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Calculation of the exciton binding energies in type-II GaAs/A1As quantum-well structures:
Application of the perturbation-variational expansion method
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We report a calculation of the binding energies of both the heavy-hole and the light-hole excitons in

type-II GaAs/A1As quantum wells as a function of the size of the AlAs layer (or GaAs layer). We use a
perturbation-variational expansion method to the first order in perturbation expansion. The exciton
binding energies are calculated assuming infinite potential barriers and results thus obtained are com-

pared with those of a published variational calculation. We find that the values of the exciton binding

energies that we calculate are somewhat lower than those obtained using a variational calculation, even

for small wells similar to the perturbation-variational method results in type-I quantum wells. An ex-

planation of this behavior in terms of the average spatial separation of electrons and holes is given.

The study of the excitonic properties in quantum-well

(QW) structures has drawn considerable interest in recent
years. Most of the work has been reported in the type-I
QW structures, where an electron and a hole are confined
spatially in the same well. For narrower well sizes [typi-
cally GaAs-layer thickness ( 30 A (Refs. 1 and 2 )], the
band-edge configuration at the GaAs-AlAs heterojunc-
tion may become "staggered" or type-II. In this case, an
electron and a hole are confined in spatially separate
wells (see Fig. 1). There have been a few studies in type-
II QW systems. Duggan and Ralph have calculated the
exciton binding energies variationally in the type-II
configuration using the infinite potential barrier model.
Matsuura and Shinozuka studied the same problem us-

ing the variational approach by incorporating slightly
different trial wave functions. Salmasi and Bauer stud-
ied the electron-hole exchange interaction in type-II
QW's, while van Kesteren et al. considered the order of
the X conduction-band valleys in type-II GaAs/AlAs
QW's. Recently, Degani and Farias have calculated the
exciton binding energy in type-II quantum wells in the
presence of a static electric field using a variational ap-
proach.

In this Brief Report, we report a calculation of the
binding energies of both the heavy-hole and light-hole ex-
citons in type-II GaAs/A1As QW's as a function of the
size of the A1As layer (or the GaAs layer). We use a
perturbation-variational expansion method to the first or-
der of perturbation expansion in our calculations. This
approach was used by Mei and Lee and Lee, Mei and
Liu in the study of the impurity states in anisotropic
crystals, by Lee and Lin' for the study of Wannier exci-
tons in a thin crystal film, and later by Jiang" and Eken-
berg and Altarelli' in the calculations of the exciton
binding energies in type-I GaAs/Al Ga, As QW's.
These authors included only terms up to first order in
perturbation expansion in their calculations. We calcu-
late exciton binding energies assuming infinite potential
barriers and compare our results with those of a varia-
tional calculation.
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where mp is the free-electron mass and p+ is the trans-
verse reduced mass of the electron-hole pair in the x-y
plane. The potential wells for electron V, (z, ) and for the

The band-edge configuration for the type-II system and
the corresponding coordinate system are shown in Fig. 1.
The holes are confined in the GaAs layer while the elec-
trons reside in the indirect-band-gap AlAs layer. Assum-

ing perfect confinement for both electrons and holes
(infinite-potential-barrier model), we replace the different
dielectric constants of GaAs and AlAs materials with
their average static dielectric constants up=12. 3. This
eliminates any image-charge corrections. Under the
effective-mass approximation, and neglecting the off-

diagonal terms of the Kohn-Luttinger Hamiltonian, ' the
total Hamiltonian of the exciton associated with either
the heavy-hole or the light-hole band can be expressed as
(in cylindrical polar coordinates) '
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where (rn, )I and (m+)I are the effective masses of elec-
tron and (heavy or light) holes, respectively, in the direc-
tion of growth [the transverse masses are (m, ), and

(m+), ]. All the other mass values can be expressed in

terms of Luttinger parameters' y, and y2 as in Ref. 15:
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such a way to minimize the expectation value of the per-
turbation term H' to all orders of perturbation expan-
sion. For the optimum value of A, we minimize
~!bE'''(A, )/E '(l. l~, which leads to fast convergence of
the perturbation series.

