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Electronic properties and mnltifractality of a one-dimensional hierarchical system
in the presence of an electric field
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We study the influence of an applied electric field F on the electronic properties of a one-dimensional
system with hierarchical potential strengths. By the method of the Poincare map, we calculate the
transmission coef6cient T as a function of the system size X. For small fields, it shows an algebraically
localized behavior. With increasing field strength, a delocalization of the field-induced localized states
occurs and T shows extended behavior for R &2 while it retains a power-law localized behavior for
R & 2. We perform a multifractal analysis on the wave functions of the field-induced states and find the
multifractal property in the field-induced extended states.

I. INTRODUCTION

The electronic properties of one-dimensional systems
in the presence of an external electric field have been a
problem of continuing interest in condensed-matter phys-
ics. The application of an electric field has been shown to
result in distortions of field-free bands and formation of
additional states that have interesting properties.

In periodic systems, there has been a controversy about
the existence of Wannier-Stark ladders in the presence of
an electric field for some time, but their existence is by
now well established both theoretically' and experimen-
tally. The ladder structure consisting of resonance
states, in a strict sense, survives only when the interband
tunneling, the so-called Zener tunneling, is sufficiently
small. For large fields, the electron in a band gains
enough energy to tunnel to the neighboring band so that
the spectra form a continuum. These facts can be ex-
plained well by Zener's tilted band picture. For disor-
dered systems, it is well known that the applied electric
Geld changes exponentially localized states to power-law
localized states and leads to a transition from power-law
localized states to extended states at some critical field, as
has been rigorously proved by Delyon et al. Therefore
the existence of three different states in the presence of an
electric field is by now well established. Note that
Wannier-Stark ladder resonances are also found in disor-
dered systems.

On the other hand, the effects of an electric field on
systems intermediate between periodic and disordered
ones are not well understood. Examples of such inter-
mediate systems are quasiperiodic and incommensurate
systems. Several properties of these systems in the ab-
sence of an electric field have been established. For in-

stance, quasiperiodic systems with a Fibonaccian array of
potentials are known to have Cantor set spectra of zero
Lebesgue measure and critical states, while those with
generalized Fibonaccian array of potentials' can have
three different states; localized, critical, and extended
states. Incommensurate systems are also known to have

three different states, depending on the site energy.
Another important example of intermediate systems

arising in diverse physical contexts is a hierarchical sys-
tem" ' that has irregular deterministic potential struc-
tures and exhibits unusual features with respect to
periodic, quasiperiodic, and disordered cases. Wurtz
et al. " studied a one-dimensional tight-binding model
with a hierarchical potential strength (diagonal model)
using the recursion relations for renormalization-group
transformations and for traces of transfer matrices, and
elucidated the nature of the energy spectra and the wave
functions. Ceccatto, Keirstead, and Huberman' and Ro-
man' studied similar models with a hierarchical array of
hopping-matrix elements (off-diagonal model), and ob-
tained results similar to those of Fibonaccian quasi-
periodic systems; i.e., the wave functions are critical, and
the energy spectra form a Cantor set. Roman' also per-
formed a multifractal analysis on both the energy spectra
and the wave functions, and demonstrated multifractal
behaviors of both of these quantities. It is by now well
known that critical states have multifractal behavior for
all length scales, while extended and localized states do
not.

But, as far as we know, most of the models studied are
tight-binding ones. Furthermore, the effect of an electric
field has not been studied to date. These tight-binding
models show the underlying physics clearly, but they are
nonetheless one-band models and thus do not treat the
electronic properties of the system properly when the sys-
tern undergoes interband transitions in the presence of an
electric field. Therefore we consider a continuum model
(or a scattering model) that contains multiband informa-
tion. With this model, we study the effect of an electric
field on the one-dimensional hierarchical system.

