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Two-band model for halogen-bridged mixed-valence transition-metal complexes.
II. Electron-electron correlations and quantum phonons
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We study the effects of electron-electron interactions in halogen-bridged mixed-valence transition-
metal linear-chain complexes (MX chains) applying a simple 4-filled two-band discrete tight-binding
(extended) Peierls-Hubbard model with both on-site and intersite electron-phonon couplings. We
employ a variety of methods: perturbation theory, Hartree-Fock approximation, and exact diagonal-
ization in the limit of classical adiabatic phonons, and a variational approach allowing for a finite
phonon frequency, i.e., quantum phonons and isotope effect. This variety of methods has proven nec-
essary to obtain a complete picture, due to the structural richness of this model. We investigate the
competition between the electron-electron and electron-phonon interactions in a wide range of pa-
rameter regimes for both ground and excited states. VVe focus on values relevant to the MX chains,
probing the experimental variation as X and M are varied among X=Cl, Br, and I and M=Pt, Pd,
and ¹ (spanning electron-phonon-interaction-dominated to electron-electron-interaction-dominated
materials).

I. INTRODUCTION

As discussed in the companion paper, hereafter re-
ferred to as I, there has recently been much interest
in halogen-bridged mixed-valence transition-metal linear-
chain complexes (MX chains). An introduction to the
chemistry of MX materials may be found in the works
listed in Ref. 2. Briefly, these materials consist of weakly
coupled linear chains of alternating metal (M) and halide
(X) atoms. Ligand groups (L) attached to the metals
and, in some cases, counterions between chains, complete
the three-dimensional (3D) crystalline structure —a typ-
ical PtX chain is sketched in Fig. 1. A wide variety of
MX chain complexes, with good crystallinity, can be rel-
atively easily synthesized. Related bimetallic (Mq) com-
plexes, and complexes with other bridging groups, are
also considered to belong to the "MX class" of materials.
For physicists the attraction of the MX chains lies in the
fact that they are a class of quasi-1D compounds where
the competing electron-phonon and electron-electron in-
teractions vary widely, from the valence-localized limit

with strong charge disproportionation of the M sublat-
tice and large structural distortion of the X sublattice
(PtC1 chains) to the valence-delocalized weakly distorted
limit (PtI chains), and also from these charge-density-
wave (CDW) phases to the limit where the lattice is
undistorted and the M sublattice is believed to have an-
tiferromagnetic (AF) or spin-density-wave (SDW) char-
acter (NiBr or NiCl chains). Current synthesis interest
lies in exploiting this materials tunability by varying {in
order of decreasing magnitude of effect) the metal, the
halide, and/or the ligands and counterions, to develop a
systematic sequence of materials which span the entire
range from strong electron-phonon to strong electron-
electron coupling strengths. The synthesis eA'ort is be-
ing undertaken in conjunction with a joint experimental
and theoretical eKort to study the variation of material
properties going between these two limits, and especially
probing the transition through the highly interesting in-
termediate coupling region. We strongly feel that this
many-fronted "making-modeling-measuring" attack, en-
abled by the unique materials tunability of the MX class,
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FIG. 1. X-ray difFraction crystal structure of the PtX ma-
terial [Pt(en)g][Pt(en)Clq) (C104)4, looking down the chains.
There are two equivalent (C10&) rotations and we have ran-
domly chosen one. The atoms are, from darkest to lightest,
Cl, Pt, N, 0, and C.

will lead to an enhanced understanding of the competi-
tion between the electron-phonon and electron-electron
interactions, of fundamental importance to solid state
physics, and especially to electronic materials for device
applications.

A simple 1D, two-band, discrete, tight-binding Peierls-
Hubbard model has proven useful in gaining an under-

standing of the MX materials. 3 In paper I, we com-

pared this model to previous z-filled, efFective one-band

models, and discussed the properties of the two-

band Hamiltonian in the limit of adiabatic phonons
and uncorrelated (U=O) electrons. We used tight-
binding parameters derived from comparison to band

structure and ab initio quantum chemistry calcu-

lations to explain structural, optical, and Raman ab-

sorption data on strongly localized materials, where

the electron-phonon interaction dominates. One par-

ticular success was in obtaining a quantitative fit to
the asymmetric electron and hole polaron absorptions

of [Pt(en)q][Pt(en)qClq] (C104)4 (en=ethylenediamine).

However, since we are interested in understanding the

whale MX class and, in particular, the transition from
electron-phonon interaction dominated materials (e.g. ,

U to in PtC1) to electron-electron interaction domi-

nated materials (e.g. , U —3to in NiBr), the simple U=O
adiabatic analysis is incomplete. In this paper we dis-
cuss what effects we anticipate due to the inclusion of
electron-electron interactions and quantum phonons in
the Peierls-Hubbard model for MX chains, which we in-

tend as a guide to help direct the ongoing experimental
and synthesis efforts on strongly correlated MX com-

plexes.
Beyond this general hope of gaining a better un-

derstanding of competing electron-phonon and electron-
electron interactions, the de/ailed discussion here also has
a broader relevance, in that the same Peierls-Hubbard
model has also been applied to other systems of wide
current interest. For instance, the 1D MX class has
much in common with current modeling of 2D and
3D oxide superconductors. At stoichiometry, both
are nominally 4-filled, hybridized two-band materials in
which both electron-electron (e-e) and electron-phonon
(e-ph) interactions are important —the similarity with
Bai Pb Bios is especially direct. This analogy ex-
tends to electron or hole doping of the broken symme-
try ground states leading to discussion of polarons, bipo-
larons, excitons, and domain walls as self-trapped local
defect states (bags), as well as superlattice and spin-
Peierls phases. Asymmetry between electron and hole
polarons, which we find to exist~~ for the MX chains in
terms of both the characteristic vibrational modes and
the intragap absorption transitions, has been suggested
to be of central importance in some recent studies of
the quasi-2D oxide superconductors. Clearly, the abil-
ity to tune through the transition regions between ground
states is especially interesting in this context. In &-filled
two-band models for charge-transfer salts, the Hubbard
term is again thought to be very important, . Here, strong
lattice coupling is also present. An important question
for these materials is whether the charge disproportion-
ation is in fact driven by the on-site (P) electron-phonon
coupling, or if this is better modeled as being driven by
a large Hubbard V term. i7 This same question has also
been raised in the context of Ba~ Pb Bi03. In gen-
eral, it can be shown, e.g. , by means of unitary trans-
formations that a P-like electron-phonon coupling term
[Eq. (2a) below] gives rise to a contribution to V. i9 This
process is related to the well-known creation of a negative
Hubbard U by strong on-site electron-phonon coupling.
The MX chains have also been modeled by this distance-
dependent electron-electron coupling, ~ as opposed to the
separation into electron-electron and electron-phonon in-
teractions as done here.

Previous investigations" in &-filled, effective one-band
models for the MX materials used the Hartree-Fock (HF)
approximation for the electrons (when electronic cor-
relations were included) and the adiabatic approxima-
tion for the phonons. However, simple one-band mod-
els are problematic even for strongly distorted materi-
als, where naively they should be adequate, as within
a one-band (U=O or Hartree-Fock) context the exper-
imentally observed electron/hole asymmetry cannot be
easily explained without explicitly invoking additional
symmetry-breaking terms. As mentioned above, even
with only simple e-ph couplings and no e-e interactions,
the two-band model demonstrates an electron/hole asym-
metry quantitatively in agreement with experiment. As
one explores —as is our interest —the trend from strongly
localized to more delocalized materials, with decreasing
difference in on-site a%nities between M and X atoms,
effects of the full 4-fi)led, two-band model are increas-
ingly more important, until finally one passes over to
the limit where M and X are degenerate and a "one-
band" model is again valid, but with — filling (and, in



TWO-BAND MODEL FOR HALOGEN-. . . . II. 6437

general, retaining the two different UM x and pM x val-

ues). Further, since fiuctuations are usually important
in one dimension, it is important to test the validity of
adiabatic Hartree-Fock approximation against methods
which handle such fluctuations more exactly. Unfortu-
nately, exact quantum many-body methods for studying
correlated electron-phonon systems are limited in their
ranges of applicability. Quantum Monte Carlo simula-
tions, for example, have provided some results for inter-
mediate strength of electronic correlations and certain
doping regimes: however, applications to two bands have
proven problematical. An exact treatment of the full
quantum-mechanical problem (i.e. , numerically exact de-
termination of eigenenergies and eigenstates) exists for
very small system sizes only.

Thus, to investigate the full two-band tight-binding
Peierls-Hubbard Hamiltonian with which we choose to
model the MX materials, we apply a variety of dif-
ferent exact and approximate (numerical and analyti-
cal) methods to study the effects of electronic correla-
tions and quantum fluctuations of the phonons in or-
der to obtain a more complete qualitative picture, and
compare our tight-binding results to a,b initio quantum
chemistry and band-structure calculations, which
handle the spatial structure of the orbitals, the remaining
electrons, and the 3D structure more realistically. The
methods we use are (I) a full quantum variational prin-
ciple (VAQP) described in Appendix A, (2) perturba-
tion theory for small values of the Hubbard parameters
(PTCP), (3) completely unrestricted Hartree-Fock ap-
proximation (HFCP), and (4) exact diagonalization on
small systems (EDCP) described in Appendix B. One
class of these approaches (PTCP, HFCP, EDCP) disre-
gards the quantum character of the lattice ("classical"
phonons), whereas the other one (VAQP) takes into ac-
count the quantum nature of the lattice by explicitly
including a finite phonon frequency. Though we focus
on the more experimentally relevant adiabatic limit for
general parameters, we consider the antiadiabatic limit
in addition, where quantum lattice phonon eH'ects domi-
nate, to illuminate the properties of VAQP. We also dis-
cuss the zero-hopping (fo——o.=0) limit, which gives use-
ful insight into the behavior of strongly distorted (va-
lence localized) MX chains. For weak to intermediate
e-e correlations, we find that the three classical treat-
ments agree24 25 and thus we report here only EDCP and
VAQP results for the ground state over a wide range of
e-e interaction and quantum lattice phonon fluctuation
strengths, and HFCP results for the eA'ects of U on de-
fect absorptions in the adiabatic limit for experimentally
relevant parameters.

