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Extended-range tight-binding method for tunneling
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The calculation of multiband tunneling in semiconductor multilayer structures, including resonant
tunneling structures, has been hampered by computational problems such as limitations of numerical
precision or excessive requirements of computer time. Recently, a few techniques have appeared
which help eliminate these limitations. Here we present a related method and its derivation that
solves the tight-binding equations for tunneling problems.

Modern interest in tunneling in multilayer semicon-
ductor structures was stimulated by the work of Chang,
Esaki, and Tsu in 1974 (Ref. 1) and clearly demon-
strated by Sollner et al in 198.3.2 This work, and most
work for several years thereafter, was concentrated on
conduction-band tunneling in GaAs/Ga-Al-As based sys-
tems. For this system, the simple one-band eR'ective-mass
model was adequate to describe the main features of the
tunneling. 3

Soon thereafter, interest grew in understanding other
aspects of resonant tunneling. Mendez et al.4 ob-
served resonant tunneling due to holes in GaAs/Ga-
Al-As double-barrier structures. Mendez, Calleja, and
Wang and Bonnefoi ef a/. found indications of tun-
neling through X-point related conduction-band states,
also in GaAs/Ga-Al-As structures. Subsequently, res-
onant tunneling of holes in Si/SiGe structures was de-
tected by Rhee et al. aa, d Liu et cl. Recently, tunnel-
ing in the InAs/GaSb/A1Sb group of tunnel structures
has shown indications of providing higher current densi-
ties and peak-to-valley ratios than previous materials. 9 io

This system, which has a type-II band lineup, involves
tunneling in which the carrier converts from electronlike
to holelike depending on which layer it is in. In addi-
tion to these continuum types of tunneling cases, there is
substantial interest in tunneling between confined states
in coupled quantum wells, both due to conduction- and
valence-band tunneling.

It was realized early on that the simple one-band model
was inadequate to deal with these intrinsically multiband
situations. An early attempt to deal with the multiband
scattering problem was by Osbourn and Smith. "They
solved the problem at a single interface in the context of
the tight-binding model with complex-wave-vector bulk
states, and calculated transmission and reflection coef-
ficients at one interface. Schulman and Chang devel-
oped a more eFicient technique for calculating the com-
plex states and showed how to extend the tight-binding
model to calculate tunneling through multilayer struc-
tures using tight-binding transfer matrices. 2 Calcula-

tions of multiband tunneling within the tight-binding,
k p, and pseudopotential frameworks were carried out
by a number of groups and explained several important
features of hole tunneling and tunneling involving con-
duction X-point related states.

While all of the models had some success, they shared a
common problem. The repeated multiplication of trans-
fer matrices resulted in a loss of numerical precision, thus
limiting the width of the structures that could be mod-
eled. The limitation was most severe for the more com-
plete models which included more bands. This was be-
cause the more complete models included larger values of
the imaginary wave vectors of the complex bulk states.
Since the eigenvalues of the transfer matrices were es-
sentially the exponential of the wave vectors, the tranfer
matrices in these models were more ill behaved.

There have been three solutions presented to date
to these problems. One solution was that of Ko and
Inkson. Their technique involves rearranging the trans-
fer matrix to explicitly separate the growing and decaying
complex bulk states, at every transfer step. This was very
effective and allowed transfers over regions large enough
to model realistic structures. Since the model is based
on extended states at every transfer step, in contrast to
local orbital type models, it is most appropriate for k p
and pseudopotential frameworks. As it is, the model in-

volves inversions and multiplications of matrices with di-

mensions equal to the size of the bulk basis set at every
step. Although somewhat time-consuming, the method
is probably the best way to deal with the problem within
these two models. It can be adapted for local orbital
models, but this would involve the transformation be-
tween the local orbital basis and the extended state basis
at every step, an even more time-consuming process.

Very recently, two solutions have been presented ap-
propriate for local orbital models. The first involves the
creation of a large band matrix whose bandwidth is on
the order of the number of basis orbitals per unit cell

(times a small factor depending on the orientation of
the layers and the number of neighbors included in the
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model). This method was developed by Ting, Yu, and
McGillI~ based on a suggestion by Frensleyts to adapt
the waveguide technique of Lent and Kirkner to the
multiband problem. The dimension of the matrix is equal
to the number of basis orbitals times the total number
of layers plus a few more to describe the boundary con-
ditions on either side of the structure. The matrix rep-
resents the coefficients in a set of linear equations. Al-
though the matrix is very large, the fact that it is a band
matrix makes it necessary to store only the nonzero el-
ements and there is software available that can solve it
very efficiently.

