)z(0)z(g) I@i'"( oo))

OQ

——) ( yq (
tip e 'tdltl-0Itl(@ in(oo) P-[U)in(oo —oo) eti fr(t)-r(0)l][@)in( oo))2h

(3.17)

Because the time-evolution operator V '" corresponds to
the path-integral over exp(iS""/h) —with S"" the action
of the linear model in real time variables —in the path-
integral formulation, one immediately recognizes a close
similarity between the terms in the rhs of (3.17) and the
familiar terms (S)' ' —S"")/P expected from the path-
integral treatment.

Equation (3.17) provides our extension of the Feynman
upper bound for a polaron in a magnetic field, but it is ex-
pressed in real time variables. If the time-dependent inte-
grand in (3.17) satisfies the necessary analyticity proper-
ties in the complex-time plane to substitute real by imagi-
nary time variables, (3.17) reduces to the Feynman upper
bound. This implies that formally the Feynman inequal-
ity remains valid under these analyticity constraints.

IV. ALGEBRAIC EXPRESSION
FOR THE UPPER BOUND

TO THE ENERGY OF A POLARON
IN A MAGNETIC FIELD

The explicit evaluation of the matrix elements of the
ordered operators in tlie upper bound (3.17) to the
ground-state energy of a polaron in a magnetic field re-
quires the diagonalization of the linear model Hamilto-
nian (3.8). The diagonalization procedure has been dis-
cussed elsewhere and is only briefly summarized here.

P2 = Z

h

h
(Bg —Bq),

2m2toJ

(4 1)

(4.2)

4' = hit)iA, (4 3)

the Hamiltonian (3.9) in the plane perpendicular to the
magnetic field can indeed be rewritten as

p + (p& + me, z)2 p22
Hg ——bmoc + +

2m 2I2
+-,'(n, /m p —~g gm, p, )'. (4 4)

This Hamiltonian can be diagonalized by standard
techniques, resulting in the Hamiltonian of three inde-
pendent harmonic oscillators:

As mentioned above, the linearized polaron model can
be considered as a charged harmonic oscillator in a mag-
netic field, linearly interacting with a second harmonic
oscillator with mass rn2, frequency m~, and with position
and momentum operators pq and p2. With the following
substitutions:
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3

H~ ———hwg + ) hs, (btb~ + ~), (4.5)

where b& and b are boson annihilation and creation op-
2

erators. The eigenfrequencies sz are the (non-negative)
solutions of the equations:

lowed at any time, with the eigenfrequencies sz(t) and
the corresponding expansion coefficients c2(t) evolving
in time with the replacement of 0 in the equations above
by Q(t).

In the asymptotic limit t —+ +oo, i.e., O(t) ~ 0, the
eigenfrequencies 8& and the expansion coeKcients cz are
asymptotically given by

81 —82 + 83 = 4)t-)

8182 —S1S3 + S2S3 —0 + Q)g )
2 2

2S18283 = 4)~O)g.

(4 7)

In the process of diagonalization of Eq. (4.4), two
canonically conjugate constants of motion II, Q enter,
which satisfy the commutation relation [P, Q] = h/i.
They are related to the classical orbit center, ' but do
not appear in the Hamiltonian. The explicit transfor-
mations of the position and momentum operators into
the creation and annihilation operators b, b& for this
diagonalization also involve the expansion coe%cients
c&, given by

s&(s —0 —w&) = (—1)~+ w, (s —w&) for j = 1, 2, 3,

(4.6)

which means that they satisfy the following set of equa-
tions:

si(t ~ +oo)

s2(t +oo)

s3(t boo)

2e —2t(t(
q:tQ, i1+

tQc —wg J
g2 -2tltl

: w&
/

1+
2wg(wg + u, ) j '

n2e-"~t~
: wi I 1+

2wg (wg —cd~) )

2m 2c', (t +oo)

2m 2c2(t ~ +oo)

2m 2

h
cs(t ~ +oo)

+ O(fl2 -2t~t~)1

')

2wg(wg + 4J)..)
g2 —2c(t)

2w g (w g —4) );)

The Hamiltonian Hp without interaction is

(4.»)

(4.12)

2 28 —Q)g

2774 S~ 3s,' —2(—1)&+'tQ, s, —0' —w'

(4.8)

Hp ——Hi(t = +oo)

= —hwg + ) hs, (boo)[~2 + bt(+oo)b, (koo)]

(4.13)
which play an important role in the further treatment.

The adiabatic switching of the interaction in the pre-
vious section,

and the time evolution operator U~(t', t) is given by the
time-ordered product

Zg(k)

implies

: Lg(k, t) = l:g(k)e

: C~(t) = Cge '~t~

(4 9)

(4.10)

i
U&(t', t) = T exp —— Ct"V, (t")h, )

'

Vi(t) —= e'""'"[H&(t) —H, ] e

(4.14)

(4.16)

but this time dependence does not prevent the diagonal-
ization at any arbitrary time t. This means that the
eigenstates of the linear model can adiabatically be fol-

If ~N), Nq, N3, Q)t I denotes an eigenstate of the
Hamiltonian in the int;eraction picture at time t, with N~

denoting the number of phonons corresponding to the
eigenfrequencies st(t), the time evolution operator can
be written as

U~(t', t) =
W1,Ng, Ng, Q

exp —i @NN, N3(t")lh , I
INiii N2) N3) Q)t;I t;I(Ni) N2 N3, Ql. (4.16)