In Sec. II we describe the model and sketch the various
methods we have employed (important technical details
can be found in the Appendixes). In Sec. III we discuss
parameters appropriate to the MX chains. In Sec. IV
we present results for the ground state properties. In
Sec. V we report on HFCP calculations for defect states
and fits to several specific MX materials. In Sec. VI
we summarize our results and the relative advantages of
the various approximation schemes for investigating the
difkrent material properties.

II. MODEL AND METHODS

Taking into account a single orbital per site (the M d, ~

and X p, orbital) and including only nearest-neighbor in-

teractions (but next-nearest-neighbor effective springs),
we use a two-band tight-binding model for an isolated
MX chain as in paper I:

+ —+e ph + He-e + Hph

where

H, &h
——) ([—&p+ n(xI+1 —zl)] cI+»cI, + H.c.}

l, s

+) [&I Pl(&I+I &l-l)] &I (2a)
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' ~+ It ) -(il+i —Zl)
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Here cl, (cl, ) are Fermion creation (destruction) opera-

tors describing electrons

(cist c7'e} —bl7'~so& (cls i c ~ }= 0) &I = clyclt + cltclg&t . . (t) (t)

and i~ and P~ are boson operators describing the vibronic
(or oscillatory) degrees of freedom ([iI, P7]=ihSI&).
We use the convention that M atoms sit on even
sites, X atoms on odd sites, and typically employ
periodic-boundary conditions, though we have consid-
ered boundary-condition dependence. We also typically
measure lengths in A, momenta in sec jcmeV and ener-
gies in eV, when not using dimensionless values. The
parameters of the model are the electron hopping in-
tegral between adjacent M and X sites (to), the dif-
ference between metal and halogen electron afBnities
(sl = [sx=—e0, 6'M=+eo]), an on-site (pl

——[px, pM])
and intersite (n) electron-phonon coupling, on-site (Ul =
[Ux, UM]) and intersite (V) electron-electron repulsion,
the masses of the M and X atoms (Mi —[Mx, MM]),
and finally effective metal-halogen (I~) and metal-metal
(I&MM) springs which model the elements of the struc-
ture not explicitly included, such as the core electron
repulsion and the ligand-ligand interaction. The model
parameters are shown schematically in Fig. 2 of I. At sto-
ichiometry there are three electrons per MX unit —i.e. ,

4 filling.
At this point we have not included second-neighbor

terms or longer-range Coulomb interactions in the Hamil-
tonian as we do not believe they are qualitatively impor-
tant (based on preliminary investigation2s of the effects of
such terms), although they may be necessary for detailed
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quantitative fits to experiment on a given material, par-
ticularly one with strong disproportionation, e.g. , PtCl.

Equilibrium displacements from uniform lattice spac-
ing are given by Ai —(xi+i —zi ). Within the adiabatic
approaches, the self-consistent lattice distortion is found
iteratively from

0 = (bH, ph/bar)(A„") + (baph jb4e)(&"„' )
Defect configurations are calculated by adding or sub-
tracting electrons from a neutral chain of length 4N (or
4%+ 2 for solitons) and adiabatically relaxing the lattice
to the new ground state. Optical-absorption spectra are
calculated from the Fermi golden rule

(4)

where f, i denotes the final and initial states and

J = t ) ( to + (—14r)(c& et+i~ —c&+i cr~)

and Lorentzian broadened. HFCP calculations were typ-
ically done on lattices of 100 sites, though for the more
delocalized materials lattices of up to 400 sites were used
as needed to remove most of the artificial oscillations in
the spectra introduced by this procedure.

The details of the VAMP and EDCP approaches to
solve the above Hamiltonian are very interesting but
mainly technical, therefore they are summarized in Ap-
pendixes A and B, respectively. Note that EDCP can be
viewed as a variational treatment, and thus comparison
of energies obtained using EDCP and VAMP methods
(with the zero-point energy subtracted) is a measure of
the importance of correctly treating e-e correlations and
ignoring the quantum nature of the phonons vs map-
ping e-e correlations to e-ph coupling terms and includ-

ing quantum lattice phonons. In order to facilitate this
comparison with EDCP, we have limited the VAMP to
small system sizes, though the VAMP can, in general,
be solved numerically on quite large system sizes. The
PTCP, where e-e interactions are treated in second-order
perturbation theory, is a standard technique, and we do
not describe it further here. HFCP, where the many-body
terms are replaced with the averages based on Wick's the-

orem, while also fairly standard, we review in Appendix C
for the purposes of definiteness. For small to intermediate
U, we find agreement of EDCP and HFCP calculations
to be excellent (for both ground and defect state struc-
ture and optical absorption). This is a consequence of the

~ filling in a CDW regime and is to be contrasted with
the 2-filled one-band case, where it is well known that
e-e correlations are not adequately described in HF ap-
proximation. Because of the agreement between HFCP
and EDCF, we expect the trends discussed in paper I
to hold equally well for small to intermediate U. For a
given set of parameters with U g 0, within HF approx-
imation one can define HF effective U = 0 parameters
which give the identical ground-state band structure and
charge densities as the parameters with U g 0. This
mapping of parameters is given in Table I. Note how-
ever, the defect absorptions and lattice dynamics pre-
dicted within HFCP for finite U do nof agree with the
predictions from the HF effective U = 0 parameters, as
discussed below. Also listed in Table I are the effective
one-band parameters, for easier comparison to previous
work within the one-band scheme, and our definition of
dimensionless parameters, important to remove the triv-
ial scalings for parameter space investigation.

III. DETERMINATION OF PARAMETERS
FOR MX' CHAINS

In the spirit of our "making-modeling-measuring" at-
tack, we have attempted to determine parameters for
the MX materials from comparison with band-structure
calculations in local-density approximation with self-
interaction correction (LDA-SIC) appropriate for more
delocalized materials, and ab initio quantum chemistry
calculationsii on small clusters (including ligands) ap-
propriate to the highly valence localized limit, with min-
imal input from ground-state experimental data (such as
the measured lattice distortion amplitude). These calcu-
lations were performed at the experimental geometry as
well as nearby geometries to allow determination of the
distance dependent (electron-phonon) and independent
(single electron and electron-electron) tight-binding pa-
rameters in Eq. (1). The effective M-X spring constant
was then determined by requiring these parameters to
satisfy the self-consistency condition Eq. (3). We fur-

ther checked that the predicted ground-state properties

TABLE I. (a) Model parameters, (b) the corresponding dimensionless parameters, (c) the effec-
tive one-band parameters for large e&& (Ref. 28), and (d) the effective U=o parameters that give the
same band structure as the bare parameters with U, assuming a CDW. Here pM~x~ is the average
charge on the M(X) sites, and 2bpM is the difference in charge of the inequivalent metal atoms.
Note that the entire two-band phase diagram for positive P and eo maps into only the CDW part
of the one-band phase diagram, but U can cause a negative P, reintroducing the BOW phase.
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TABLE II. Parameters for the Pt materials from comparison to ab initio calculations (Ref. 11).
These numbers are scaled to match ground-state experimental data (optical gap, lattice distortion
amplitude) on PtCl (Refs. 3 and 12), as the IVO (improved virtual orbital) corrections to the ab

initio calculations are still in progress. These numbers are to be interpreted as effective U = 0

mean-field values. The difference in the two sets is most likely due to the neglected Hubbard U

reducing P.

MX eo/2to PM/2a' Kto/2a nD/to E s/2t 0 D (A)

From comparison to ab initio without IVO, A', and gap energy E~ calculated

Eg (eV)

Ptel
PtBr
PtI

0.27
0.19
0.10

0.16
0.17
0.20

1.59
1.84
2.40

0.15
0.11
0.06

0.27
0.20
0.12

0.38
0.29
0.18

2.5
1.9
1.1

Scaled to experiment on PtCl (Ref. 12)

PtC1
PtBr
PtI

0.3
0.2
0.1

0.030
0.035
0.040

0.52
0.69
1.02

0.6
0.4
0.2

0.81
0.58
0.30

0.38
0.24
0.14

2.5
1.5
1.2

such as the optical gap and band widths and separation
between M and X bands agreed with the experimen-
tal inter-valence-charge transfer (IVCT) band edge and
width and the cr(C1) -+ do' absorption for the oxidized
monomer in solution (or the difference in electron affini-
ties of the constituent M and X), respectively, to the
extent that these have been measured. In cases where
the theoretical calculations have not been performed, we

also used these experimental ground-state data to help
determine parameters.