Independently a second model was developed by
Boykin, van der Wagt, and Harris. It also involves the
creation of a large matrix, but the matrix size is re-
duced by a factor equal to the number. of layers that
can be transferred over before numerical-precision prob-
lems result. This reduction is done by using the tight-
binding transfer matrices to relate the coef5cients of the
orbitals within these subregions. Since, depending on the
model, this can be a significant factor, their matrix can
be much smaller than that of Ting, Yu, and McGill. For
example, for a nearest-neighbor zinc-blende s'sp tight-
binding model the factor can be about 30.

There are two tradeoffs for this improvement. First,
the matrix is not a band matrix and therefore cannot
make use of the special software which greatly speeds
up the solution of the band matrix problem. Second,
while there is some dependence on the computer and the
software used, the time gained by decreasing the size of
the matrix is approximately compensated by the time
required to multiply the transfer matrices together. This
is discussed further below.

Here we present a third model which is closely related
to the second of the above two models. It also uses trans-
fer matrices to reduce the overall size of the matrix. How-
ever, the matrix is a band matrix, as in the first method.
The derivation presented below is somewhat more intu-
itive than that presented in Ref. 17, and brings out the
band nature of the matrix in a simple manner. However,
the result is almost the same, and a simple reordering of
the basis in Ref. 17 would have produced the same result
as given below.

The present method follows as an extension of the orig-
inal tight-binding tunneling method and it is necessary
to briefly review it here. In that paper the structure
was divided into three regions as shown in Fig. 1. The
carrier is incoming from the right, region III ~ The region
of varying composition and potential is region II. The
transmission occurs in region I. The coefFicients of the
bulk complex-wave-vector states that make up the total
wave function are called f and fIII in those regions. The
f 's are organized so that the top half of each includes the
coefficients of the rightward propagating real states and
of the complex states that exponentially decay to the
right. The bottom halves are for the leftward propagat-
ing real states and complex states that decay to the left.
This can be written fI = (f+,f '

) fI and f a.re
related by the total transfer matrix

fIII MfI

Mg M2 ML.) Ml

FIG. 1. Diagram of multilayer regions. The carrier is in-
coming and reflected in region III. Region II is the varying
composition and/or potential region. The transmitted carrier
is in region I. Region II is divided into L subregions traversed
by the M matrices.

The incoming real state is a given and the exponentially
growing states on the right must have zero coefficients,
so fIII is known. Similarly f+I represents the states expo-
nentially growing to the left and it must be zero. Equa-
tion (I) must then be solved for f+III and fI . This was
done by writing

(M+M )
with the result

(SIII)-ICOSI

U is the multiplication of the transfer matrices over all
of the N layers in region II plus one, to get over both
bordering interfaces:

V —TN+)T)y, . , T2T~.

S and SIII are the matrices which give the local orbital
coefBcients of the complex bulk states. They are matri-
ces formed by putting the local orbital coefficients of the
complex bulk states into columns.

In this method M is split into a product of I ma-
trices, each one of which is a product of a chain of
the T matrices whose number is small enough so that
precision is not lost, as in Ref. 17. We can write
M = M M, . . . , M M, where for convenience we
let (SIII) I be considered as part of M and S be in-
cluded in MI. Let C(i) be the column vector of the co-
efficients of the local orbitals on layer i. Then, by trans-
ferring from left to right, we have a chain of equations
relating the coefficients fI III and C(i):

C(iI) = M'f',
C(i2) = M C(iI ),

C(iL, I) = M 'C(iL, g),
f"=M C(il. I),

(6)

f+ ——M+ f + M+p f+

The loss of numerical precision occurs in the formation
of the matrix M, which can be written



6284 BRIEF REPORTS 45

where the i~ designate the layers at the boundaries be-
tween the regions transferred over by the M'. These
equations must now be rearranged so that the unknowns,
f+ttr, ft, and the C(i)'s are on the left of the equal sign,

and the knowns, f and f+, are on the right. This is
easily done in a similar fashion as above for M itself by
splitting M into four submatrices. The result can be
written in matrix form as

(—M'
—M

1 0
0 1

—M)z+ —M)—M + —M
1 0
0 1

—M)+ —M) 1
—M + —M 0

—M~~+ —
M~ 1

—M+ —M 0)

(
C+(ti)
C-(it)
C+(tz)
C (t2)

C+(i~-t)
C (i. t)

fI II

(M)~+ f(~ )
M +f+

0
0

0
0
0
frrt

(7)
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FIG. 2. Hole transmission vs energy for a double-barrier

A1As/GaAs/A1As double-barrier tunnel structure. Solid line,
method of Ref. 12; dashed line, our method.