Starting at time t = —oo in the unperturbed ground state ~vac, Q), the system will at time t be described by the
state

(41(t)) = exp
~

i—d) E () )Jh) ~v)c, "Q)„;r„.
" (4.17)

A quantity which is useful for evaluating the expectation values of p(0) p(t) and exp( —ik [p(0) —p(t)]) in the
upper bound (3.17) for the ground-state energy of the polaron in a. magnetic field is
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(0""(oo) i7 [U""(oo —oo)e '" ~(' )e'" ~(')]
i
4""(—oo))

1Vg Ng )1V3 bQ

t' 3

exp
' —i dt" Nzsz &" t .I vac, e '" '~ N]) Np N3

j=1

xi;1(Ny, Nz, Ns, Q'~e'"' (' ~vac, Q)i.l, (4.18)

where it is assumed, without loss of generality, that t' & t.
The remaining matrix elements in the last equation are to be evaluated at given time t (t), and since the diagonal-

ization of the linear Bamiltonian is known at any time, the evaluation of these matrix elements is straightforward. The
transformation laws for the diagonalization's allow us to express ik p(t) in the annihilation and creation operators

6&(t) and 6~t(t) at time t Ele.mentary operator calculus then yields

i r(vac, Q[e
'"' (')(Ni, N2, Ns, Q)i, l = (Q~e

' ""~ "))Q')
~ ~ ~

j=l
'" ""{(h)[- & +(-1)'+'41)"'.

(4.19)

Using this result in Eq. (4.18), the summation over Nq, N2, Ns, and Q can be done analytically, giving

(colin(oo)~T[Ulin(oo —oo)e
'"' ~(')e'"'~(')])colin(

jPi(k b„+b' b'„2b„b')/-2mcu
(Q~

i(b„-b'„)q i(k —-b')ll/m~
[Q)

x exp{——,
'

[c,'(h) a,' + c,'(h') a', '])

exp [i/; + (—1)'+'k„][—ik' + (—1)'+'k„']c,(t)c, (t') exp i Ck"—s, (t") (4.20)

From this rather general expression, one readily obtains for k' = k,

(colin(oo) )'T[Ulin(oo oo)e-ik. P(t') eik P(i)] ~@iin( oo))

~ ~ h

i=1

—k2 t'

l
J 2

g + Q ]/ g ] g/
'

dg// g//
~ 4 gy

From the appropriate expansion coefficients in k'/; and k„'k&, one also obtains from Eq. (4.20):

3 t'
(4""(oo)(7 [U~"(oo, —co)p(t') p(t) (4""(—oo)) = 2) c~(t)c~(t') exp —i Ck"s/(t") (4.22)

The contributions in the plane perpendicular to the magnetic field to the upper bound (3.17) for the ground-state
energy of the polaron are then fully determined for t' & t. The results for t' & t are obtained by interchanging 4' and
t.

It turns out that the corresponding expressions parallel to the magnetic field can readily be derived by taking the
limit ~, ~0.

The substitution t ~ t can be—used to convert the integration domain [—oo, 0] into [O, oo]. The following upper
bound then results for the ground-state energy of a polaron in a magnetic field:

E" "= — + —) si —hu)g+E, +Eb, (4.23)

OO t
E, = —|~ ) dt e ' ' "

(tc)/(0c)iexp
~

i dt"s~. (t")
~

—c—(0)
0 0

(4.24)
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E, =--„) )v, )'
k

2 3 t

dt e ' ' *' exp ( ) c, (t) + c(t)) —2 tc(t) tc(i)) exp
~

—i f dt" e;(t")' ~=l- 0

x exp '
A (t) + A (0) —2A(t)A(0) exp

~

i-
2 l

dt v)i("t")
~
+ — dt t"„),(4.24)

) m () vll
t"

where

At
vll(t)—

) 2m ve~t(t)
(4.26)

vll(t) = 4
II gmw))

(4.27)

which implies that vll & u)ll since Cll & 0 because of
Eq. (3.5).

Note again that the PD approximation for the ground-
state energy of a polaron in a magnetic field is formally
obtained by taking the limit e = 0, and substituting t
by —ihr in (4.23). But this limiting process and the di-
rect transition to imaginary times by substitution are not
generally valid. The analyticity requirements on the inte-
grand which allow for this substitution are derived in the
next section and provide crucial additional constraints
on the variational parameters. If these additional con-
straints are satisfied for acceptable values of the varia-
tional parameters, our more general upper bound (4.23)
can still be expressed in the same functional form as the
Feynman upper bound for a polaron in a magnetic field.