In Sec. II, we introduce the structure of a model sys-
tern and methods of calculating the density of states
(DOS), transmission coefftcient r, and fractal dimension
f(a). The results of numerical calculations and discus-
sions are also given in the section. Section III is devoted
to a brief summary of the results.
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II. METHODS AND RESULTS
OF THE CALCULATIONS

%e consider a one-dimensional Schrodinger equation

d2 N

+ g V„5(x—x„) Fx—%(x ) =EV(x ),
dx

where the potential strength of the nth site is given by

V„= UOR"; n =2"(2l+1), l +0, k +0 . (2)

Here X is the size of the system, I is the strength of the
electric field, k is the level of hierarchy, x„(=na) is the
nth site of the lattice, and we adopt units in which
A /2m =1,e=1, and Uo=1, with no loss of generality.

In the absence of an electric field, the system has
different properties, depending on the magnitude of the
hierarchy parameter R. The system is periodic with lat-
tice constant a =1 for R =1 and with a =2 for R =0. In
these cases, the system has extended states and the spec-
trum has an absolutely continuous one. However, for
general values of R, the system no longer has simple po-
tential values. In these situations, the system is known to
have interesting characteristics.

Equation (1) can be transformed into a second-order
difference equation between the (n —1)th, nth, and
(n + 1)th sites by a ladder approximation that ignores the
continuous variation of the linear potential term and ad-
justs the potential in each cell to the mean value in that
region. Since the essential effect of an electric field is to
shift the energy of each equivalent potential, the ladder
approximation does not alter the essential physics of the
problem. Moreover, it allows one to use plane waves in-
stead of Airy functions, and thus leads to relatively easy
numerical calculations with considerable algebraic
simplifications. In view of these facts, many authors have
successfully used this approximation.

Taking the plane-wave solutions to Eq. (1) in each cell,
and using the boundary conditions for the continuity of
%(x) and the discontinuity of its derivatives at x =x„,
one can obtain the following equation, called the Poin-
care map representation:

system. When Eq. (3) is rewritten in matrix form,
(H —EI)(%')=0, the N-dimensional matrix (H —EI) be-
comes tridiagonal. Thus we can calculate the distribu-
tion of its eigenvalues, i.e., the DOS, using the negative-
eigenvalue theorem

1 ri(E+bE) rl(—E)
N hE

(5)

0.8
(a)

'f 0.4-

Here r)(E) = gN &' rI, (E) is the number of negative eigen-
values of the matrix (H —EI), and r);(E) is zero for n; )0
and is 1 for n; (0 with n; = E; ——X;,In;, and

no Eo
To confirm the results on the DOS obtained by the

negative-eigenvalue theorem, we use the transmission
coefficient to be introduced in the next section and calcu-
late the inverse localization length defined by
y= lnT/N—. Figure 1 shows the results on y and the
DOS for R =1.5 and %=2"—1=2047. Two quantities
have exactly opposite behaviors; i.e., the DOS vanishes
for large y but it is large for small y. In the figure, we
can see that the main band splits into many subbands.
For general values of R, the number of splitting is 2 —1,
resulting in 2 subbands for a given level of hierarchy k.
The R dependence of the DOS is shown in Fig. 2. The
spectrum for R = 1 represents the case of a periodic sys-
tem. Since the potentials of the system have the same
values, the splitting of a band does not occur and the
bandwidth remains constant, forming an absolutely con-
tinuous spectrum for any level of hierarchy k. However,
in the regime R & 1, the increase of the level clusters the
eigenvalues, resulting in highly concentrated spectra.
The relative width of allowed bands will go to zero as the
level of hierarchy increases. Thus the spectrum in the
infinite-system-size limit will form a singular continuous

X„%„+,+X„,O„,—E„g„=0 .

Here

(3)

E„=V„+X„Y„+X„]Y„
kX„=

sin [k„(x„~,—x„)]

(4a) 0,0
4 (b)

I'„=cos[k„(x„+,—x„)], (4c)

and k„=[E+F(x„+x„+&)/2]'~ is the momentum in
the nth cell. Equation (3) is formally analogous to the
tight-binding model, but it is equivalent to Eq. (1) and
contains all the band-structure information. Thus it is an
appropriate equation with which to study the effect of an
electric field on the system.

