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Structure and thermodynamic properties of nanocrystalline metals
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Nanocrystalline (nc) metals show significant differences in their thermodynamic properties, such as
specific heat at constant pressure and thermal expansion, in comparison to polycrystalline metals. These
properties are explained in terms of a macroscopic analysis. Based on a quasiharmonic approximation,
the thermodynamic quantities are calculated as functions of the excess volume of the grain-boundary
component in nc metals. The enhancements of the specific heat and the thermal expansion coefficient
are accompanied by a reduction of the Debye temperature. The results show good agreement with ex-
perimental data.

INTRODUCTION

Nanocrystalline (nc} metals are polycrystals with a
crystal size of a few nanometers ( —10 nm} and a random
texture. ' Due to the small crystal size, up to 50%%uo of
the atoms are located at the intercrystallite boundaries.
Holz and Patashinskii describe nanocrystalline materials
as two-component systems made up of a skeleton cluster
of randomly oriented nanocrystallites (crystalline com-
ponent) and a labyrinthine cluster, containing highly
disordered material (grain-boundary component) (Fig. 1).
Since grain boundaries affect the properties of materials,
experiments on nanocrystalline metals show significant
differences in thermodynamic and elastic properties:
Rupp and Birringer measured an increase of the specific
heat at constant pressure of up to 30%%uo and linear in T for
nc-Cu and nc-Pd, confirmed by recent experiments on
nc-Ir. Measurements of the elastic properties of nc-Pd
indicate a reduction of Young's modulus Y to 71.5%%uo and
of the shear modulus G to 74%, which corresponds to a
reduction of the bulk modulus B (B= Y/[3(3 —Y/G)])
to 40%%uo. And, as a last example, there is an increase of
the coefficient of the linear thermal expansion by a factor
of between 2 and 3 (Refs. 1 and 7) (nc-Cu, nc-Pd), al-
though recent measurements suggest a smaller enhance-

FIG. 1. Schematic illustration of a two-dimensional cross
section through a three-dimensional nc material. The hatched
areas represent the nanocrystals with different orientations.
The dark regions separating the crystals are the disordered
grain boundaries.

ment between 1 and 2 (nc-Pd).
From a simple geometric estimate, the contribution of

the grain-boundary component to the material is 35/d,
where 5 is the thickness of the grain boundary and d is
the diameter of the crystallites. For nc-Pd with d =9
nm, about 30% of the material consists of the grain-
boundary component. Keeping in mind that the density
of nc-Pd is 90%%uo (Ref. 2) of the polycrystalline Pd, we get
for the excess volume hV of the grain-boundary corn-
ponent, EV=30%. Consequently, hV seems to be a
significant parameter for describing the grain-boundary
component and for the nanocrystalline metals, too.

THEORY

In order to develop a simple method to describe the
grain-boundary component of nc metals, some approxi-
mations have to be made. In a grain boundary, the num-
ber of nearest neighbors is reduced. This reduction can
be calculated for each boundary atom in every type of
grain boundary and can be used to estimate the energy
and entropy of the grain boundaries (see, for instance,
Ewing9 and Provan and Bamiro' ). Obviously, such cal-
culations are useless in this ease.

An alternative approximation is as follows. The reduc-
tion of the number of nearest neighbors in the grain
boundary results in a decrease of the density p of the sys-
tem. The density p is taken as the main feature of grain
boundaries which are approximated by a perfect crystal
structure having an enhanced nearest-neighbor separa-
tion compared to the equilibrium atom-atom distance of
the crystal, in such a way that the densities of the grain
boundary and of the dilated crystal are equal. The prop-
erties of the grain-boundary component are then estimat-
ed by the properties of the dilated crystal. The calcula-
tion of the dilated crystal is carried out for a simple cen-
tral force model in the quasiharmonic Debye approxima-
tion. " The free energy F(T, V), with V-p ', is then
given by