S30
(83 + u) J )(83 44)d)

(5 4)

(It is clear that si and 83 can be interchanged, since both
satisfy the same equation. We adopted the convention
that s1 is the solution which coincides with the cyclotron
frequency in the limit of zero coupling, and that s3 equals
the variational parameter u)~ in this limit. )

For real times, it is obvious from (5.2)—(5.4) that (i)
s3 decreases and si increases with increasing 0 if w~ &
ur, ; (ii) si decreases and 83 increases with increasing 0
if mg ) ~„and that in both cases s2 increases with
increasing 02. Hence,

WJ ( 4)c ~ S] 5 4lc, S2 ) WJ ) S3 ( W+)

Wg +Wc ~S1 Mc~ S2) 'NJ ) S3 P WJ.
(5.5)

The adiabatic switching of the interaction (4:10)is gov-
erned by the time dependence e 2", which determines
the evolution in time of the frequencies 8, and vll (4.27).
Since these frequencies for z = t+ir are multivalued func-
tions of e 2" in (4.24) and (4.25), the periodicity 2r/e of
0 (z) on the imaginary time axis suggests the Riemann
surface defined by

V. INTEGRATION OVER IMAGINARY TIMES

There is little hope to perform the integrations in

(4.24) and (4.25) with respect to time analytically, since
even for the contributions in the direction parallel to
the magnetic field no analytical integration procedure
is known. Furthermore, the oscillations in combination
with the adiabatic limit ~ ~ 0 are prohibitive for numer-
ical evaluation.

The oscillatory behavior of the integrands in
Eqs. (4.24) and (4.25) can possibly be eliminated by inte-
grating over the imaginary time axis. But before closing
any contour, one has to examine whether or not the fre-
quencies s& and the expansion coe%cients e do introduce
poles and/or branch lines as a function of the complex
time:

jr ir——(z(—
2c 2c

(5 6)

which includes the real-time axis.
Indeed, for the direction parallel to the magnetic field,

branch points in the complex time plane z = t+ iv arise
from vll(z) i ur~~~ ~Clle

~ /~mu)ll' The requency

vll(z) in the direction parallel to the magnetic field is

single valued at the Riemann surface defined above.
In the direction perpendicular to the magnetic field,

further analysis is required. Expressing 0 (z) as a func-
tion of the complex frequencies si(z) and 83(z),

Z =I+ST. (5.1)
2 2 S13Z —4Jc S 3Z —WJ

813 Z
(5.7)

S102
sl 4Jc =

2 2 )
s1 —Q)~

s2n2
S2 —WJ

(s2 + u)g )(sg + (4), )

(5.2)

(5.3)

The frequencies to be integrated are vl (4.27) and the
three solutions 8~ of the cubic equation 4.6), which can
be rewritten as follows:

shows that the real frequencies s 1 3 —0, s 1 3 —+w J,
and s13 ——u, are branch points in the complex fre-

quency plane. Depending on the value of the variational
parameter w~ as compared to ~„several possibilities
for the branch lines have to be examined according to
Eq. (5.5). These possibilities are schematically repre-
sented in Fig. 1.
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FIG. 1. Possible branch lines in the complex frequency
plane for mi ( u, and m~ ) ~,.

FIG. 2. Contour in the complex time plane vvith an an-
alytic integrandum for the evaluation of the upper bound to
the ground-state energy of a polaron in a magnetic field if
QPg Q @pe.

A. toJ C cue

The branch lines can be chosen on the intervals (i)
[—oo, —w~], [0, wg], and [~„oo) or (ii) [—wg, 0] and
[wg, ur, ]. In both of these cases at least one of the real
frequencies si, s~, or s3 falls on a branch line, as is clear
from the analysis above and from Fig. 1.

~J 0 ~c

a rectangular contour (see Fig. 2) in the complex time
plane with vertices 0, —is'/2e, T —is/2e, and T, with
T ~ oo, then encloses a region in which all the functions
to be integrated are analytic functions of the complex
time variable.

For all the integrations over time, occurring in the ex-
pressions (4.24) and (4.25) for the upper bound (4.23) to
the energy of the polaron in a magnetic field, the integrals
are of the form

Also in this case two possible sets of branch lines can
be chosen: (i) [—oo, —w~], [0,~,], and [w~, oo] or (ii)
[—w~, 0) and [u„w~]. It is clear from Fig. 1 that, only
the Riemann surface as defined by the last set of branch
lines contains all three real eigenfrequencies s~, sq, and
S3.

The analysis of the analyticity of the functions c2(z)
[see Eq. (4.8)] does not introduce extra relevant poles
or branch lines: elementary algebra reveals that their
denominator can only be zero for s~ ——s3 or sg ———si
or s2 ———s3. These possibilities are already excluded by
the condition ~~ )~, .

As a consequence, the analytic continuation in the
complex plane of the integrands in the upper bound

($.88)—(g.M) for the ground state energy of t-he polaron
in a magnetic field is only justified if wi ) (d, This co.n
dition guarantees that the three eigenfrequencies sz belong
to the same Riemann surface

Under the important condition

in the limit T ~ oo and subsequently e ~ 0. In the limit
T ~ oo only the first integral contributes, because for all
the cases under consideration F(oo+ ir) and F(t —ioo)
are zero, and one obtains

34' )h j=l

-x/2e
d7. e"~'e '"Ft(ir), (5.10)

—~/2~

E(, = —) IVq( dr e 'e '"F~(ir),
0

(5.11)

f
T -m/2t.

dt F(t) = i dr F(ir)
0 0

)' is)dtF (t ——i+i drF(T+ir)
o & 2&)

(5.9)

(5.8) with

(5.12)
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2 $T

Fk(ir) = exp J — ) c (ir) + c (0) —2c&(ir)ci(0) exp
I

—i dz"si(z")
~

j=1 0

I"2

x exp ——'
A i7 + A 0 —2A i7 A 0 exp —i dz"vll z" + — dz"