Our current best estimates are shown in Tables II and
III. Note that for CDW materials, this parametrization
is insensitive to I&stM and Px. The success of these
parameters is judged by how well other material proper-
ties are predicted, both ground state, such as the ir and
Raman-active phonon modes, and excited state, such as
the location of intragap absorptions due to electron and
hole polarons, again to the extent that these have been
measured. As discussed in paper I, the predicted opti-
cal absorptions for U = 0 are relatively insensitive to
exact parameters for KMM & I&, with the degree of
distortion (nA/t) apparently being the controlling fac-
tor in determining the spectra. Thus, for simplicity, we

use I&MM=oo when phonon frequencies are not explic-
itly considered. We find roughly a "factor-of-2" agree-
ment between parameters determined by different the-
oretical schemes and the parameters chosen to best fit
experiment, which we feel at this stage is encouraging.
In paper I, we discuss how these fits lead to the HF ef-
fective U = 0 parameters modeling PtC1: to —1.6 eV,
n = 2.4 eV/A. , eo ——0.96 eV, Pst = 0.16 eV/A, and
K = 3.9 eV/Az. In dimensionless notation (see Table I),
this corresponds to to ——0.5, n = 0.5, eo ——0.3, P = 0.03,
K = 0.5, and 6 = 0.6. Since the HF scaling back to the
bare parameters increases P and K, to investigate the
U dependence of a "typical" strongly distorted material,
we have also used the following parameter set: to ——0.5,
n = 0.5, es ——0.6, P = 0.3, I& = 1.0, and 6 = 0.5. In
general, for the Pt materials, we expect the Hubbard U
to be in the range 1—2 eV. For the Pd materials, we
expect only eo to decrease. Finally, for the Ni materials,
we expect roughly tN; 2tp&, eN; 0, and UN; 3tN;.
The expected trends for n and P are a priori unclear,
and, until the band structure and ab initio calculations
are complete, we use the Pt values, scaled as to scales
(nN; npttN;/tpt). We note for the NiX parameters

TABLE III. Parameters from comparison to band-structure calculations (Refs. 9 and 10) on Ni
materials. The method used to extract the Hubbard U from the SIC-LDA calculations is the same
as used for the oxide superconductors (Ref. 10). The values for n, P, and K were taken from the
corresponding Pt material, scaled as ts scales. The efFective PtCl and PtBr parameters (arbitrarily)
adjusted to U~ = ts/2, are included for ease of comparison. The optical gap is the experimental
value (Ref. 29), and does not agree with the gap calculated in HFCP (see text).

MX
P tCl
PtBr
PtI

Eg
(eV)
2.5
1.5
1.2

Ap
(A.)
0.38
0.24
0.15

Cp

(eV)
1.54
1.30
1.99

(eV/A)
2.38
2.17
2.65

ep

(eV)
0.66
0.29
0.04

PM
(eV/A. )

0.44
0.49
0.78

+MX
(eV/A2)

4 4
5.7
8.5

UM

(eV)
0.77
0.65
1.00

Ux
(eV)

NiCl
NiBr

1.9
1.3

1.05
0.95

1.62
1.59

0.48
0.51

1.19
1.52

5.6
7.9

2.7
2.6

1.6
1.1
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listed in Table III, that the predicted optical gaps within
HFCP do not agree with the experimentally reported val-

ues listed in the table. z Comparison with EDCP also
indicates the HFCP gap is a factor of 2 too large even if
the parameters were correct. For the listed values of UM
and Ux, it is difficult to obtain a larger gap for NiC1 for
roughly equal values of eo as is indicated by the band-
structure calculation. Without further theoretical guid-
ance, and since some open questions remain in the inter-
pretation of the experimental spectra, we feel it best to
consider the parameters listed as representative values.

More detailed parameter determination is underway ss

including calculation of vibrational information (e.g. , LO
phonon-mode frequency) to compare with infrared and
Raman data. Of course, the Raman-active X-X stretch
will also be insensitive to KMM and Px. The exact values
of these parameters are however important in the ground
state when calculating the (ir active) modes involving
movement of the metal atoms:

M~+-X M~~X and M~ X ~M X.
We fully expect the numbers in Tables II and III to
change as the ab initio and band-structure calculations
are refined. In particular, the IVO (improved virtual
orbital) corrections, which correct excited states for e-e
correlations, were not included in the ab initio calcula-
tions we compare to here, and the band-structure calcu-
lations have not yet been done on the Pd materials or
chains with non-neutral ligands. Further, a 1D band-
structure technique is under development which incor-
porates some ab initio features and which should be more
reliable for these quasi-10 materials.

regime. In the following discussion of the ground states
we have also set IYMM ——0, as we are interested in ex-
ploring the possibility of ground-state phases [e.g. , BOW
(bond-order wave), long-period] besides the (experimen-
tally observed) commensurate period four CDW and
SDW or AF ground-state phases, on which the value
of I&MM has no effect. (As noted above, the value of
the metal-metal spring is very important when consid-
ering excitations from these phases, or certain ir active
phonon modes. ) The ground-state phase diagram in the
absence of electron-electron correlations and quantum
phonon fluctuations was discussed in paper I. Note that,
in our notation, CDW, SDW, and BOW refer to the M
atoms. In the CDW (BOW) phase, the X atoms ex-
hibit a BOW (CDW). The antiferromagnetic (AF) phase
is found only in EDCP, and corresponds to the "mean-
field" SDW phase found by the other techniques; for
purposes of general discussion we take "SDW" to mean
both, though of course a truly 1D system cannot exhibit
a full broken-symmetry SDW. Further, strong antiferro-
magnetic correlations can existsz in both the CDW and
BOW phases, and these might be better interpreted as
"spin-Peierls" phases in a generalized sense.

A. Antiadiabatic limit

Though the limit of large phonon frequencies is not rel-
evant for the description of current experimental results
on MX complexes, it helps to illuminate very general as-
pects of our model and methods, especially the VAQP—
relevant for other materials and perhaps also in transition
regions for MX chains.

IV. GROUND-STATE PROPERTIES

We have studied the effects of including electron-
electron correlations on the ground-state lattice distor-
tion in both the antiadiabatic limit, where the quan-
tum nature of the lattice phonons dominates, and in
the more experimentally relevant adiabatic limit where
the quantum nature of the lattice can be ignored. We
also discuss the zero-hopping limit (to —n = 0), which
gives useful insight into the behavior of those MX chains
which fall into the strongly distorted, valence-localized

I

X. Zem mass

To gain insight into the interplay between electron-
phonon and electron-electron interaction, we examine the
partition function of our model

Z = Tr exp( —PH) . (6)

The trace over the phonon part may be written as a path
integral. In the (unphysical) limit of zero masses of the
M and X atoms, we have for Z

Z=Tr Bbi 7 Bb~7 exp — d7 bi 7 +bi~It +H,
r( 2

where 0, denotes the pure electronic part of the Hamil-
tonian and Ii is given by

Il —CkBl, l+i (PIAl + Pl+iAI+i)

Z, =Trexp —P H, — ) I,
2I&

with

Bric, =
~

c,c, ct, +H.c.) .+ s

Interpreting this result as de6ning an effective Hamilto-
nian for the electronic degrees of freedom, we see that
it possesses both renormalized electronic model parame-
ters

In this case the phonon degrees of freedom may be inte-
grated out to yield an effective electronic contribution to
Z

2 2Uelr U p2
K
1

~i' = V — .PlPl+i-K

(11a)

(11b)
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sl = (—1) « —
q~pl

ea (1lc)
E'

20 ~ ~ ~ I ~ ~ e I ~ T
I ~ ~ ~

and additional types of electronic interaction terms act-
ing like an attractive bond-bond interaction, 1.0

W 21' / ~ l, l+&& (lid)
0.0

and a density dependent hopping that breaks the particle
hole symmetry, I 0 ~ \ I ~ ~ ~ I ~ ~ ~

) [ +l,1+1(P!nI + Pl+1 nI+1)
2I&

+(P«I + pl+1 nI+1)+I,I+1] (11e)

Summarizing, we see that, in this antiadiabatic regime
the ofF-diagonal electron-phonon interaction (modeled by
Ir) is responsible for an attractive electronic bond-bond
interaction HII~v and (in conjunction with Pl) for a mod-
ified so-called "X term, " Hx'. The latter result might
be of general importance in a 2D version of our model for
the mediation of superconducting pairing by a Coulomb
interaction between an atomic charge and a bond charge
formed by the overlap of two orbitals on neighboring sites
(compare Ref. 35, where a phononless two-band model is

treated) .
The renormalization of the electronic parameters is

intriguing, since it could lead to bipolaronic pair-
ing depending on the strength of the e-ph coupling
parameters. The on-site electron-phonon coupling
(modeled by pl) mimics an attractive (negative) Hub-
bard U, and a Hubbard V. The additional V term in
Eq. (lib) is always attractive for site-independent PI. In
case of a large staggered p [pI oc (—1)'], a repulsive V'
is combined with an attractive U'+. Note that processes
creating an effective negative U (e.g. , strong electron-
phonon coupling or nonlinear screening in combination
with intrinsic electronic properties, respectively) have
been proposed for driving electron pairing in the oxide
superconductors. Finally, we see that the ionization
potential sI is lowered by pI, independent of the sign of

l ~

8. Small bet Pnite mass

To study the antiadiabatic limit (limit of large u'
where u' is the phonon frequency defined in Appendix A)
using the VAQP approach described in Appendix A, we
measure all energies in units of h~'. For our model cal-
culations we use the following scaled parameters: t0 ——

to/(&~'), ~' = ~(r~ 4f')-»', P' = P(P~ 4f )-1~&,
It" = It/(4f'), U,

' = U/(her'), sI = (—I)leo/(h~').
Fixing t0 ——0.5 in these units, taking into account the
experimental value of 3.1 eV for t0, and recalling from
Appendix A that u' = f'/rn', if the scaling force con-
stant, f' is chosen to be 4.8 eV/A, then the effective
mass rn'=2MMMx/(MM + Mx) approximately equals
the mass of an electron.

Figure 2 shows the upper bound to the true (quantum)
ground-state energy per lattice site obtained by EDCP

0 1 2 3 4
U'

FIG. 2. The upper bound to the true (quantum) ground-
state energy per lattice site as a function of Hubbard U, ob-
tained by EDCP (solid) and by the quantum phonon varia-
tional approach (VAMP), (dash-dotted), using equal M and
X masses in the antiadiabatic limit. The curves shown are
for an eight-site system with to ——0.5, 6 = 0.5, A = 1.0,
KMM = 0., P = 0.1, and ep = 1.0 (curve pair a) and eo ——0.1
(curve pair h). The zero-point energy Ep was subtracted.