The solutions for the unperturbed part Ho are exactly
known. The electron and hole motion in the z-direction
is a one-dimensional problem with infinite potential bar-
riers, while the exciton part is equivalent to the 2D hy-
drogen problem. The 2D problem has been discussed by
Ralph' and Shinada and Sugano. ' The eigenvectors for
the unperturbed Hamiltonian Ho are:

FIG. 1. The electron-hole pair in type-II QW structure.
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hole V(, (z(, ) are assumed to be infinite, where the range of
z coordinates are 0 z, & L, and —Lh ~ zh ~ 0. For the
perturbation-variational method, we rewrite the total
Hamiltonian as follows:
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and the eigenenergies are given by
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We have added and subtracted the term ke /e~, which
corresponds to the Coulomb interaction between the
electron-hole pair in the x -y plane. The term H'(A, ) in H
can be taken as a small perturbation that physically
represents the difference between 2D and 3D Coulomb
interactions. For a general state, E, the energy pertur-
bation series is E =E '(A, )+b,E''((A, )+, where

Eg '(A, ) is the unperturbed solution and bEs" (((, ) is the
first correction.

Since the total Hamiltonian in Eq. (1) does not depend
on the parameter A, and only A. determines how much en-
ergy is divided between Ho and H', we can choose A. in
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where n„n(, =1,2, . . . and L„' !'
! (p) are the associated

Laguerre polynomials, R*=@+e /2eoA is the 3D
effective rydberg, and a& =co% /p+e is the transverse
effective Bohr radius, while

~
m

~
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For the ground state (lowest subband exciton)

(n, =n(, = l, n =m =0), the first-order perturbation to the
ground-state energy is:
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where P, =4A, (z, —
z(, ) /a & 0, while Hk ( ) is the

Struve function of order k and N&( . . - ) is the Neumann
function of order k. '

Based on the first-order perturbative energy correction,

I

the optimum condition requires AE ' ' '( A, ) =0, and thus
determines the variational parameter A, =ko. Therefore,
the binding energy for the ground-state exciton is
E =4R*X
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FIG. 2. Variation of the exciton binding energy of the
heavy-hole (HH) exciton and the light-hole (LH) exciton as a
function of A1As-layer thickness for GaAs-layer thickness

0

Lh =20 A. Perturbation-variation expansion ( ———); varia-
tional calculation (Ref. 3) ( ).

We have calculated the values of the binding energies

Ez of the heavy-hole and the light-hole exciton as a func-

tion of A1As-layer thickness (or GaAs-layer thickness)

up to first-order perturbative correction. The values of
the various physical parameters involved
in the GaAs/A1As QW's that have been used in our
calculations are (m, )I = l. lmo, (m, ), =0.19mo, '

y, =6.93,ye =2. 15; for heavy-hole mass [(m+ )I
=0.38mo, (m+ ), =O. limo]; for light-hole mass [(m )I
=0.089mo, (m },=0.21mo]. The reduced mass in the
x-y plane for the heavy-hole exciton is p+ =0.07mo and
for the light-hole exciton p =0.1mo.

In Fig. 2 we display the heavy-hole and light-hole exci-
ton binding energies versus the A1As-layer thickness, for
the GaAs-layer width LI, =20 A. The exciton binding

energies calculated with a variational approach using the
above-mentioned material parameters along with the re-
sults from the first-order perturbation-variational expan-
sion are displayed. The first-order perturbation expan-
sion does not give results close to variational results even
for small A1As widths; a second-order perturbation term
was calculated and the additional correction was less
than 0.1 meV. For heavy-hole excitons, the percentage
change in the binding energy from the first- to second-
order correction in perturbation expansion is about

0 0

0.25% for Lh =20 A and L, =40 A and increases for
larger A1As wells (at L, =20 A and L, =80 A, the per-
centage correction is about 0.41%). Regarding the
difference between the variational and the perturbation-

0

variational results, we observe that for LI, =20 A and

L, =40 A the difference is 0.71 meV, while for Lh =20 A

0

and L, =80 A the difference increases up to 0.92 meV.
As the A1As well thickness increases, the exciton binding
energy Es reduces from the two-dimensional value 4W*

to the three-dimensional result %*. Similar results hold
for the light-hole exciton binding energies. The percen-
tage change in the binding energy from the first- to
second-order correction in the perturbation expansion is
about 0.35% for LI, =20 A and L, =40 A, and 0.57% for

0 0

LI, =20 A and L, =80 A. The variational results are
different from the perturbation-variational results as fol-

0 0

lows: at L& =20 A and L, =40 A the difference is 1.31
meV, while at LI, =20 A and L, =80 A it is about 1.47
meV. For both the heavy-hole and the light-hole exci-
tons, the binding energies are decreasing for increasing
GaAs widths, due to the increase of the separation of
electrons and holes that produces a loose exciton quasi-
particle.