A. Density of states

CO0
O 2-
U)0
Cl

0
0.6 3.6 3.6

First we calculate the density of states in the absence of
an electric field in order to see the global properties of the

FIG. 1. Energy dependence of (a) y and (b) DOS and in-
tegrated DOS for N=2" —1=2047, R =1.5, and F=O. y and
DOS clearly show self-similarity.



6402 G. Y. OH, C. S. RYU, AND M. H. LEE 45

20 1.0
(a) R=1.0

I.O—

0,0
0.6

/
i.2

I

j.8 2.4 3.0

0.0

T 0.5—

(b) R=0.9

ljjj~Ijj~jjj 4Aj lj~jjI jjjAj') I(jjl )ij

FIG. 2. R dependence of the DOS for a system with

N =2' —1 =255 and F=0. Clustering of the eigenvalues for
R ) 1 has different behavior from that for R & 1.

one that has zero Lebesgue measure. Meanwhile, the
splitting in the regime 0&8 &1 is less clear. Only the
gaps due to lower levels are appreciable, and those of
higher levels are negligible. In this case the spectrum in
the infinite-system-size limit will form a fractal with posi-
tive Lebesgue measure, " which seems to be related with
"recurrent" absolute continuous spectrum called by Av-
ron and Simon' that is found in the Cantor set of posi-
tive Lebesgue measure. The physical significance of this
classification of continuous spectra comes from the con-
nection between the transport properties and the nature
of the spectrum. The usual "purely" absolutely continu-
ous spectrum has good transport properties, and the
singular continuous spectrum has bad transport proper-
ties. The recurrent absolute continuous spectrum has in-
termediate transport properties between them. An illus-
tration of this is shown in Fig. 3. Note that the states ap-
pearing in the gap regions are due to the finite size of the
system. These gap states wi11 disappear as the size of the
system increases.

When the electric field is applied, degeneracies due to
equivalent potentials begin to be lifted, resulting in addi-
tional eigenstates. Figure 4 shows (a) y and (b) the DOS
for the same parameters as in Fig. 1, except that
F=5.0 X 10 . Some eigenstates move into the gap re-
gions, and the narrow subgaps that occurred in Fig. 1

disappear [see Fig. 4(a)j. The inset of Fig. 4(b) shows the
DOS for incident momentum k;„=E' =1.515—1.620,
which forms ladderlike structure with nonuniform spac-
ings. As the field increases, some eigenstates will move
into the gaps more deeply, and the DOS will distribute
broadly for large fields, resulting in a continuous spec-
trum, as in the cases of periodic and disordered systems.
To understand the behavior of the field-induced states,
we study the transmission coeKcient introduced in the
next section.

0.0
(c) R=1.5

1.0
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0.0
0.0 0.6

10 N
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FIG. 3. N dependence of transmission coefficient T for
N = 12 000 and (a) R = 1.0, (b) R =0.9, (c) R = 1.5.
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is the transmission coeScient of an incident electron.
For extended states, g shows a rapidly converging behav-

ior with increasing length, and for exponentially localized
states, g shows a linearly increasing behavior.
Meanwhile, g for critical states displays an oscillatory be-

0
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I

2.6 3.6

B. Transmission coe%cients

The electronic states of a system under consideration
can be classified by the quantity (=Ny = —lnT, where T

FIG. 4. (a) y and (b) DOS for parameters as in Fig. 1 but for
F=5.0X10 . The inset for k;„=1.515—1.620 shows nonuni-

form ladderlike structure.
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+N —1

havior. One can calculate T and g in the following way:.17

From Eq. (3), one can write

+N+1 +N
p(N) =PN (6)