2
(5.13)

exp —i dz" s, (z")
~

= exp [s, (0)r + O(e)] (5.14)

and similarly for the expressions in vII(ir), ci(ir), and
A(ir), giving

F (ir) = c (0)(e"t l' —1) + O(e), (5.15)

Because the frequencies s& (z) are analytic functions
of z = t + ir in their integration domain, they can be
expanded in a Taylor series in the adiabatic switching
parameter c:

Fk(ir) = exp —k~ ) c, (0)(l —e'&& l')

x exp[—k, A (0)(1 —e"s ')]

, rr
x exp —k, 2 + 0(&). (5.16)

277l vII 0 )
Finally, taking the limit c ~ 0, and substituting r by

—r, the contributions E, and Ep to the energy expression
(4.23) become

34C, ). ,
fl . tOgj=l

1

to& + s&

34'~. 2 s,
C )

AtUz . Q)z + s&
(5.17)

&b = —
& ) ~Vy~ dre exp —k& ) c&(l —e "') ' exp

f,2k~ (w'r v' —m2

+ II II (1 e
—vPr (5.18)

To simplify notation, references to the time depen-
dence of the frequencies s&, vll and of the expansion coef-
ficients cz are omitted from here on: all these quantities
have to be evaluated at time t = 0.

For the further algebraic treatment it is useful to ex-
press the frequencies s1 and s3 in terms of s2 with the
help of (4.7):

I

the magnetic field, we introduce

4Cg
Vg = ZDg+

Tl mtUg
(5.24)

which implies that vg & m~ since Cg & 0 because of
Eq. (3.4), and insert the result (5.17) for F., in the upper
bound Eq. (4.23) for the energy:

~, + s2 + 2W
S13 =

) 2
)

2~r"'+ s2~~

and similarly

2c'W

(5.19)

(5.20)

Ever = g
VII ~ll

4vII 2 )
r 2f7lc2 2 Vg D g+h~ Sg —Wg — S~ 2 2 +Eb.

~i2

(5.25)

S3 —uc S3 + S2+ C2)
S3 —S1 $3 —S1

(dc —S1 Sl + S2
C2.

83 —s1

C1
27%4)c

h2
C3

2mb) 83 —s 1

(5.21)

(5.22)

The summation term in Eq. (5.17) can, with elemen-
tary algebra, be rewritten as

Introducing

2 2 2

D(r) =
2 1 + 2, (5.26)

2m vII 0 wII vllr )

3
s)
+

c2s2 2=22 2S2
—tO~

(5.23)

3

DH(r) = ) c (1 —e "'), (5.27)

Furthermore, in analogy with the direction parallel to the interaction term Eg can be rewritten as
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IV ~2 d e
~7' k-~DH(r)e k—,D(r)

(5.28)

Using the explicit form of Vp for the Frohlich polaron,

. h~ f4xa/ h
/

k ( V 2mcur
(5.29)

the summation over the wave vectors can be done ana-
lytically:

Combining terms, one eventually finds for the energy
the more tractable expression

z"= n '—+r("~~
2 4VI)

„(s2 —tDg) (S2 —ld, W~)+ 3 2 2 +
2S2 + 4)gS2 + 4Pgl8g

(5.35)

where the contribution Eb from the interaction is given
in (5.30). Using (5.19)—(5.21), the function DH(r) can
also completely be expressed in s2 and m~.

nb~ h~ „e ' (D(r) )
Fb ———

2~x 2m 0 /D(r) & DH(r) r
!dr B

with

(5.30)
DH (r) =

l + c2 ~ T&(r) + c2T2(r),
n 2

T (r) 1
—(~,+sg)r/2

B(z) = 2 ar ccosh (~i)
r S2 4)c

x
~

cosh Wr+ ' sinhWr ~,l )

ln (~i+ gz —1) .
z —1

(5.31) (5.36)

As already mentioned before, the PD (Ref. 3) approxi-
mation for the ground-state energy of a polaron in a mag-
netic field formally led to the same functional expression
(5.30). However, the derivation of PD was not based on
a maximum principle, and did not a priori provide an
upper bound for the ground-state energy.

The main result of the present paper is that the con-
straints

T2(r) —1 e »' e--(~.+»)'/2 S2 + 4)c
sinh S'r

W )

2 2/ 4lg + s2 4J~Wg

2 s2

Note that in the limit ~, = 0 one immediately recov-
ers the Feynman result for the Frohlich polaron in the
absence of a magnetic field.

vi ) Q)L +@Pc) t'ai + ~i v() + xo() 0 (d (5.32)
VI. ANALYSIS OF SOME LIMITING CASES

2
2 2 ~cu)

VL —S2 + ~~s (5.33)

have to be imposed on the variational parameters to guar-
antee an upper bound to the exact ground-state energy of
a polaron in a magnetic field. These conditions provide
the "simple modification" which Feynman and Hibbs
suspected to be required for the generalization of the
Feynman upper bound to the case of a nonzero magnetic
field. If these constraints are not satisfied, additional
terms might appear in the rhs of the Feynman inequal-
ity (2.19), due to contributions from branch lines and/or
poles in the complex-time plane.

The fact that the eigenfrequencies s& of the linear
model system are solutions of a cubic equation, compli-
cates the further analytical treatment of the upper bound
E' ' to the ground-state energy of a polaron in a mag-
netic field obtained so far. However, s2 is a monotonic
function of v~ in the valid region of variation mj ) ~,
and vg & mg, and one might as well consider s2 as a vari-
ational parameter (satisfying s2 & uj~) and eliminate u~
using the cubic equation (4.6) for s2..