(dash-dotted) and by the VAQP (solid) for two values
of site-independent p, using equal M and X masses in
this antiadiabatic limit. The zero-point energy was sub-
tracted. Note that the EDCP variational results do not
depend on the mass ratio of M and X atoms. We found
that for small values of U, the VAQP always yields a
lower bound than the EDCP, 1.e., the VAQP gives a quan-
tum gain in this region. For fixed to, cr, and small P, the
point where the two curves intersect moves to higher val-
ues of U with increasing ionization potential e0, indicat-
ing that the quality of the VAQP, compared to the EDCP
bound, increases with e0. In addition, the relative dis-
tance between the two bounds decreases with increasing
eo, as can be seen by a comparison of the curve pairs (a)
and (b) in Fig. 2. For reasonably small values of the Hub-
bard U, a CDW state exists with decreasing amplitude as
a function of increasing U. In Fig. 3(a), the CDW ampli-
tudes obtained by HFCP, PTCP, and EDCP (adiabatic
cases) are compared to the antiadiabatic limit obtained
by VAQP for 12 lattice sites. The reduction of the VAQP-
CDW amplitude even at U = 0—with respect to the
other approaches —is due to the large phonon frequency.
Figure 3(b) shows the corresponding absolute quantum
gain of VAQP compared to EDCP (EE'), i.e., the difFer-
ence of both energy bounds. This difference is positive
for 0 & U' g 2 and shows a maximum near U' = 0.5
and goes to 0 for growing intermediate U' indicating
the relevance of quantum effects within our VAQP for
small and intermediate values of U' only. Since the abso-
lute quantum gain b,E' depends on the actual size of the
energies and hence on scaling, the relative quantum gain
q is platted in Fig. 3(c) (defined as b,E' divided by the
mean value of the corresponding energies). The conclu-
sions obtained from Fig. 3(b) are equally valid. Figure 4
shows the system size dependence of the CDW amplitude
4 obtained by VAQP. (Larger system sizes are accessible
using VAQP, but we restrict ourselves here to sizes ac-
cessible by EDCP to facilitate comparison. ) The drop of
the CDW amplitude to zero steepens with increasing sys-
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FIG. 6. The total VAMP energy per lattice site as a func-
tion of o'0 for U = 0 and N = 8 (solid), N = 12 (dash-dotted).
Other parameters are to ——0.5, o' = 0.5, eo ——0.1, P' = 0.1,
A'' = 1.0, KMM —0 (same parameters as curve b of Fig. 2).

FIG. 8. The VAMP CDW-displacement amplitude 6 as
a function of oo for N = 12, and U = 0.0 (solid), U = 0.1
(dash-dotted). Other parameters as in Fig. 6.

fects can be ignored and the material is in the strongly-
distorted valence-trapped regime, as is the case for PtCl.
Again, for the discussion here, we have set the metal-
metal spring to zero to investigate most generally the
possibility of other phases. The competition (see above
discussion of the antiadiabatic limit) between the on-site
electron-phonon coupling (p) and the Hubbard terms (U,
U) remains:

H-~ = ) . si —A(&l + &I i) ni

+ ) Ul rll 1rllt + ) U rIIrll+1 + —It )
r l 1

The Hamiltonian is now site-diagonal, and may be easily
minimized, yielding the following phases.

a. Period g. While a priori there is no reason to
rule out the existence of nonperiod 4 ground states, we
first constrain the ground state solution to be period 4
or lower. This, of course, includes the possibility of a
phase of no distortion. This situation is easily investi-
gated in the zero-hopping limit, as the eigenstates are
fully described by the occupancy of the Wannier orbital
at each site. The possible period-4 phases for V = 0 are
listed in Table IV. We have used both MACSYMA and
MATHEMATICA to investigate the phase diagr am,

shown in Fig. 9. We find that at fixed P&2/Iieo and
PM/I&en, for small to intermediate values of VM and
Ux the CDW phase is favored, in agreement with the
observed behavior of the majority of the known MX
materials. For larger values of U~ or U~ the system
is undistorted and shows antiferromagnetic behavior on
the M (MAF) or X (XAF) sublattices, respectively
(XMXM = f$ g ]'1 f or $]'g

)fan

. ), in
agreement with the recent synthesis of undistorted, an-
tiferromagnetic MX materials. For small U~, the
transition from the CDW to the undistorted phase takes
place at UM 2PM/Ix. —The ground state is a BOW for
negative values of UM only. (Reversing the sign of eo
interchanges the roles, or definitions, of the CDW and
the BOW phases. ) Note that, since UM ) 0, the two-
band model predicts that the BOW phase will not be
observed, in agreement with the lack of observation of
BOW Mx materials. ~ This is to be contrasted with ef-
fective 2-filled one-band models, where the BOW phase
would be expected to occupy a substantial portion of the
phase diagram (if one-band parameters are not derived
from the two-band model), which thus cannot explain the
experimental lack of BOW phase materials.

b. Long period. While Peierls's theorem guarantees
that a commensurate distortion is lower in energy than
no distortion in ID electron-phonon coupled systems, it
does not exclude the possibility that an incommensurate
distortion will be even lower in energy. Interestingly, for

E'
-0.63

-0.64

-0.65

-0.66

-0.67

I I
~ I I

I
~ ~ I ~

I
~ I

I
~ I ~ ~

TABLE IV. The charge configurations in real space and
energies of the period-4 phases in the zero-hopping limit for
V = 0. Here uIII, ~ = Um x/eo and b = (PM, x) /(Keo)
The unpaired electron may have either spin up or down, but
for nonzero to, the corresponding 1D antiferromagnetic phase
(SDW in HFCP) is found.

-0.68

-0.69 ~ I ~ I ~ ~ ~ ~ I I I I ~ I ~
I

a

FIG. 7. Same as Fig. 6, but for U = 0.1 and a 16-site
system.

MAF
XAF
CDW
BOW
MIX

XMXM
2121
1212
2220
2202
2211

2E4/(ep N)
u~ —1
e +1
u —1+u /2 —b

u +1+u /2 —b

u. /2 —b./4+u /2 —b /4
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FIG. 11. The relative quantum gain of VAMP with respect
to EDCP [defined as in Fig. 3(c) for ( 0.1]. Parameters used
are tp —3.1 eV, n = 2.7 eV/A, ep ——3.6 eV, pM ——1.6 eV/A,
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are interested in selecting a mass ratio which charac-
terizes a real MX material, like PtBr. For our model
calculations we used op —m'/mx = 1.66 and, conse-
quently, m*/mM ——0.34, which is about the real mass
ratio when X=Br and M=Pt. VVe choose the scaling
force constant f' [Eq. (All)] to be equal to 2I&. Using
tp ——3.1 eV, these values lead to ( = 2tp/(h~*) 360.
Note that ( is the only u'-dependent factor in the func-
tional (II) after introducing dimensionless variational
parameters A~, a'/(tpm"u')s Wtcr/(tpm'pJ'), and u~n/tp
[Eqs. (Alb) and (Agc)]. Since ( oc gm', varying this
quantity is equivalent to varying the total mass of a
MX unit (isotope effect at constant mass ratio), where
we shall refer to ( as an adiabaticity parameter: It is
known from small polaron theory as the characteristic
energy ratio. There a ( ( 1 is required. To study the
connection between a real value of u" (i.e. , ( = 360)
and the antiadiabatic limit of large ~ (i.e. , ( small),
we varied ( between 0.1 and 360. We used the param-
eter set tp —3.1 eV, n=2.7 eV/A, ep ——3.6 eV, PM ——1.6
eV/A. , P~ = —0.8 eV/A. , It =4.8 eV/A2. In dimensionless
notation (Table I), this is ep/(2tp)=0. 6, PM/(2cr)=0. 3,
px j(2n)= —0.15, Iitp/(2n )=1. As in Sec. IVA2 we
found that for very small ( and not too large U, the
VAQP yields a lower bound for the ground-state energy
than the EDCP. The antiadiabatic regime is described

FIG. 13. An enlargement of the dip region of Fig. 12.

by ( 0.1, where VAQP is below EDCP almost up
to U 7.2. The relative quantum gain, defined as in
Fig. 3(c), is shown for the antiadiabatic region in Fig. 11.
Figure 12 demonstrates the behavior of VAQP away from
the antiadiabatic region. The value of the VAQP energy
bound approaches the value obtained by EDCP at U=O
for small phonon frequencies, as expected since, for U=o
and g=oo, the two approaches are the same. However,
for finite U and larger phonon frequencies the VAQP lies
above the EDCP. As U approaches 0 from above, the dif-
ference remains large until very close to U = 0, where the
VAQP energy dips steeply to the EDCP value at U=O.
The width of this dip decreases rapidly with increasing
total mass. Figure 13 shows an enlargement of the dip
region of Fig. 12.

In Fig. 14, we compare the expectation value of
the VAQP lattice displacement amplitude, ( Al )
(@((z&+i —zi)[4') [where

~
i') is defined in Eq. (A6)] to

the classical value found by EDCP as a function of U on
eight-site systems for several ( between 0.1 and 360. For
all (, a pure CDW is found at U=O by both methods. For
finite U, (6) is substantially reduced by quantum lat-
tice phonons, and shows a steep drop to a predominantly
AF phase at smaller U than b, as found by EDCP does.
Again the influence of quantum fluctuations contained
in the VAQP removes the BOW phase, found by EDCP
near U = 0.88. It is interesting to note that the EDCP-
CDW amplitude (recall EDCP is an adiabatic treatment)
drops to a phase of no distortion near U = 1, whereas

s06 s ~ ~ ~
J

s s s s

0.4
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-0.4
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~ ~ s I s ~ s I ~0.8 s

0.0 0.2 0.4

~ s I s ~ s I s ~ ~
s s
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U'
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C

I

I a

b ':.

I
s

0.5 1.0
Ui

FIG. 12. The upper bound to the ground state energy as a
function of Hubbard U, obtained by EDCP (solid) and VAMP
for g 0.1 (dotted), ( 1 (dashed), $ 10, (dash-dotted),
( 360, (dash-triple-dotted). Other parameters as in Fig. 11.