Here P' ' is the promotion matrix for the Nth potential
barrier, and PN is the promotion matrix for the whole

system, which is given by

Ex/&~

and
N

p p(N)p ~ p(N —n +1)
N N —1 L™L

n=1

'"ii
z ' (9)

From these equations and the plane-wave solutions in

each ce11, T is given by

p(N)
1 0

where t is the transmission amplitude and M~ is the (1,1)

component of the transfer matrix given by

I~N'~'= . , [(PN'+PN'+PN'+PN')'+2(PN'PN'+PN'Plv) [cos«;. ) —11
4 sin (k~)

2(P&'P—z'+Pz Pg)[cos(kN )+1]—2P&'Pz [c os( kz +k;„)+1]

2P~ P—~'[cos(k~ k;„)+—1]] . (10)

mRX

F =U0 0
L J

k,„»1, (12)

From Eq. (g), the recursion relations of the promotion
matrices are given by

N N —1& N g N —1 N —2
N —1

N

22 12 12 N 12 N 1 12
X

PN PN 1, PN PN 1 ~ PN-2
+N N

Thus one can calculate MN', and ultimately T, by iterated
applications of Eqs. (10) and (11).

Figure 5(a) shows the N dependence of the average
values of g with respect to the length defined by
g= —(1/N)g+, (lnT~) for a system of size N =60000
under an applied field F=0. The solid line represents the
case that has potential parameter R =0.9, and the dashed
line represents that of R =1.2. The incident energies are
E=7.300804000 for R =0.9, and E=6.291854839 for
R =1.2, respectively. For the R =0.9 case, the potentia1
strength ranges from (0.9)' =0.205981. . . to 1.0, and
the potentials of higher levels can be regarded as pertur-
bative quantities. Thus g is expected to show a behavior
similar to that of a periodic system; the solid line in the
figure shows the expected behavior, except for some fluc-
tuations. For the R = 1.2 case, the potential ranges from
1.0 to (1.2)' =15.407 021. . . , and the structure is quite
different from that of a periodic system. The behavior of
g' reveals this fact; it displays large fluctuations with vari-
ous coupled oscillations. This behavior is consistent with
the highly concentrated spectra given in Fig. 2. Al-
though the self-similarity is not exactly shown, the cou-
pled oscillations are presumably connected with it.

When the electric field is applied, the behavior of g
changes considerably. Define F0 to be the field strength

IIXat which the electric potential Fx„-FX2 '" is equal to
the highest hierarchical potential V„as follows:

where k,„ is the highest level of hierarchy of the system.
Consider first the case R (2. If the applied field F is
much larger than F0, the incident electron gains electric
energy that dominates over the hierarchical potential.
The tunneling between gaps then becomes easier and g is
expected to show extended behavior. On the other hand,
if the applied field F is not larger than F0, then there are
so many hierarchical potentials that can dominate over
the electric potential that the transport of an incident
electron may become worse. Thus g is expected to show
a localized behavior. However, this expectation is valid
only for a finite system. When the size of the system goes
to infinity, Fo goes to zero and g is expected to show an
extended behavior for arbitrary values of F. The numeri-
cally calculated g is given in Figs. 5(b) and 5(c). Figure
5(b) shows the N dependence of g as the applied electric
field changes from 0.005 to 0.150. The values of g in-
crease monotonically, forming logarithmiclike functions,
except for some cusps. The cusps appearing in the figure
reveal Zener tunneling through the main gaps, and the
positions of the cusps correspond to the positions at
which the incident electron begins to leave a band and
tunnel the gap. To determine the extent of localization,
we plot the lnN dependence in the inset. From this figure
one can see T-N ~, where P-0(1/F); i.e., the
transmission coefBcient shows a power-law localized be-
havior. Note that the power-law localized behavior of T
also appears in disordered systems in the presence of an
electric field, and that this behavior is characteristic of
the finite size of the system, as previously mentioned.
Figure 5(c) shows g for E))FO. The solid line exhibits
an extended behavior, as expected. From this we know
that in the finite system the transition from critical states
(E=O) to extended states has occurred, although we
could not determine the critical field at which the transi-
tion occurred. One noteworthy point is that we have ob-
served some coupled oscillatory behavior of g that is un-
like that of ordinary extended states. This may be a
property particular to the field-induced extended states,
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and we investigate the property further by the method of
multifractal analysis that is presented in the next section.