The main purpose of the present section is to derive
analytical expressions, starting from Eq. (5.35), for our
upper bound to the ground-state energy of the Frohlich
polaron in a magnetic field in several limiting cases such
as small coupling (i.e. , n ~ 0 and the free-particle limit
a = 0) combined with u, ~ 0 or u, ~ oo. Some prelim-
inary conclusions will also be drawn for the intermediate
coupling regime.

This section emphasizes how the variational upper
bound for a polaron in a magnetic field is influenced by
the constraints (5.32) established in the present paper.
We achieve this by comparing the upper bound (5.35)
including the additional constraints (5.32) with the ap-
proximation of PD, which in pinciple is not an upper
bound, but which starts from the same formal expres-
sion without the constraints.

A. The free-particle limit: Illustration
of the general problem

gl vlng

2mc2 S2
—tU~

2 2 2

2s2 + s2uc + ~L~c3 2 2 (5.34)

Although the present treatment is rather artificial for
the exactly solvable problem of a free particle in a mag-
netic field, we nevertheless discuss this limit for pedagog-
ical purposes. Since even for a free particle in a magnetic
field the Jensen-Feynman inequality does not apply,
it is instructive to examine how the additional constraints
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(5.32) lead to the correct energy in this case. For a = 0,
the polaron coupling contribution E(, cancels in (5.35)
and one has to minimize the following algebraic expres-
sion:

4)g S2 —Q)~ S2 —4Pc 6)J
2 2S2 + (dcs2 + Wc~g

(6.1)

The two constraints m~ ) ~ and m~~ & ~ are irrelevant
for the free-particle limit, because no LO phonons are
present. The third constraint m~ & u, implies that s2 &
~~, and hence s2 & ~,~~. This constraint therefore
excludes that a minimum can be found below the exact
energy, and assures that the minimum of the variational
energy for a free particle in a magnetic field is obtained
at the exact energy h~, /2, with v~ = s2 ——w~.

However, if one disregards the constraint m~
(as in the PD approximation), s2 —~,w~ can become
negative. The approximation (6.1) for the ground-state
energy of a free particle in a magnetic field then shows
a (numerically determined) minimum which drops 1.9%%uo

below the exact energy hu, /2. Indeed, for w~ ( cu, the
expression (6.1) does not provide an upper bound to the
ground-state energy: extra terms can appear in the rhs
of (6.1) due to possible branch lines in the complex-time
plane.

Example of the generalization of the Eeynman
inequality for u g 0 if the additional constraints

are not satisfted

The relevance of the contributions to the upper bound
for the ground-state energy, due to the occurrence of
branch lines in the complex-time plane for ~~ & ~, is
clearly illustrated in the limit to~ —0. In this case, i.e. ,

if our additional constraints are not satisfied, the con-
tribution E, [Eq. (4.24)] is zero, because C~ ——0 for
w~ ——0 from Eq. (4.3). Furthermore, the eigenfrequen-
cies s& of the model system can readily be calculated from
Eq. (4.6):

s) l~~ —o =
~ (v(wq + 40 + 4lq),

s2l~~=o = ~(d~c + 4~ ~~)i

ssl-. =o = o

(6.2)

(6.3)

(6 4)

For w~ = 0, the upper bound (4.23) to the ground-state
energy, evaluated from our fundamental inequality (2.18)
with integrations along the real-time axis, becomes in the
free-particle limit

Ea~ o ~~=o = v ~~ + 4~ . (6.5)

This expression is different from the limit m~ —0 in
Eq. (6.1). [It should be recalled that (6.1) was obtained
under the condition that our additional constraints are
satisfied, which is not the case for the limit m~ ——0 con-
sidered here. ]

In this limit o. = 0 and to~ ——0, we obtained in the
upper bound for the ground-state energy the following
contribution F, , which is different from zero because

of the existence of different branch lines in the complex-
time plane:

~DB
a=O, ur ~ —0

h02

gee„'+ 40'

Note that the upper bound (6.5) to the ground-state
energy of a free particle in a magnetic field, valid if our
additional constraints are not satisfied, reaches its mini-
mum for 0 = 0 at the exact ground-state energy hu, /2.

B. The polaron weak-coupling limit

The free-particle result suggests that both s2 —m~ and
v~ —m~ are of order e. To second order in s2 —mg, the
upper bound (5.35) to the energy of the polaron in a
magnetic field becomes

—w 2
E' "o ——h —'+ h

"Il

+Tl (Sg wJ )
(wg —~, ) 2

2wg (wg + 4)z)

+E(, + O((sg —wg) ). (6.7)

Furthermore, using the expansion

2mc2 s2 —mz2

+.
h wg(wg + ~, )

the following expression is obtained for DH(r):

(6.8)

(6.9)

DH(r) = D (r) + D (r) +, (6.10)
tOg

(o) hr 1 —e

2777 4)c T
(6.11)

D~~)(r) = 1 —e
hT

2n~

~J +~c
e "(()[(wg —~,) r)

lOZ —4)c

+ '~,P(~, r) + wg P(wg r) (

Q)g + Mc

with

1 —z —c
(6.13)

Because of the constraint w~ )~„E(,in Eq. (5.30) is
the only term that can be negative. Ep is proportional
to the f&olaron coupling strength n, and its evaluation to
second order therefore only requires expansions of Et, to
first order in s2 —m~.