For comparison, we tested the perturbation-variational
method in another QW system; we calculated the exciton
binding energies associated with heavy and light holes for
type-I QW's. The difference between the perturbation-
variational method and the variational results' is the fol-
lowing: for heavy-holes at L,, [&]=50 A it is about 0.23
meV, while for L, [&]=250 A, it is about 0.80 meV; for
light holes the results for the same well widths are 0.11
and 0.77 meV, respectively. Similar to Jiang's" results,
which were derived for type-I QW's for finite barriers,
our results show that the first-order perturbation correc-
tion is not enough to approach the upper bound results of
the variational calculation. ' Higher-order corrections
are needed to approach the variational upper bound.

In order to compare the results between type-I and
type-II QW's, we point out the location of electrons and
holes in these QW's: in type-I, electrons and holes are
confined in the GaAs well, while in type-II, electrons and
holes are separated in different wells. This implies that
the average relative separation between electrons and
holes (( ~z,

—
zh ~

) /a&*~&&~) is different for both cases; for
example, in the type-I case, ( ~z,

—
zh ~ ) /a;

-0.21L,~h~/a,
* (both electrons and holes reside in

the GaAs well), while for type-II QW's, (~z, —
zz )/

a,*, -(L, +Lz )/2at*, (where a,* and a,*, are the Bohr radii
for type-I and type-II QW's, respectively). The magni-
tude of the perturbation term H' depends on the ratio of
the average separation of the electron-hole pair over the
corresponding exciton Bohr radius. The value of the rel-
ative separation, namely ( ~z, —z„~ ) /a t ~„~, is an indica-
tion of the magnitude of H'. Le us estimate for which
well widths for both cases the quantity ( ~z,

—zz ~
) /a,*~„~

0 0
is the same: if we take L, =20 A and Lz =40 A, and
a

&&
—93 A for the type-II heavy-hole exciton case,

(~z, —
zi, ~)/a,*,-0.32. For the type-I case, a,' —165 A,

and this corresponds to L, &h]-250 A. Our results indi-
cate that in the type-I case, the difference between the
variational and perturbation results, especially around
L, ~h~-250 A (type-I), is almost the same as in the type-II
case for L, =20 A and L& =40 A (about 0.75 meV}.
Thus, the difference between the two-dimensional and the
three-dimensional Coulomb interaction (H'} depends on
the relative separation ( ~z, —zz ~

) /a t ~tt~, its value is
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determined by the exciton Bohr radius and the average
separation of the electron-hole pair. For type-I QW's,
widths about 50 A can be considered small due to the
large Bohr radius ( —165 A for heavy hole), while for
type-II QW's, the same widths are large in magnitude,
compared with the corresponding Bohr radius. As QW
thickness increases for both types, the three-dimensional
Coulomb interaction becomes dominant, and summation
over high-order corrections is required to calculate the
exciton binding energies. Our results indicate that for the
overall picture of the perturbation-variational method,
corrections up to first order are not sufficient to repro-
duce the variational results, and higher-order terms have
to be calculated.

In conclusion, we have presented a calculation of the
binding energies of both the heavy-hole and the light-hole
excitons in type-II GaAs/A1As QW's as a function of the
size of the A1As layer (or the GaAs layer). We have used
a perturbation-variational expansion method and includ-

ed terms up to first order in perturbation expansion in
our calculations. The exciton binding energies are calcu-
lated assuming infinite potential barriers and results thus
obtained are slightly less in magnitude with those of a
variational calculation. We have found that summing
over all higher-order corrections is essential to deriving
the exciton binding energies for type-II QW's; the satne
result applies to type-I QW's. We have demonstrated
that the spatial separation for the electron-hole system
and the corresponding Bohr radius inAuences the pertur-
bation expansion parameter not in the same way for
type-I and type-II QW's; the expansion parameter
( ~z,

—
zh ~ )/a,*~„~ has the same value for large type-I

wells and small type-II wells.
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