F(T, V) =P+3Nktt T ln(1 —e ei
) Nk&TD(O/T), —
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D(8/T)=3(T/0) f dx
e —1

is the Debye function.
The potential energy is given by

N

()) =—g (p( ~) r; r~ )—,
i+j

(2)

where
~ r, r~ ~

i—s the distance between atoms i and j and,
as the pair potential function (P(r), we choose the Morse
function"

+(r) D(e
—2b(r —a) 2e

—b(r —a)) (3)

Regarding only the nearest-neighbor interaction, Eq. (2)
is simplified to

$=6N(p(r), (2')

where r is the nearest-neighbor separation. The potential
constants are calculated to fit the energy of sublimation
and the coefficient of linear thermal expansion:

where P is the total potential energy, N is the number of
atoms, k~ is Boltzmann's constant, 8 is the Debye tem-
perature, and

(8O means the Debye temperature for r =a, 80=340,
280, 420 for Cu, Pd, Ir, respectively, ' and (p" =() y/(3r )

and

y(r) = (r/6—)y"'(r)/y"(r) (10)

(with y"'=() y/()r ).
Now we are able to describe the various thermodynam-

ic properties of the grain-boundary component in terms
of the excess volume AV= V/Vo —1, where Vo=ca is
the volume of the corresponding crystalline state at P =0
and T =0. For given T, P( V) or B ( V) indicate the sta-
bility limit of the. system. The critical excess volume 5 V,
is reached where P(V) has its negative maximum value
corresponding to B ( V) =0 (see Fig. 2). At the critical ex-
cess volume AV„ the grain-boundary component be-

comes mechanically unstable resulting in crack forma-
tion. Measurements of the elastic constants resulting in
the reduced bulk modulus 8 and calculation of the ex-

In this simple model, the Debye temperature and the
Griineisen parameter only depend on r and are written
as"

8(r) = [y"(r)/y" (a) ]' '8() .
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Since the pressure is given by P = (c}F/dV)T—, Eq. (1)
leads to the equation of state -10

3yNk~ T
+ D(8/T)

3cr Br V
(4)

with V=cr, c =1/&2 for fcc crystals, and y is the
Griineisen parameter. Equations (3) and (4) are used to
calculate the thermodynamic quantities'
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Cv, B, uL are the specific heat at constant volume, the
bulk modulus, and the coefficient of linear thermal expan-
sion respectively. The specific heat at constant pressure
is given by

Cr=Cv+9BVe~ T,

or, with 3az =yCv/(BV),

C~=C„+(yCv/BV)T .

0
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FIG. 2. The stability of grain boundaries of Pd as a function
of excess volume AV (AV= V/Vo —1, where Vo is the volume

of the crystal at P =0 and T=O) for three di8'erent tempera-
tures Tl =300 K, T2 =800 K, T3=1300 K. (a) the equation of
state P( V, T). The stability limit hV, is given by the maximum

negative pressure and indicated by arrows. (b) The bulk
modulus B ( V, T). 5V, is given by B ( 6V„T)=0.
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cess volume of nc-Pd from density measurements agree
with these estimates.

In Fig. 3 the Debye temperature und the Gruneisen pa-
rameter are shown as functions of excess volume hV, .
Due to the increase of the averaged atom-atom distance,
the phonon spectrum becomes softer indicated by a
reduction of the Debye temperature. Experimental evi-
dence for such a reduction is given by Herr et al. '

The dependence of C~ and aL on 6V is calculated us-

ing Eqs. (8) and (8'). For conventional polycrystals
(b V=O), the second term leads to a contribution in the
order of magnitude of (10 —10 )ks/E for each atom
and therefore it only plays a role at high temperature.
However, for a large excess volume we expect an essential
contribution due to the fact that 8 tends to zero. The
same argument is valid for aL . The first term, Cz, of Eq.
(8) provides the constant value of 3ks for each atom in
the harmonic approximation at high temperature and is
independent of AV. Anharmonic contributions to the
free energy have been previously discussed in the litera-
ture. ' ' A model also based on the nearest-neighbor
interaction with Morse potentials was introduced by
Shukla and MacDonald. ' In this model the anharmonic
contribution to CV can be easily calculated, but will only
give about 10 ks/E for each atom and will not change
essentially for varying hV. Only at low temperature is
there a dependence of Cv on b, V due to inhuence of 5 V