Note that the M' for i greater than 1 are also split into
four parts, but for clarity of presentation only. The ma-
trix equation has the familiar "Az = b" form, where A is
a known matrix, b is a known vector, and z is to be found.
As discussed above, it can be solved very efBciently us-

ing conventional software, such as from LINPACK, using
the band matrix versions. The main difference with the
matrix of Ref. 17 is the placement of f' and f+ at op-
posite ends of the column vector, instead of together at
one end.

Figure 2 shows the results of a calculation for the trans-
mission of carriers entering as heavy holes versus energy
through an A1As/GaAs/A1As double-barrier structure
with 6/12/6 monolayers, respectively (17 A/34 A./17 A).
The energy zero is the GaAs valence-band edge. There
is a 0.05-V drop across the structure. The solid line was
found using the method of Ref. 12 and the eKects of the
numerical instability can be seen. For even larger struc-
tures, the calculation deteriorates rapidly. In contrast,
the results of our method, the dashed line, are smooth.

For the case shown in Fig. 2, region II was split up into
only two subregions, i.e. , M = M M was used. This

was found to be usually su%cient for the region of the
double-barrier struct, ures alone. For more complicated
problems, e.g. , when the space-charge regions are also
included, 4 much longer ranges are needed. However,
for this simple case, Eqs. (6) and (7) simplify in that
there is no need to introduce extra C(i)'s. Equation (6)
becomes

C(i, ) = M'f',

f"' = M C(i, ).

Eliminating C(iq) gives

(M2) —1fIII M 1 fI

This is then rearranged as above so that the unknowns
are on the left, and the knowns on the right, for solution
by Az = b linear-equation software.

Slight modifications of the method make it suitable for
bound states or periodic systems, e.g. , superlattices. For
a bound state there is no incoming wave and the right-
hand side of Eq. (7) is zero and the matrix equations
are overdetermined. The bound-state energy is identified
as the energy for which the overdetermined equations
are mutually consistent. This can be done by finding
the energies for which the determinant is zero, or other
equivalent techniques.

For periodic systems the ft and ft~t are eliminated.
There is an additional condition to be satisfied, the Bloch
condition, M~C(iL, t) = C(il. ) = e'"DC(1), where k
is the wave vector of the Bloch state and D is the
width of the repeated region. This condition appears
in the upper right corner of the matrix equation for
C(1), C(i&), C(ig), . . . , C(iL, q). The equations can be
solved for given k in a manner similar to the bound-state
problem.

In conclusion, we have presented a derivation of a
numerically well-behaved solution for the tight-binding
model of tunneling. It is similar to the model of Boykin,
van der Wagt, and Harris, Jr. with this derivation clearly
revealing the band nature of the matrix. The size of
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the matrix involved in the present method and that of
Boykin, van der Wagt, and Harris, Jr. is significantly
smaller than that employed by Ting, Yu, and McGill as
stated above. However, a closer analysis reveals that the
time required will not difFer significantly. The solution of
Ting, Yu, and McGill for the band matrix linear equation
problem for the (100) nearest-neighbor model requires
about 4m N multiplications, where m is the number of
orbitals and N is the total number of individual layers
(each layer consisting of a cation-anion pair). The ma-
trix of the present method is smaller and thus requires

about 4m L multiplications for its solution. However,
the L M' matrices are constructed by multiplying to-
gether the T matrices [see Eq. (5)], and this requires
about 4ms(N —L) multiplications, making the net ef-
fort about the same. Actually, the forms of the matrices
are somewhat different in the two models, making precise
comparisons difFicult. Depending on this, other details of
the model, the orientation of the interfaces, and the efB-
ciency of the implementations of the computer codes, the
factor "4" will vary, but not significantly. Thus the total
time taken is similar for the two methods.
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