FIG. 14. Average QPVA lattice displacement amplitude,
(b ), in comparison to the classical value found by EDCP
(solid) on 8 sites with periodic-boundary conditions, for
ep/2'tp=0. 6, Par/2m=0. 3s P»= —2PM, Ktp/2n =1, and (a)
/=0. 1, (b) (=10, and (c) (=360.
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FIG. 15. (a) Total electronic VAMP density per site (4 ( n~
~
@) = (4

~
n~I + n(J

~
4) (circles) and expectation value of

the z-component of the spin operator at site I (S&') (diamonds) for ( = 0.1 and U = 0.4, (b) same as (a) but for U = 0.6, (c)
difFerence (@( An~ [ @) of (4'

( nt ( @) at U = 0 and at U = 8.0 (full circles) U = 0.6 (open circles) U = 0.4 (triangles) and
( = 0.1, (d) difference (ASt') of (S~') at U = 0 and at U = 8.0 (full circles) U = 0.6 (open circles) U = 0.4 (triangles) and

( = 0.1.

in the adiabatic regime the VAQP approach finds a tran-
sition to a mixed CDW/SDW phase out to quite large
U values, though the amplitude of the CDW becomes
very small. As U approaches infinity, the VAQP appears
to approach the &-filled SDW-Heisenberg limit, i.e. , the
X sites, with lower on-site energy, are doubly occupied
whereas the M sites are singly occupied and show anti-
ferromagnetic order. Within this mixed phase, we find a
drop of the VAQP-CDW amplitude near U = 0.4 which
is slightly ( dependent (for ( ) 1). For ( & 1 the U = 0
value of E equals that of the EDCP result; for ( ( 1
it is lower (i.e., reduced by quantum fluctuations). In
the adiabatic region the VAQP-CDW lattice amplitude
drops from its U = 0 value to a smaller one within an U
interval which narrows as a function of (.

Figures 15 and 16 demonstrate both the total elec-
tronic VAQP density ( 4

~
n~ =—( 4

) (nI1 + n&I ) )
4 ) (cir-

cles) and the expectation value of the z component of the
spin operator (S&' ) = (4

~ (n~1 —nI1) ~
4) (diamonds)

as a function of lattice sites for the same ( values as in
Fig. 14 and various values of U. The transition from
pure CDW character at small U to mixed CDW/SDW
("spin-Peierls") character for larger U is evident. Fig-
ures 15(a) and 15(b) show the CDW behavior and the
mixed CDW/SDW phase near the transition region for
( = 1. Note that this transition is connected to the jump
of the CDW amplitude near U=0.5 in Fig. 14 (symme-
try change). Figures 15(c) and 15(d) show the deviation
of (4

~
nI and (SI'), respectively, from their U=O be-

havior for several values of U. This deviation is largest
for the largest U shown. Figure 16(a) demonstrates the
effect of varying ( on the total electronic VAQP density
for U = 1.0. One finds that the adiabatic region begins
as low as ( = 10, since the densities are essentially in-

dependent of ( for ( values larger than this. The same
effect on (SI' ) can be seen in Fig. 16(b). This behavior
is found to be similar for larger U values.

In the EDCP approach, no average magnetization is

(a)
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FIG. 16. (a) (4'( n~
~
4 ), and (b) (S&*), as a function of the lattice sites for $ = 360 (full circles) and $ = 0.1 (open circles).



45 TWO-BAND MODEL FOR HALOGEN-. . . . II.

found, but the spin-spin correlation functions are non-

zero, even at U=O, with antiferromagnetic correlations
between neighboring MM, MX, and XX sites. As a
function of 6, one finds a transition from the 4 = 0
phase with dominant MM antiferromagnetic correlations
to the large 4 phase where the XX antiferromagnetic
interaction dominates, accompanied by a reduction of
the average X occupancy. This agrees with the tran-
sition seen in the VAQP approach (and the HFCP ap-

proach), but leads to an interesting reinterpretation in

terms of frustration. ss Viewed in this fashion, it is rea-

sonable that the competition between the effective NN

and NNN spin interactions ("JMx","JM~","Jxx") is

a second driving mechanism for long-period phases at
commensurate filling, and in fact evidence of this mech-

anism driving such long-period phases has been found in
our preliminary investigations. The importance of com-

peting spin interactions in the presence of lattice distor-
tions (spin-Peierls phases), with the concomitant poten-
tial for inducing pairing as an alternate pathway to long-
period phases, is also interesting in the context of the
oxide superconductors; indeed, spin-Peierls mechanisms
for driving the superconductivity have been previously
discussed. 4~

2. Other adiabatic methods

The HF correction to the total energy can be similarly
rewritten, and we find U = 0 effective parameters as
shown in Table I. Thus we can apply the U = 0 analysis
of the phase diagram from paper I directly, noting that
the efFective parameters can have negative P, and so the
possibility of a BOW phase for small AMM is recovered.
Numerical investigation using HFCP and EDCP shows
that a transition to a BOW phase as U is increased can
indeed occur before the lattice distortion vanishes. How-
ever, at least for some parameters, this is a small system
size effect.

Within HFCP we have also looked at the predicted fre-
quencies for the adiabatic phonon modes of the ground
state, focusing on the q = 0 Raman (R) and infrared (ir)
active modes (M-M and X-X in-phase and out-of-phase
vibrations). In particular, the R active X-X out o-f p-hase

stretch mode corresponds to oscillations of the CDW lat-
tice distortion order parameter. While detailed studies
of the trends and the comparison to experimental values
is not complete, we note that for the PtCl parameters of
Table II, the predicted frequencies are roughly 20%%uo too
small, though with finite U, such as the parameters scaled
to U~ ——0.5to in Table III, better agreement can be ob-
tained. (The phonon frequencies are not invariant under
the mapping of Table I.) For PtI, the U = 0 parameters
give good agreement with the experimental frequencies.

The EDCP ground state was reviewed above in com-

parison to the VAQP; we do not reiterate those results
here. Further, the HFCP, PTCP, and EDCP results for
the ground state agree within the ranges where the HFCP
and PTCP are valid (as can be seen, e.g. , from the agree-
ment in Fig. 3). For the ground state in HFCP we can
define U = 0 effective parameters which yield the iden-
tical HFCP ground state as U g 0. Briefly, for CDW,
BOW, or SDW distortions, we can, in general, write

A(t) = d» ccc (
—

E) —sin (
—

E)

+dM cos —S + sin

p(&) = (pM + px)/2+ (—I)'(p —p )/2

+bpMcos —g + bp~sin (13)

( )c ~t
Ucc»M —U» p»

)

l
—

I
PM—

—
I
Px-

l
U Spx& . (~ '~

12dMsinl 2~ I &e,y (14)) l2).

For the CDW, the lattice distortion amplitude is 4 = d~,
bpx = 0, and (pM +px) = 3. If we insert these formulas
into the Hamiltonian and assume p is spin independent
(AF but not pure SDW phases are still allowed), we can
rewrite the on-site terms as

V. DEFECT STATES: TRENDS
IN THE MX' MATERIALS

We now turn to considering the properties of intrinsic
defects (polarons, bipolarons, and kinks) in the ground-
state phases discussed above, caused by doping and/or,
for kinks, topology. We describe the systematics of going
from the strongly distorted charge-density-wave limit to
the undistorted spin-density-wave limit in comparison to
the experimental variation in the PtC1, PtBr, and PtI
and the NiC1 and NiBr series. (We are not aware of any
reports of synthesis of NiI complexes. ) A brief report of
the systematics of increasing delocalization in compari-
son to the experimental variation in the PtX series may
be found in Ref. 43, as well as a detailed report of the
U = 0 systematics in paper I.

As noted above, the U = 0 effective parameters we de-
fine in Table I give the same band-structure and charge
densities as U E 0 for the CDW ground state; the pre-
dicted absorptions for defect states, however, are differ-
ent, and thus the U = 0 defect results in paper I cannot
be simply interpreted as at an effective finite U. However,
this does not imply that HFCP results do not capture the
flavor of e-e correlations, but merely that local states are
affected more strongly by e-e interactions than delocal-
ized band states. As demonstrated in Fig. 17, the agree-
ment between predicted absorption spectra in HFCP and
EDCP out to intermediate values of the e-e correlations
is excellent. The above ground-state analysis also indi-
cates that QP corrections, as far as they are contained
in our VAQP treatment, can be expected to be not ex-
tremely important for a description of the ground state
properties of the MX materials. In fact, we find for the
parameter region in which many of these materials are
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FIG. 17. Comparison of P absorptions calculated by

EDCP (solid) and HFCP (dotted) on a 12-site ring for

parameters with intermediate correlation strength: to ——0.5,
o=0.5, co=0.6, PM=0. 3, Px=—0.15, K=1.0, KMM=oo, and

UM=UX=0. 2. The three polaron peaks below the IVCT gap
(at 0.8) are clearly visible, though the "bands" consist of
only a few (Lorentzian broadened) lines.

FIG. 18. UM dependence of the optical absorption of elec-
tron (dashed) and hole (solid) polarons for co=0.6, PM=0.3,
AMM ——oo, and 6=0.6 at UM=U~ ——0. The scaling in Table I
was used to remove effects of increasing UM on the band.

believed to lie, U/Io & I and ( » 0, all methods (HFCP,
EDCP, PTCP, and VAMP) agree. Thus, and since the
EDCP method is limited to relatively small systems (at
most 20 sites at &4 filling), where finite-size effects tend
to obscure the defect state properties, we focus here on
results obtained within the HFCP method, calculated as
described in Sec. II and Appendix C. We show below
that the qualitative behavior predicted in HF approxi-
mation as the materials become more delocalized is not
significantly altered at small to intermediate U from that
at U = 0 discussed in paper I, as long as the lattice dis-
tortion amplitude is not too small. With the introduction
of e-e correlations, we have however the additional pos-
sibility of the competing SDW phase and its attendant
excitations, discussed in Sec. V C below, where EDCP
treatment may prove essential.