The condition m~ & ~, is again important to allow for
the expansion of W [see (5.36)]:
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A similar expansion with respect to v~~
—

m~~ gives, for
the parallel direction, D ' (r) = 2&(ivllr),

hr
(6.16)

D(r) = D (r) + "II II D(i)(r),

hr
2m'

(6.14)

(6.15)
with the following result for Eb to second order in the
polaron coupling:

Eg ——nhaf( ) —aha f~ —eh~ E' +o o 82 ~~ ()) vll ~ll (&) (6.17)

(p, p) 1 h

2,/7r 2m

1 A4)

2~ir 2m

(&) 1 A4)

2~ir 2m

&D"'( ))

dD("(.) V'D(')( ) &D("( )i

dD(P)(r) QD(P)(r) I D(P)(r))

(6.18)

(6.19)

(6.20)

s2 —ioi = ck4JZi + O(o! ) i

(&)

vll ~ll 2a~fll' + O(n ),

(6.21)

(6.22)

Minimizing E" "p (6.7) with respect to s2 —iv~ and

v~~
—

m~~ leads to
—+ 0 in the yolaron weak-coupling limit

DH (r) . p —— (1 —2~, r),(p) AT

2', (6.24)

For sufBciently low magnetic field, the expansion of
DH (r) and DH (r) [Eqs. (6.11) and (6.12)] to first order
in ~c gives

1 v~ (dan (p p) 4I W~ + cog
~ (i)

hu) 24) 2tDJ iUJ 4)c

Il

(nS('))'+ O(as). (6.23)

For general u, this expression for the interaction term
E& in the energy seems intractable analytically, even to
erst order in the polaron coupling strength. Therefore,
we restrict the further analytical treatment to the limits
of high and low magnetic fields.

DH (r)~, p = 2 P(wir)+(Jqr
~

1+(y) AT r p(ivy r)
2~.

(6.25)

Therefore, D( )(r)/D& (r) = 1+~,r/2+ in this
limit. Using the expansion (for z ) 1):

B(z)~ i
—2[1 y s(z. —1) —

—,5(z —1) +, (z —1)
+ ] forz)1 (6.26)

the energy corrections to first order in ~c become

(o,o)..' .= 2~V
g(~)J,m~~p

g(&) ~ ]
2~m. "

~
—4P7 1 (dcdr 2(1+ sv, r+ ) = 1+——'+.1

~r s ' 12cu

P(ivy r) )
p (~&r) + ~ r

I 5~(~&r) + 1+
~
+

p 1 3 ~ &Jr )
OQ

dr ~ $(wll7) (1 —
Liats +r) .

0 Vr

(6.27)

Neglecting the terms proportional to ~, in E'& and E'~~ introduces an error of order 0, ~, in the energy, because

and Ell provide the contributions of order n2 to the energy of a polaron in a magnetic field [see Eq. (6.23)].
Using

(6.28)
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one easily derives

, =, ' (g, + —W)'+ o(,),3wg
(6.29)

—~)'+ o(,).
3wII

Inserting these results in Eq. (6.23) one finds for u, ~ 0:

(6.30)

1 @var ~c
~rl

1 ac & ~
2

vw +a Vu (V~II+~ —v~) l
O( 3) O( Q

) ( 3 )h~ -.-o 2~ 0 12 ~ 9 wg "II

which is minimal for wg ——
wII = 3u, giving

2
var a ec 3 2F. . 0

—— —cr —————+ O(n )+ O(n ~, ).
A,4),-o 24) 81 12 ~

(6.32)

The same expansion was found by PD. For ~, = 0 the
expected Feynman result to second order in o. is obtained.

Since w~ and tv~~ turn out to be of order 3cu for low

magnetic fields, the constraints wg g ~„wg & ~, and

wII & ~ are automatically fulfilled for n ~ 0 and ~, ~ 0.
As is now clear from the conditions derived in the present
paper, the PD result for the energy of a polaron in a mag-
netic field happens to constitute an upper bound if o. ~ 0
and ~, ~ 0, and in this limiting case the PD conjecture
happens to be valid. For the higher-order terms in ~, we

therefore refer to Peeters and Devreese.

8. w, —+ oc in the yolaron apeak-coupling limit

The first-order correction in the electron-phonon cou-
pling constant n to t, he upper bound for the ground-state
energy of a polaron in a magnetic field is for general ~,
determined by

I = ~s[ln(~, /~) —C]+ O(Q~/u), ) (6.36)

in agreement with previous variational results and
to be compared with the PD expression:

e e 1 In((u, /~) I

PD 2 I g / )
+O(gu)/(u, ). (6.37)

The additional term in E'~ ~ found by PD introduces
a supplementary (negative) contribution

crh~ In(~, /~)
g~, /~

Z( ' ) = —,'[In(~, /~) —C]

+- dll
2x ~u), , ~u

u
~

—2 In(2~u)
i, l —e

(6.35)

The expansion of the integral in powers of ~/~, leads
to

(p p) 4)

27r

e cr
dr B~~r (I —e- " (6.33)

Because B(u) behaves as 2 In(2~u) for u ~ oo, the sub-
stitution u = ~,r reveals that the integral is divergent
for u, ~ oo. However, this limiting behavior of the func-
tion B for large u, r can be added and substracted in the
integrand, so that the divergent term is extracted from
the integral:

to the energy to first order in a in the asymptotic limit
u, ~ oo, which is removed by the inclusion of our addi-
tional constraints.