For the R & 2 case, F can exceed Fo in the finite sys-
tem, and g can then be shown to have an extended behav-
ior. However, in the infinite-system-size limit, Fo goes to
infinity, which means that the hierarchical potential al-
ways dominates over the electric potential. So the trans-
port of the incident electron becomes very poor, and we
expect g to show a localized behavior for arbitrary values
of F. A typical behavior is shown in Fig. 5(c), which is
similar to that of Fig. 5(b). Thus we believe that the
field-induced states for R )2 are power-law localized
states. The multifractal analysis for the wave functions
belonging to this state is given in the next section.

C. Multifractal analysis

I~
CV

CI

0

From the study of the transmission coefficients, we
know that applied electric fields change a critical state to
an extended state for R & 2 and to power-law localized
state for R )2. We also know that the behavior of g for
field-induced extended states has features different from
those of ordinary extended states. In connection with
this fact, it is interesting to note that, as previously men-
tioned, Delyon et aI. proved the existence of a transition
from power-law localized to extended states in a disor-
dered system as the field strength increases, but could not
determine whether the spectrum of extended states is
singular continuous or absolute continuous. Further-
more, Kim and Socolar, ' who studied the effects of an
electric field on a quasiperiodic system with a Fibonac-
cian sequence of potentials, found that almost all states
are changed from critical to extended states with increas-
ing field strength, while some states still remain critical
and coexist with most extended states. With this back-
ground, we performed a multifractal analysis' on the
wave functions of the field-induced states, which is
known to be an effective method in distinguishing
different types of wave functions.

The wave functions used in the analysis are obtained
by the inverse iteration method. The probability mea-
sure p;(1) of finding the electron within the ith segment is

given by

0
p, (1)=,i =1,2, . . . , N/1, (13)

&Q4N

FICx. 5. (a) N dependence of g for R =1.2, E=6.291 854839
(dashed line), and R =0.9, E=7.300 800 400 (solid line).
N=60000 and I' =0. The real value of g for R =1.2 is three
times as large as that for R =0.9. (b) N dependence of g under
F=O.OOS —0.1SO (R =1.2). The inset represents in% depen-
dence, and it shows a power-law decay of the transmission
coefficients. The horizontal axis of the inset ranges from
9.239607 to 11.090125. (c) N dependence of g for large fields.

The solid line represents a state for R (2 and exhibits an ex-
tended behavior. The dashed line represents a state for R &2
and exhibits a power-law localized behavior. The real value of g
for R & 2 is 10 times as large as that for R (2.

N/1

Z(q, l)= g [p, (l)]q . (14)

Assuming Z(q, 1) behaves as a power of 1, Z(q, l ) —1

the exponent r(q) can be determined from the plots of
lnZ(q, 1 ) versus lnl.

Figure 6(a) represents lnZ(q, l) versus lnl for a wave
function belonging to a field-induced extended state,
which is obtained when R =0.9, E =7.300 800 400,
%=2' —1=16383, and F=6.80. For a given q, the

where the length of the system N is assumed to be divided
into N/1 segments, each of length l. Given p, (l), the par-
tition function (or generalized moment) Z(q, 1) is defined
as
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FIG. 6. (a) Plots of lnZ(q, l) vs ln/ for q= —6, —2, 2, 4, 10,
and 14 on the field-induced extended state with R =0.9,
E=7.300800400, %=16383, and F=6.80. (b) Plot of r(q) vs

q. The dotted curve is obtained from the slopes in (a), while the
solid line is obtained directly from Z(q, /) —/~ ' for a fixed value

of /.