The discussion here is more relevant for the PtI (in-
termediate e-ph) materials, whereas the PtC1 (strong e-

ph) materials were well described by the U = 0 analysis
of paper I. We expect the Pd materials will also lie in
the intermediate e-e/e-ph region where HFCP may still
be reliably used, since experimentally they tend to ex-
hibit a small degree of lattice distortion comparable to
the PtI materials. Studies to determine parameters ap-
propriate to the Pd materials are underway. While we

discuss mean-6eld results for strongly e-e coupled sys-
tems below, for these (AF or SDW) materials such as
NiBr, it will be important to properly treat e-e correla-
tions to fully understand this region, and a systematic
study is underway of just how well Hartree-Fock approx-
imation captures the essence of strong e-e correlations
in 4-filled bands. We hope the mean-field results pre-
sented here will serve as a guide to both understanding
the real materials and interpreting and focusing the more
calculationally intensive EDCP studies of the predicted
defect properties. Preliminary results indicate3~~ that
strong further neighbor terms can lead to ground-state
phases, and that introduction of defects near ground-
state phase boundaries can push the system across the

boundary. The properties of defects in the antiadiabatic
limit are also under investigation with VAMP.

A. Trends in Hartree-Fock: Effects of increasing U
within the COW phase

p+

UM. 0.0 0.3 0.0 0.3

FIG. 19. Effect of the Hubbard UM on the energy-level
diagram for polaronic defects using the same parameters as
Fig. 18. Up- (dashed) and down- (solid) spin states split for
U~ ) 0, where the unpaired electron is defined to have spin
up.

In Fig. 18, we show the variation in the predicted
optical absorption for electron and hole polarons (P+)
as the Hubbard U is increased to intermediate e-e cou-
pling strength for a parameter set relevant at U = 0 to
a strongly electron-phonon coupled MX material. The
spectra were normalized to the M-band to M-band tran-
sition edge (IVCT band edge, ~ivcT, or optical gap, Es).
The eR'ects of U on the uniform properties were removed
by using the scaling defined in Table I for eAective U = 0
parameters to keep the uniform band structure, optical
gap, lattice distortion, and charge density fixed. For com-
parison, we show in Fig. 19 the energy-level diagram. The
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value of I~MM to use for modeling Mx chains, at least
until the analysis of phonon modes, which are more sen-
sitive to the exact value of I~MM, has been completed.

The systematics seen in HFCP going from strongly e-
ph distorted materials to strongly e-e coupled materials,
focusing on parameters relevant to particular MX ma-
terials, is discussed in the next two sections, again with
the caveat that the results for /ange U will not be quan-
titatively, but should be qualitatively, correct.

I I I
l

I I I I
l

I I I I
l

I I

ja)

B
I

B. Defects in electron-phonon dominated regime:
The PtX materials

Figure 22 shows the predicted optical absorptions for
the trend PtC1, PtBr, and PtI using the effective U = 0
HF parameters of Table II, but scaled to UM = to/2 as in
Table III, since we expect this to be roughly true for the
Pt materials. The absorptions for U~ ——UM (with the
parameter scaling to give the same uniform properties)
are not significantly diferent from Ux ——0. The general
trends from the U = 0 predicted absorptions discussed
in paper I remain. In the strongly distorted case, the M-
X transition is strong and polarons tend to have three
intragap peaks, with the A peak being the strongest in-
tragap absorption. This changes smoothly as the weakly
distorted case is approached. The M-X transition de-
creases in oscillator strength and is essentially lost for
very weak electron-phonon coupling. For polarons, the
high-energy intragap (8) peak shifts upwards and merges
into the band for very weak e-ph coupling, and the low-
energy intragap (C) peak gains in intensity till it has
oscillator strength roughly equal to the A peak. How-
ever, the asymmetry between electron and hole defect
absorptions is enhanced over that seen at U = 0, and the
defect absorptions are shifted slightly by U, as discussed
above for the strongly distorted case. In Fig. 23 we show
the absolute absorptions of the PtX materials (oscillator
strength per M2X2 unit) with polarons, where we have
added the lines from the P+ and P and broadened to
produce "experimental" spectra. The trend to decreas-
ing height and narrowing of the IVCT as the gap gets
larger agrees well with experiment.

Figure 24 shows the the CDW lattice distortion or-
der parameters (i.e. , the amplitudes of the CDW com-
ponents of the lattice distortion) corresponding to the
polaron absorptions just discussed. The hole defects are
somewhat broader, though this effect is more noticeable
on the charge distribution since, for holes, it is di%cult
to remove charge from the nearby halides as they are
lower in energy and the defect is forced to spread out
to further neighbor metals, whereas, for electron defects,
excess charge flows more easily onto the halides (though
strong Ux will of course change this argument). Thus
this is understandable as a two-band effect, which should
be most noticeable for intermediate localization. The
charge and spin distributions for the PtBr parameters
are shown in Fig. 25, where this effect is easily seen. For
the P tI parameters, the defects are broad and insensi-
tive to the position of the center. For example, the two
phases of the P polaron defect shown in Fig. 26 have

I I I I I I I I I I I I

cd (eV)

I I I I
l

I I I I
(

I I I I
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I I I I
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1 8 3 4
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FIG. 22. Predicted absorption of P, B, and A defects for
the CDW materials (a) PtC1, (b) PtBr, and (c) Ptl using the
parameters of Table III at UM = ts/2 Difference . spectra with

the uniform absorption subtracted oK are shown to enhance
the structure due to defect absorptions. Hole defect curves are
solid, electron defects dashed, and neutral defects are dashed-
dotted.



T%'0-BAND MODEL FOR HALOGEN-. . . . II. . . .

I I I I
I

I I I I
I

I I I I
I

p+

10

3 5

u (eV)
FIG. 23. Absolute absorptions per unit cell (MqX2 unit)

for the PtX materials using the parameters of Table III. Here
we have added the P lines and broadened to produce "exper-
imental" spectra. The trend to decreasing height and narrow-
ing of the IVCT as the gap gets larger agrees with experiment
(Ref. 46).

the same energies and optical spectra, to numerical accu-
racy. The more strongly distorted, more valence localized
materials —as seen from Fig. 24 defects for the PtC1 pa-
rameters are localized over 3 lattice sites—are sensitive
to defect location with, e.g. , the P+ defects trapped on
sites which would be reduced (occupied) if the chain were
uniform. The B and I& distortion show similar behavior,
as discussed in paper I for U = 0.

C. Defects in electron-electron dominated regime:
The NiX materials

Turning to the NiX complexes, in Fig. 27 we show
the absorption predicted within HFCP for the uniform
states and in Fig. 28 we show the predicted difference
absorptions of the SDW P+ and Ii+ defects for the
trend NiC1 and NiBr using parameters from Table III.

N

FIG. 25. Excess charge (solid) and spin (dashed) distri-
butions (uniform chain values subtracted) of the P+ and P
defects for the intermediate CDW material PtBr (parameters
of Table III). M (circle) and X (diamond) positions are in-
dicated. The CDW lattice distortion order parameter from
Fig. 24 is also shown for easier comparison. Note the hole
defect is broader.

The 8+ were unstable and did not form for these pa-
rameters. Note that as there is no lattice distortion, the
topological kinks (Ix + o) are between the two degenerate
mean-field SDW phases (XMXM =t'g t' t'J,

and t'f $ t'$ t' . ). In Fig. 29, we show the correspond-
ing energy levels for the NiBr parameters. Note that for
polarons, down (solid) and up (dashed) spin states split
oR'from the top of the conduction band and bottom of the
lo~er Br band, respectively, where the unpaired electron
is defined to have spin up, in contrast to the lack of such
"ultragap" localized states for materials with non-zero
lattice distortion such as the PtX materials discussed
above. Ultragap states are also seen in Fig. 28 for the
kinks, where here the Iso shows the different shifts for
the different spins, and the I~+ show the same shift for
up and down spin as the levels are symmetrically occu-
pied. As seen from Fig. 28, these ultragap states also
have absorptions within the IVCT gap, complicating the
spectra. The P+ and I&+ show similar spectra, as do the
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FIG. 24. Predicted P+ (solid) and P (dashed) lattice
distortions for the CDW materials PtCl, PtBr, and PtI using
the parameters of Table III at U~ = to/2. The phase of the
CDW lattice distortion order parameter for the P+ defects
was fixed ta be 180' aut af phase fram the CDW an the
P defects so that they fall on the same site to facilitate
comparison af widths.

FIG. 26. The twa phases of the P lattice distortions far
the weakly CDW material PtI (parameters of Table III) shown
here are equivalent to numerical accuracy. Excess charge
(solid) and spin (dashed) distributions (the uniform chain val-
ues have been subtracted) are shown along with the lattice
distortion amplitude. M (circle) and X (diamond) positions
are alsa indicated.
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FIG. 27. Absolute absorptions per unit cell (M2X2 unit)
for the uniform NiX materials using the parameters of Ta-
ble III. Note in contrast to the CDW PtX materials, both
M-X transitions are clearly observed, though unfortunately
the gap size relation is the reverse of what is reported exper-
imenta. lly.

P and the Ix plus I~ . It appears that there is also
structure within the bands, though this may be coming
from the ultragap states having absorptions at similar
energies.

The excess charge and spin distributions of the various
defects are shown in Fig. 30. The SDW of the uniform
lattice has been subtracted to better illustrate the pertur-
bation caused by the defect. For the kinks at the defect
center we have changed the phase of the subtracted SDW
by 180', so the structure may be interpreted as due to a
fully relaxed kink in comparison to a sharp defect. The
resultant pictures for the kinks and polarons look very
similar, in agreement with the similarity observed in the
absorption spectra. From Fig. 30 we also see that the
amplitude of the local lattice distortion is very weak in
comparison to the deviation in spin and charge. This is in
contrast to the CDW materials where they are compara-

ble. Even so, R and ir activity should be experimentally
observable in the NiX materials. Both the NiBr and NiC1
parameters of Table III yield similarly localized defects,
though the e-ph interaction strength does vary by 20%.
At the very least, they are an indication of how predicted
properties of SDW defects should vary as the e-ph cou-
pling is varied within the HFCP scheme at fixed ratio
of U/tu 3. A systematic study of the defects proper-
ties as n and P are varied for defects in the SDW phase
has not been completed (obviously their value does not
afFect the uniform SDW phase), so we cannot draw any
general conclusions at this time as to how the predicted
distortions, and the corresponding absorptions, vary with
increasing delocalization.