~(o,o)
27r

—2 ln(2+m, r)

+-,' [In(~, /~) —C], (6.34)

where C is Euler's constant. For large ~,r the term in
the square brackets is of order I/a, r, and the remaining
integral converges. With the substitution u = ~,r, one
obtains

C. Intermediate coupling strength for polarons

For intermediate and large polaron coupling strength,
the evaluation of the variational upper bound Eq. (5.35)
and its minimization have to be performed numerically.
However, because the formal expression which we ob-
tained happens to be the same as the one obtained by
PD—which was not variational —we are now in a position
to analyze the implications of the additional constraints
of the present paper on the basis of the PD numerical
results.

Without imposing a restriction on the values of wg,
PD found two minima in F ' as a function of w~ for a
wide range of values of o, and ~, . This is typically illus-
trated in Fig. 6 of Ref. 3, where for n = 5 the position
of the global minimum in the approximation to the en-
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ergy as a function of m~ discontinuously switches from
the first to the second minimum with increasing ~, . For
o. = 5, this transition occurs at ~, = 2.76~. From the
parameter values explicitly given in the figure caption by
PD, one readily checks that the constraints v~~ 0 m~~ ) u
and v~ ) iv~ are indeed fulfilled. But the additional con-
dition toy & u„ found in the present paper, is not satis-
fied for the minimum at the lower values of (w~/vg) in

Fig. 6 of Ref. 3. The "first-order phase transition" sug-
gested by PD, at present has no variational justification,
and needs further investigation.

VII. CONCLUDING REMARKS

The extension of the Feynman upper bound for the
ground-state energy to the case of nonzero magnetic fields
is certainly not justified in general without modification.
The free-particle limit of the PD approximation for the
polaron in a magnetic field provides an unambiguous
counter example.

In the present paper we have derived the "minor mod-
ification" which is required to generalize the Feynman
inequality to the case of a nonzero magnetic field. VVe

derived a generalized inequality, which provides an upper
bound to the ground-state energy valid also for ~, g 0,
and determined the conditions under which our maxi-
mum principle reduces to the Feynman inequality. Our
treatment is based on the Rayleigh-Ritz variational prin-
ciple of quantum mechanics, expressed in ordered op-
erators. At any stage of the derivation, the correspon-
dence with the Feynman pat, h-integral formulation is es-
tablished in real time variables.

The resulting upper bound which we derive for the
ground-state energy of a particle in a magnetic field is
formally very similar to the one which would follow from
the application of the Feynman inequality as valid for
~, = 0, with the crucial difference that our generalized
inequality is expressed in real time variables.

If the substitution t = —ih7. to imaginary times would
be allowed in the upper bound for the ground-state en-
ergy of a particle in a nonzero magnetic field, the same
formal upper bound for the ground-state energy as from
the Feynman inequality would still result. This means
that the Feynman inequality can still be applied in the
case of a nonzero magnetic field under the condition, how-
ever, derived in the present paper, that the analyticity of
the propagator in the complex time plane allows for the
substitution of real by imaginary time variables. If this
substitution is not allowed, in principle, additional terms
will appear in the rhs of the Feynman inequality (1.1).
These supplementary terms can be the subject of further
analysis.

The usefulness of our extension (2.6) of the Feynman
inequality, as presented in the present paper, is illus-
trated in (2.18) by applying it to the problem of the
Frohlich polaron in a magnetic field. With the same trial
system as in the PD approximation, our analyticity re-
quirement amounts to the condition that the variational
parameters of the trial system satisfy the constraints

where ~ is the LO phonon frequency.
The implications of these additional constraints, de-

rived here, were examined analytically in the weak-
coupling limit. For ~, ~ 0 we showed that the PD
results are variational, as expected, because minimiza-
tion of the upper bound automatically happens to fulfill
the additional constraints introduced here. But both in
the free-particle limit and in the limit u, ~ oo, the ad-
ditional constraints are not automatically fulfilled.

For the free particle in a magnetic field the PD ap-
proximation leads to an energy minimum below the ex-
act ground-state energy, which is eliminated if our ad-
ditional constraints are satisfied, and an upper bound is
found with its minimum at the exact ground-state energy
if these constraints are taken into account.

In this free-particle limit, we derived here the contribu-
tion E 8 to the upper bound for the ground-state energy
from the presence of different branch lines in the complex
time plane for the case mg ——0. We also show'ed how the
Feynman inequality is generalized if the additional con-
straints are not satisfied, and that this generalization also
leads to the exact ground-state energy h~, /2.

Furthermore, the possibility of the "first-order phase
transition" suggested in the PD approximation, does not
follow from our generalized inequality which reduces to
the Feynman inequality if the additional constraints are
included.