SCv

TEMPERATURE T ( arb. units )

FIG. 4. Schematic illustration of the specific heat at constant
volume for two Debye temperatures 8& &8& and the difference

sc,=c,(o, ) —c,(e,).

on the Debye temperature. In the harmonic case, Cz is
written as

C~ =3Nks 4D (8/T)—
exp8 T —1

For decreasing 8, Cz reaches its limiting value 3Nkz at
lower temperatures (see Fig. 4).

The dependence of Cz and aI on hV is shown in Figs.
5(a) and 5(b), respectively. Both of them diverge at the
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FIG. 3. (a) The increase of the Gruneisen parameter and (b)
the decrease of the Debye temperature as functions of the excess
volume.

h, v
FIG. 5. The divergences of (a) the specific heat at constant

pressure Cz and (b) the thermal expansion coefficient aL as
functions of the excess volume indicate the instability if the crit-
ical volume is reached.
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The results are shown in Figs. 6(a) and 6(b). The specific
heat shows an enhancement of about 10—25% in com-
parison to polycrystalline Pd, for eL we obtain an in-
crease of factor between 1.7 and 1.85. Both of the values
agree well with experimental data. ' '

DISCUSSION
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critical excess volume AV, due to the vanishing bulk
modulus B. By describing nanocrystalline metals as a
two-component system with a crystalline component and
a grain-boundary component with a large excess volume
of about EV=0.3-0.35, their specific heat and thermal
expansion can then be estimated by appropriate scaling of
the grain-boundary contribution. As an example, this is
done for nc-Pd with a crystallite size of 9 nm. Following
the geometrical estimates noted above, we obtain a
grain-boundary concentration of about 30%%uo and an ex-
cess volume XV=0.3 of the grain-boundary component.

FIG. 6. (a) The speci6c heat of nc-Pd with a crystallite size of
9 nm as a function of the temperature in comparison to poly-
crystalline Pd (also calculated in the quasiharrnonic approxima-
tion). The excess specific heat 5C&=CP' —Cjl' shows a linear
dependence on T. (b) The enhancement of the thermal expan-
sion coefticient aL of nc-Pd in comparison to polycrystalline Pd.

It was shown in the section above that the excess
volume 5V of the grain-boundary component of nc met-
als is the suitable parameter to describe the thermo-
dynamic properties of nc metals. 4V was used as an
averaged parameter. The grain-boundary component
was approximated by a dilated crystal structure instead
of a description of a11 the possible grain-boundary struc-
tures contained in nc metals. At first sight, this method
seems to be a crude approximation. However, the model
has the advantage that the method is easily applied and
leads to reasonable results. Instead of the quasiharmonic
approximation, Fecht uses the universal equation of
state (EQS) developed by Sinith et al. ' and gets similar
results for C~ and al . But the divergence of these quan-
tities is stronger in his model, which is caused by a diver-
gence of the Griineisen parameter y. This also leads to a
divergence of the vibrational entropy and to an entropy
stabilization of the grain boundary which is not observed
in experiments. Agreement between these two models is
obtained if the Slater formula y =0.5BB/BP —

—,
' in

Fecht's model is replaced by the formula developed by
Dugdale and MacDonald:

t) P/t) V —10P/9V
aPraV+ZPr3V

because the Slater formula is valid at P =0 only and not
at the large negative pressure appearing in Fecht's calcu-
lation. In Fig. 6 the calculations are made up to 600 K.
In reality nc metals start to relax at about 400 K result-

ing in a small increase of the averaged grain size. Al-

though the model cannot describe this structural relaxa-
tion, it is also valid for the relaxed structure.
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