As stressed above, the strong e-e coupling HFCP re-
sults need to be tested against EDCP or other calcu-
lational techniques which treat e-e correlations better.
These studies have begun, though we still are at the
stage of separating finite-size efFects from true bulk be-
havior. Among the interesting questions under investiga-
tion in EDCP are whether the Ii.+ remain topologically
distinct from the P+ (and whether the Ku can be de-
fined), whether there is a region at strong coupling where

bipolarons form, and the inHuence of UM, U~, V, o. , and
P on the answer to these questions —which are 1D ver-
sions of very similar questions being asked in the quasi-
20 oxide superconductors. As noted in the section on pa-
rameters, the predicted optical gaps (NiC1: 1.2 eV; NiBr:
1.5 eV) do not agree with listed experimental valueszs as
to their ordering, though the absolute values are, encour-
agingly, well within a factor of 2. However, preliminary
EDCP results indicate that these gaps are also roughly a
factor of 2 larger than the EDCP prediction, making the
agreement less good. A slight CDW, or a larger difference
in to or eo could easily bring the disagreement back in line
with the experimentally reported values, though further
experiments are also necessary to confirm these gap as-
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FIG. 2&. Predicted absorption of P+ and K+' defects for the SDW materials (a) NiCI, (b) NiBr using the parameters of
Table III. The B+ defects do not form for these parameters. Difference spectra with the uniform absorption subtracted oR' are
shown to enhance the structure due to defect absorptions. Hole defect curves are solid, electron defects dashed, and neutral
defects are dashed-dotted.
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FIG. 29. Energy-level diagram for P and A defects using

the NiBr parameters of Table III. Note down (solid) and up

(dashed) spin states split off from the top of the conduction
band and bottom of the lower Br band, respectively, where

the unpaired electron is defined to have spin up.

signments. It is intriguing to note that, within HFCP,
for slightly stronger values of the electron-phonon cou-
pling we found that a strong CDW was predicted for our
NiX parameters. For the PtI parameters, we found a
metastable SDW phase. Thus, these materials may well

be near a phase boundary where interesting long-period
and/or pairing behavior are more likely to be observed.
We are currently examining the experimental data to see
if there are signatures of the presence of competing phases
in the real materials. Preliminary data on a PtI mate-
rial indicates that there may indeed be unusual magnetic
behavior: Haruki and Wachter47 have reported 70% of
perfect diamagnetism in one sample.

VI. CONCLUSIONS

The competing effects of strong electron-electron and
electron-lattice interactions are of paramount concern in
many electronic materials currently under investigation.
This is particularly so in reduced-dimensional materials
where there is a delicate competition for broken symme-
try ground states. Learning to control material proper-
ties so as to tune into such ground states selectively, and
to control the properties of self-trapped defects such as
polarons and bipolarons (introduced by doping, photoex-
citation, electrochemical doping, etc.) is essential to both
synthesis and device applications.

In this paper we have begun to consider an explicit

4 Plied, ti-oo band, exten-ded Peierls-Hubbard Hamilto-
nian, which we believe is an important reference model
for many electronic materials, including MX chain com-
pounds, charge-transfer salts, and organic and oxide su-
perconductors. We are discovering that the model is
intrinsically richer than the frequently studied 2-filled
one-band models, exhibiting a variety of different broken-
syrrimetry ground states, including charge-density-, spin-
density-, and bond-order-waves, superlattice ordering
(even at exactly 4 filling), and complex spin-Peierls
phases, in which lattice distortion and charge- and spin-
density waves are all combined. In addition, there are
intrinsic electron-hole asymmetries associated with dop-

FIG. 30. HFCP predictions for the P and K lat tice
distortions (dash-dotted), excess charge (solid) and spin

(dashed) distributions (uniform chain values subtracted) for

the strongly e-e coupled (AF or SDW) material NiCI (param-

eters of Table III). M (circle) and X (diamond) positions

are also indicated. The vertical bars denote where the phase
of the uniform chain subtracted from the kink defects was

shifted by 180' so as to give zero excess charge and spin far

from the defect.

ing around 4 filling. All of these indications point to
the need for a systematic understanding of commensu-
rate multiband reference phases (for which the present
model is a prototype), and the need for a close examina-
tion of the regimes of validity of reductions to effective
one-band models.

Interestingly, the two-band situation does not exhibit
many of the nonperturbative pathologies of the --filled

2
one-band case when Hubbard-type interactions are in-
troduced. This means that when such interactions have
modest strength, mean-field (e.g. , HF) treatments are
valid. Thus, many of the MX materials in the charge-
disproportionated (CDW) phase can be well described
by a HF approach, as we have confirmed by calibra-
tion against finite chain EDCP results. We are presently
extending this modeling to include MX chain materi-
als with stronger e-e interactions, where dominant spin-
ordering (spin-density-wave or spin-Peierls) is observed
(e.g. , in NiC1 or NiBr), and studies of correlation effects
on the static (optical-absorption, ir, and Raman signa-
tures) and dynamic (photodecay channels, conductivity)
properties of nonlinear excitations (polarons, bipolarons,
excitons, solitons) induced by doping and photoexcita-
tion are underway. In this spin-interaction-dominated
regime, mean-field treatments break down quantitatively
(although not necessarily qualitatively even at relatively
large interaction strengths) and extensive EDCP or quan-
tum Monte Carlo analysis is necessary, although these
techniques are limited numerically to small system sizes.
For EDCP, exploiting symmetries of the Hamiltonian al-
lows one to treat (slightly) larger system sizes, but we
expect the most progress here to come from improved
extrapolation.

A further consideration is the validity of adiabatic
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("frozen phonon") approaches to the two-band model. In
this manuscript we have investigated nonadiabatic cor-
rections within a variational approach (VAQP). Not sur-
prisingly, in view of the large masses involved in MX
chain materials, such corrections are negligible. How-

ever, more generally for small masses and strong corre-
lations, systematic improvements on the VAQP are de-
sirable. As shown in Sec. IV A, some analytic results
are possible in the fully antiadiabatic regime, where un-
usual effective nonlinear lattice dynamics can result after
integrating out electronic degrees of freedom. Compari-
son of results obtained by different theoretical approaches
in two-band models including both electron-phonon and
electron-electron interactions is a very urgent task, to
enable further improvement of these methods.

Although we have focused our discussion on the broad
class of MX chain compounds now available, it will
be very important to apply some of the understand-
ing we have gained to related low-dimensional materi-
als. Organic superconductors display many of the same
broken-symmetry ground states as a function of material
properties (pressure, temperature, etc). Again, it is in-
creasingly appreciated that electron-phonon interactions
are very important in high-temperature superconducting
compounds, both for the determination of ground states
and the nature of the excitations. Just as in the present
model, polaronic excitations created with respect to a
CDW (SDW) ground state result in loca/ relaxation into
the SDW (CDW) phase also. This local phase-mixing is
expected to be particularly interesting for the intermedi-
ate spin-Peierls phases, especially as regards the possible
pairing of carriers.

In summary, the work presented here and in paper I
is intended to help lay the theoretical ground work for
our "making-measuring-modeling" effort toward under-

standing the MX chain class, which span the range from
electron-phonon to electron-electron dominated materi-
als. We also feel that the lessons and techniques reported
here will lead to a more general microscopic understand-
ing of nonlinear excitations in low-dimensional materials
with strong competitions for broken-symmetry ground
states, particularly the rich phases found in a &-filled

two-band, versus a 2-filled one-band, scenario.
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APPENDIX A: VARIATIONAL METHOD

In this appendix we briefly describe the formulation
of our quantum phonon variational Ansatz (VAQP). The
VAQP has the advantage that it is applicable to large sys-
tems, since the resulting energy functional has the form
of a one-particle Hamiltonian for the electrons —the
phonon degrees of freedom are mapped onto variational
parameters. For simplicity, for the discussion in this pa-
per we set V = 0 and concentrate on contrasting the ef-

fects of quantum phonon fluctuations with the effects of
electron-electron correlations described by the Hubbard
U. The VAQP including a Hubbard V can be formulated

similarly, and is currently under investigation.
The first step in the construction is to perform a change

of basis in the underlying Hilbert space by applying a
suitable unitary transformation to remove exactly all ex-

plicit electron-electron correlation terms. We de6ne a
class of unitary transformations (see Refs. 23 and 49) by

0 = Ot, (At, ),
~ I ~

l, s

where

(Ala)

Ol (A1s) = exp I &At. &t nt. (Alb)

with real variational parameters A~, . This transforma-
tion has the following effects on the momentum, displace-
ment and Fermi operators:

OPi 0 = Pi —).Ai. ni8, (A2a)

OzIOt = z(,
Oc„Ot= exp

~

—A~, z~
~
c„.

qn
' )

(A2b)

(A2c)

then in the transformed Hamiltonian, H = OHOt, all
explicit correlation terms are removed:

The electronic density n~~ is invariant Applying the uni-
tary transformation 0 to the Hamiltonian H [Eq. (l)
with V = 0], if we chose

(A3)
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) ([ t0 + o(zI+I &I)]e el+I cIs + H.c }+ ) [~I Pl(&I+I zI—I)] nl

l, s

+) l (Al 2PI)AI. l
nI. + ) + (&I+I &I) + i~MM ) (&21+2 &21) (A4)

where 4'1~ —= (1/fi)(AI+i~&I+i —Al, ii)
The next step is to make a variational Ansatz for the

form of the ground state wave function
l
4 ) in this trans-

formed basis. We choose
l @) to be a simple pure tensor

product of phonon (boson) and electron (fermion) parts:
l4) =l B) l F). This choice ensures numerical effi-
ciency of the Ansatz for larger system sizes: it allows
us to construct a simple electronic eR'ective one-particle
Hamiltonian as the functional to be varied. The form of
the variational wave function in the original basis now
reads