Note added in proof Witho. ut retardation, e.g. , for a
particle in a Coulomb potential subjected to a magnetic
field, our inequality (2.6) implies the validity of the Feyn-
man upper bound without modifications. The possibil-
ity of branch lines in the complex time plane is a direct
consequence of retardation effects, and its implications
as well as the rigorous mathematical justification of the
transition from Eq. (2.15) to (2.18) deserve further study.
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APPENDIX: PHONON ELIMINATION
FOR LINEAR PHONON INTERACTIONS

In this appendix we summarize the boson elimination
technique for linearly interacting bosons in the time-
ordered operator formalism, used several times in the
present paper. The procedure is equivalent to Feynman's
elimination of the phonons in the path-integral formula-
tion, as, e.g. , exposed by Platzman. The elimination is
performed on the following Hamiltonian:

H = Hii+V(r, t)+) [Wi, (r, t)ai, +Wi, (r, t)ai, j,

(A1)
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where ak and ak are phonon annihilation and creation
operators. Ho is the Hamiltonian of an electron in a mag-
netic field and of a bath of free phonons with frequency

the interaction term in the Hamiltonian, written in the
interaction representation:

2
Ho — P ——A + hu)akak.

k
(A2)

Both the polaron Hamiltonian and the Hamiltonian of
the linear model are of this form.

In the interaction representation the time evolution op-
erator is given by

Introducing

r(t) iHpt/rt iHo-t/rt

(A4)

(A5)
/'

U(t2, t, ) = Texp
l

—— dt V(t) ~, (A3) and filling out the time evolution of the phonon operators
in the interaction picture explicitly, the time evolution

where T denotes the time-ordering operator, and V(t) is operator becomes

t2

U(t 2t~) = 2 exp
h

Ct V(r(t) t) + ) [Wg(r(t), t)a~e ' '+ Wkt(r(t), t)a&te'~t]
k

(A6)

Using I"eynman s ordered operator calculus, the time evolution operator can be disentangled with all the creation
operators for the phonons to the left of all the annihilation operators:

U(t2 t y ) —A(t2 t y )+(t'2 t 1) (A7)

A(tq, tq) = T exp ——) ak dtW&(r(t), t)e'
h

(A8)

~ t2

M(t2, t~) = T exp —
&

dt V(r(t) t) + ) Wk(r(t), t)ak(t)e
t1 k

where the tilde on the operators indicates the time evolution introduced by the disentangling

O(t) = A-'(t, t, )OA(t, t, ).

If an operator f(t) commutes with the boson operators a and at, elementary operator algebra yields

(AQ)

(A10)

Zexp
~

a&
/'

Ctf(t)
~

a 2exp
~

a~
r

Ctf(t) = a+
1

tpt / t

dt Texp
~

at dt'f(t')
~

t, )
W t

x f(t) Texp
~

al dt'f(t')
~

rtt
(A11)

With f(t) replaced by —
& WJ(r(t), t)e' t, one then obtains

~ t

at, (t) = a~ —— dt'Wz(r(t'), t')e' (A12)

giving for the disentangled time evolution operator,

t2

M(tq, tq) = T exp
h

t

Ct
~

V(r(t) t) ——) ~j,(r(t), t) dt'W&(r(t'), t')e ' I ~ + ) Wk(r(t), t)age

(A13)

If the system is in the phonon ground state of Ho at t = —oo, i.e. , if
~

—oo) is a vacuum state for the phonons, the

annihilation operators in the exponent of the previous expression do not contribute to the time evolution of this state
and can be omitted:
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tg

Q(tq& —oo)(—oo) = Z exp —— dk V(r(t) t) ——
z dk dt'e

OO h

x) Wj, (r(t), t)Wt(r(t'), t')
~ ~

—oo).
k

(A14)

The full time evolution operator U(tq, tr) [see Eq. (A7)] acts on the ground state and introduces many phonon states
with evolving time, but if the interactions are switched on adiabatically the system eventually is again in the ground
state at t = oo. The creation operators acting to the left in U(tq, tr) leave (oo( invariant in (oo~U(oo, —oo)~ —oo), and
all the tildes on the operators can therefore be omitted:

(ooiU(oo, —oo) i
—oo)

OO OO t

oo 2 exp —— dt
~ P(r(t) t) ——

~
dt dh'e '"l' ' l) W), (r(t), t) WJ(r(t'), t')

(A15)

Both in the polaron problem and in the linear model under consideration here, W& is the complex conjugate of
W&. Therefore, interchanging the positions of W" and W" is equivalent to replacing k by —k. The asymmetry in the
double time integral can then be eliminated by the introduction of a factor of

2
and integrating both time variables

to oo:

(ooiU(oo, —oo) i
—oo)

OO
1 OO

oo Zexp —— Ct l V rt t —
&

dt dt'e ' ~' '~ Wj, rt, t S'k rt', t'
2h

This result allows to calculate the expectation value

) (0(Wj, (r)a&+ W&(r)a&(0)

(A16)

which is repeatedly needed in the present paper. Using

and

(Wa+ W at) =ih e s
BA A=O

(A17)

) (0(Wg(r)ay+ Wgt(r)apt)0) = ) (oo[U(oo, o)[Wg(r)ay+ Wj'(r)akim]U(0, —oo)[—oo) (A18)

the required expectation value can be obtained by replacing W"(r(t), t) in the time evolution operator by [1+
Ab(t)]Wk(r(t), t), taking the derivative with respect to ~, and putting ~ = 0. The final result is

OO

0 ) [W&(r)ak+ WJ(r)ak) 0 = —— dte ' ') (ool~[U(~ —~)Wj, (r(0), 0)WJ(r(t)~t)]l ~)
k —OO k

(A19)

which is the basic relation for several phonon eliminations in this paper.
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