slope of the straight line gives r(q). We use the least-
squares method to fit a straight line and obtain r(q)
which is given in Fig. 6(b). For positive and small nega-
tive values of q, the fluctuations of the curves are small,
and thus the fitting of a straight line is easy. However,
for large negative values of q, there exist large Buctua-
tions that make it very diScult to fit a straight line to it.
The fluctuations seem to be related to the fact that the as-
sumption that the partition function is a power of I may
not always be correct, and thus the normal multifractal
behavior breaks down at some negative value of q. ' So
we consider only positive and small negative values of q
for which the fitting of a straight line to obtain ~(q) is
reasonable. Note that similar fluctuations have previous-
ly been found in the analysis of an incommensurate sys-
tem, and therein the straight line has been obtained by
regarding the fluctuations as oscillations around a
straight line. For a simple fraetal or nonfractal case, one
obtains a straight line r(q)=DO(q —1), where Do is the
Hausdorff dimension, and DO=1 for a nonfractal case.
Thus the existence of a nonlinear r(q) indicates a mul-
tifractal behavior. The dotted curve in Fig. 6(b) that is
obtained from the slopes of the straight lines in Fig. 6(a)
shows a nonlinear function of q, which means that the

wave function belonging to the field-induced extended
state has rnultifractal behavior. The solid line in the
figure represents the result obtained directly from
Z(q, l )-l ~' with a fixed value of l, which is the instan-
taneous slope of lnZ(q, l) versus lnl at a given I. The
solid line has almost the same behavior as the dotted line
except in the range of large negative q, where the instan-
taneous slope is different from the average slope owing to
the large fluctuations. In connection with this fact, it is
interesting to note that Severin and Riklund argued
that r(q, l} shows multifractality up to all length scales
for critical states, while it shows a fractal-nonfractal
crossover at a certain critical length scale I, for extended
states. They found that the wave functions belonging to
the spectrum with finite measure have a finite critical
length l„while the states belonging to the spectrum with
zero measure do not. Thus it can be used as a criterion to
decide whether or not a state has multifractality for a
given l, although the (f,a) curves obtained from each
r(q) have slightly different values for large negative
values of q. We calculated r(q, l) of the field-induced ex-
tended states for various values of I, and obtained a non-
linearity up to 1-2000, which is one-eighth of the size of
the system. This means that the field-induced extended
states either have an I, greater than 2000 or have no I,
where the crossover to multifractality occurs. On the
basis of this fact, the spectrum in the presence of large
fields is expected to be a singular continuous or recurrent
absolute continuous one.

a,.(q)
Making the scaling ansatz p;(l)-l ' and assuming

the density of scaling exponents to be Q(a)da-I ' 'da, one can obtain the multifractal spectrum
(f,a) using the relations

f(a)=qa —r(q ), a(q ) = dr(q )
(15)

dq

As is well known, the extended wave function hasf=a= 1, and the localized wave function has an f(a)
consisting of two points, f(a=O)=0 and f(a=00)=1.
The point a=0 corresponds to the sites with nonzero %';,
and a = 00 to all other sites. For a critical wave function,
f(a) has a smooth curve defined on the finite interval
[amin~ amax]'

Figure 7(a) shows the (f,a) curve for a field-induced
extended state with the same parameters as in Fig. 6(a),
and I-2000. As previously mentioned, the fitting of a
straight line to obtain r(q ) for large negative values of q
is so diScult that we consider only the curve correspond-
ing to positive values and small negative values of q. Just
considering the part corresponding to these values of q,
we can see a smooth curve that indicates the multifractal
behavior. The same behavior is observed for a wave
function with 8 =1.2, E=6.291 854839, F=13.00, and
l-2000 [see Fig. 7(b)]. We also performed the same
analysis by varying l and obtained smooth (f,a) curves
indicating multifractality, which is consistent with the re-
sult obtained in the analysis of r(q }. Note that the Haus-
dorff fractal dimension f(q=0)=DO=1, because the
support for the measure remains the original line segment
at any stage, which always holds in the analysis of wave
functions.