I

the parameters Ai, . It is important to stress that our
variational wave function does not contain a Gutzwiller
limit, since both the singly and the doubly occupied sites
are affected. (A detailed comparison between the class of
variational wave functions we use and Gutzwiller type ap-
proaches is under investigation. 5') Note that a Gutzwiller
Ansatz in combination with an adiabatic treatment of
classical phonons was used in Ref. 52 to study the influ-

ence of electronic correlations in polyacetylene.
The properties of the variational Ansatz strongly de-

pend on the form of
l
B). Here, we select

l~) = otl~) = o~ IB)81&). (A5) (A9a)

Here,
l B) denotes a Bose state to be specified below

and
l
I" ) denotes the electronic eigenfunction determined

uniquely by the form of the functional (H ) to be varied

(iI [ Hil@)
&+l~)

(A6)

To make the Ansatz more transparent, we expand the

exponential, obtaining

~ ~

1

where

ltI ):—lltl(WI, uI) ) = Ul(WI ul} l0),

with the unitary transformation

UI(WI, ui} = exp
I

(Wii—i
——ulPi)

(A9b)

(A9c)

+(e"' —1) 8 nit + (e " —1) 8 nit

+1 1] IB)8 IF) (A7)

IF~) = 1 —(1 —g) nn«i 1@0)
l

(A8)

where [@0) denotes the ground state of the uncorrelated
system, the extension of this Ansatz to quantum phonons
is immediate. For g = 1 the Gutzwiller Ansatz projects
out double occupancies from l@0), whereas the Ansatz
(A5) and (A7) affects both the singly and the doubly
occupied sites in

l
B)8 l

F ), depending on the value of

with ai, = &AI,ii —Compari. ng this to a Gutzwiller

Ansatz for a purely electronic Hamiltonian,

Again, Wl and ui are real variational parameters and l0)
denotes the multiphonon vacuum state. This choice is
one of the simplest; more general ones have been tested
for small system sizes. ' More "complicated" choices
for (B) improve the quality of the energy bound only in
limited regions of the model parameter space; there also
exist parameter ranges where the results of the present
simple form cannot be improved. Nevertheless, more gen-
eral choices are being tested for the two-band model un-
der investigation.

Finally, the expectation value of the total energy is
minimized with respect, to the variational parameters.
The functional (H) to be minimized contains 31V free
variational parameters ((Alt, Wi, ui}) which have to be
determined. The partial expectation value (B l

H
l B)

now reads

(Bl H IB) = ) [eI —PI(ul+i —'» i)) nl + ) I
(Al, —2wI)Ai(2MI

t+) —t0+ n(ulcc, —u, ) — (A,+„+Al, ) l
e ~ ~ c, „c„+H.c.

1,s

.( 1 2+).l
Wl'+ —(ul+1 ul) l+ —I~MM) (u21+2 u21) +E0,

(2MI 2 ) 2
(A10)
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where

(A11)

(A12)

2 2

Ct, = At+].s + A(s
4m'~'h (A13)

Eo denotes the zero-point energy, m' the reduced mass,
and u' the (finite) phonon frequency. Up to this point
the phonon force constant f' has not been fixed; it
and m' set the scale for quantum phonon fluctuations.
Note that Eq. (A10) represents an effective single-particle
Hamiltonian, where the transfer integral is modified by
the (real) band narrowing factor exp (—4t~, ) and an imag-
inary ~'-dependent part. Moreover, the phonon fre-
quency ~' appears explicitly only in the hopping part of
the Hamiltonian. An evaluation of the functional (A6)
yields an upper bound for the true quantum-mechanical
ground-state energy. Moreover, we have access to (at
least) a second bound, since the EDCP (exact diagonal-
ization of the electronic part of our model in combina-
tion with a classical treatment of the phonon degrees
of freedom) can be interpreted in terms of a variational
Ansgtz "4'

APPENDIX B: NUMERICAL METHOD
FOR EXACT DIAGONALIZATION

We describe briefly here the EDCP method. Ex-
act diagonalizations of the electronic part of the cou-
pled electron-phonon Hamiltonian were performed using
a Lanczos algorithm. We used real-space basis states

for up electrons at sites iq ( i2 & & i~U and down
electrons at sites j~ & j2 ( . & j~~, where the numbers
NU and ND of up- and down-spin fermions are both fixed
and

l 0) is the vacuum state. Apart from particle-number
conservation, no other symmetries were used. Starting
from an initial vector l@i) (see below), an orthonormal
basis was constructed by generating a sequence of states,
i/i), l@2), . . . , each expressed in terms of the real-space
basis. Each state lg„), n ) 2, was generated by or-
thogonalizing Hl@„ i) to lg„ i) and to g„2)and nor-
malizing. This procedure generates an orthonorrnal set
and the Hamiltonian in this basis is tridiagonal. When-
ever generation of these basis vectors exceeded computer
memory, we diagonalized the Hamiltonian in the limited
basis and resumed the generation with the eigenvector
corresponding to the lowest eigenvalue as the new trial
ground-state wave function. The procedure was termi-
nated whenever expanding the basis decreased our esti-
mate of the ground state energy by less than some small
amount —usually 10

Our initial ground-state trial wave function i/i) was a
random state, which is sure to have overlap with the true

ground state for all sets of parameters. Convergence for
a 4-filled eight-site ring took minutes on a SUN worksta-
tion. Thereafter, using that ground state as the trial wave
function for a set of Hamiltonian parameters reduced the
computer time needed for convergence from minutes to
seconds provided, of course, that the change in parame-
ters did not take one across a first-order phase transition
(i.e. , a discontinuous derivative of the ground-state en-

ergy with respect to Hamiltonian parameters due to the
crossing of eigenvalues). Hence, phase boundaries could
be mapped out quickly by running the diagonalization
routine interactively —twice at once, with one job run-
ning on each side of the boundary. Each program would
have to perform an expensive diagonalization starting
from a random wave function only once; thereafter, one
could vary parameters along the boundary smoothly for
each program using the last ground state as a good guess
for the point in parameter space.

Equilibrium displacements from uniform lattice spac-
ing were determined using the self-consistency condition,
0( Eioq~~ )/M. r = 0, to relax the lattice distortion toward
the minimum energy static solution (as was also done in
the other adiabatic approaches, HFCP and PTCP). Adi-
abatic phonon modes could be calculated by stepping the
lattice positions away from this minimum and calculat-
ing the dynamical matrix as a discrete second-difference
of the total energy.

Once the estimates for the ground-state wave function

l Po ) and energy Eo were determined, optical-absorption
spectra could be calculated. This is done by applying
the current operator J to get an initial vector i/i ) for
the Lanczos process, JJ $0 ) =

Alibi

) with (Qi i/i) = 1,
yielding basis states lg„)and a tridiagonal matrix Hz .

Generating Nz entries to Hz (the wave functions need
not be stored) and truncating, estimates of the excited
states are then given by l Pg ) = BI,„lg„)where the B di-

agonalize Hz . The matrix elements needed in the golden
rule for optical absorption are then

(&ilJI&o) = (Bi @ I~&i) = BiaA

and the energies needed are the eigenvalues of Hz and
Eo. Typically values of N~ & 60 were needed for the
estimate of the optical absorption to stop changing at
the l%%uo level.

APPENDIX C: FORMALISM
FOR HARTREE-FOCK

) +I rior&IJ + ) l &lril+i (C1)

where n~, =
c& c~„with

Since several difFerent levels of Hartree-Fock approxi-
mation are commonly used in the literature, we include
here the specific formulation of HF used in this work. As
stated in the Introduction, in HFCP we treat the lattice
vibrations as classical variables. For the electronic part
of the Hamiltonian, we replace



45 TV'-BAND MODEL FOR HALOGEN-. . . . II.

HF .4 Pi, sni. — .Ul Pi)Pit
l, s l

+) V(pl 1-+ pl+1)nl ) Vpl pl+1
l l

—) V(dis is i+is+ dls i+1 CsI s)+ ) VCk. dk,t t f

where s denotes the opposite spin from s, pi, = (0(ni, (0)
and di, = (0)et+&, ci, (0) (for V g 0) are determined
self-consistently, and ~0) is the electronic (many-particle,
Slater) state under consideration. Keeping the last ("ex-

change") terms is important for spin-spin interactions.
Even with U = V = 0, to get agreement of the spin-
spin correlation functions with the EDCP results, terms
of this type in that calculation are needed (otherwise
(S;Sz ) = (S;)(Sz ):—0). For the molecular dynamics,
the minimum energy p and d for the instantaneous lattice
configuration are found at each time step, whereas p, d,
and 4 are relaxed in parallel when only the minimum en-

ergy configuration is sought. Further, when comparing
the energy levels and total energy of the bare parame-
ters with those of the HF effective U = 0 parameters, we

added additional pressure, chemical potential, and con-
stant terms to constrain these energies to be the same for
both parameter sets in the uniform ground state:

&,", = ).(nfl pi, ; —(4 pi, ;))ni, —) (L'l piIpiq —(nfl )(pig)(pit})

+ ) V,(pl 1-(pi l)) + (pi+i —(pl+1)) nl ) V (pipl+1 (pi)')
l l

—) V (dl. —(dl. ))cl', el+i. + (d,', —(d,', }) ,
'c+„c*l+ ) V (dl. dl. —(dl. )'),

ls l, s

where (Qi, ) = Qi Oi, /N. We stress that we used com-
pletely unrestricted HF—arbitrary structure in real space
was allowed for both the spin and charge densities. Nu-

merical solutions were also checked for possible "sym-

metry trapping" by testing that initial conditions with
a different symmetry converged to the same final con-

I

figuration as, or a higher energy configuration than, so-
lutions which began with the final symmetry. For the
NiX parameters of Table III, a metastable CD& phase
was found, though in the presence of defects, the CDW
became unstable and the system converged to the SDW
phase (plus defect).
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