6406 G. Y. OH, C. S. RYU, AND M. H. LEE 45

1.2

0.4

0.0
0.5

1.2

0.8

0.4

0.0
0.5

(b)

0.7

0.7

0,9

0.9

~ ~ ~ ~ ~ ~ ~ o~~g
~ ~

~ saOWOr.r'
~0

1.3

Figure 7(c) shows the (f,a) curve for a wave function
belonging to the power-law localized state. The parame-
ters are R =2.2, E=6.300 100000, F=32, and l -2000.
For small values of I, we obtained a smooth curve. How-
ever, for large values of I, the (f,a ) spectrum concen-
trates around point f=a=0 for large values of q, and
gives very large values of a as q goes to zero. Note that
the smooth curve in the figure is due to the finite size of
the system. In the infinite-system-size limit, the spectrum
is expected to go to the two points f(a=O)=0 and
f(a= ac ) =1. This is a feature of the (f,a) curve partic-
ular to the localized state. Recently, Mato and Caro,
who studied a one-dimensional disordered system with an
electric field, argued that the wave function belonging to
the power-law localized state has no multifractal charac-
ter, which is consistent with our result for the power-law
localized state for large values of l.

We believe that the multifractality obtained in the
wave functions of the field-induced states is not due to
the hierarchical character of the system, but rather is due
to the efI'ect of the applied field. The periodic or incom-
mensurate systems have no parameters such as R in a
hierarchical system with which to determine whether the
field-induced states are power-law localized or extended
states. The behavior of g in periodic or incommensurate
systems exhibits extended behavior under large electric
fields. We have performed a multifractal analysis on
these states, and obtained results similar to those for
the hierarchical system with R & 2. It is therefore a pos-
sibility that the multifractality is related to the electric
field rather than the potential structure of the system.

III. SUMMARY

(c)

0.8

0.0
0 12

I

16 20

FIG. 7. (a) (f,a) spectrum for the wave function belonging
to an extended state with R =0.9, F=6.80, and
E=7.300800400. (b) (f,a) spectrum for the wave function be-
longing to an extended state with R =1.2, F=13.00, and
E=6.291 854839. (c) (f,a) spectrum for the wave function be-
longing to a power-law localized state with R =2.2,
E =6.300 100000, and F=32.00.

In this paper we have studied numerically the e6ect of
an applied electric field on a one-dimensional hierarchical
system. As the field increases, the DOS becomes broad
and eventually goes to a continuum. The properties of
the states belonging to these spectra can be well described
by a quantity g. The behavior of g depends on the pa-
rameter R. In the R & 2 case, it shows a power-law local-
ized behavior for arbitrary values of the applied field. On
the other hand, in the R & 2 case, it shows a power-law
localized behavior for small fields and extended behavior
for large fields. However, the occurrence of the power-
law localized behavior in the R & 2 case may be the effect
of finite system size, and we believe, based on Eq. (12),
that in the infinite-system-size limit it will show an ex-
tended behavior.

We have performed a mu1tifractal ana1ysis on the wave

functions of the field-induced states. In the R &2 case,
the field-induced extended states show a multifractal be-
havior up to l -2000, which means that l, is equa1 to or
greater than 2000 and that the states are not ordinary ex-

tended states. It is therefore quite possible that the spec-
tra are not purely absolute continuous ones, but rather
are singular continuous or recurrent absolute continuous
ones. In the R &2 case, the power-law localized states
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show multifractality only for small values of l, which is
consistent with previous results. In this study, we took
the potentials to be of the 5-function type. It would be
interesting to know whether or not more realistic systems
with potentials, such as ones of a square-barrier type,
show the same behavior. These results will be reported
soon.
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