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Stochastic approach to recombination luminescence with retrapping in the steady state
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Due to the discrete nature of electrons and holes, fluctuations will occur in various particle densities
associated with thermally stimulated luminescence. The master equation for a simple stochastic model
with one trapping level and one recombination level is derived. An expansion of this equation by van

Kampen s 0-expansion method allows one to recover the usual deterministic macroscopic kinetic equa-
tions as well as to obtain the Fokker-Planck equation governing the fluctuations of the various particle
numbers. A set of evolution equations for the two lowest moments of the fluctuations is then found;
since the solution of the Fokker-Planck equation is a multivariate Gaussian distribution, this completely
determines the statistics of the fluctuations to this order of the Q expansion. In the steady state, one can
obtain expressions for the macroscopic particle densities that are of fairly simple form in the weak-

source limit. Similarly, one can find and solve in this limit the algebraic equations for the second mo-

ments and the kinetic equations for the first moments of the fluctuations. From these, one derives expli-
cit forms for the correlation functions, in particular, for the luminescence autocorrelation function,
which is a sum of exponential decays. From measurements of the autocorrelation function of a lumines-

cent material, one can deduce the model parameters.

I. INTRODUCTION

Thermally stimulated luminescence is a widely used
technique in radiation dosimetry. ' To explain the rela-
tion between the observed luminescence and the radiation
dose to which the sample has been exposed, one usually
invokes a drastically simplified model. By combining
various thermoluminescence observations with those of
other methods, one can determine values for the model
parameters and thus characterize the dosimetric proper-
ties of the material. The simplified models still contain a
large number of parameters; since in thermoluminescence
one only observes the recombination radiation, only a
subset of these parameters can be found. Also, one must
have some idea of the physical processes occurring in a
given material before a particular model with its atten-
dant assumptions and approximations can be used with
confidence. The advantage of thermoluminescence is the
relative ease of measurement and the apparent simplicity
of the result —a luminescence curve whose peak and gen-
eral shape can be related to the parameters of the

simplified physical model. It would thus be useful to
have another luminescence quantity that is also easy to
measure, can provide qualitative information about what
processes occur in the sample material, and will give
quantitative estimates for the model parameters (to find
the unknown ones and to serve as a check on the ones
found by other methods).

As in all physical systems, there are fluctuations in the
various quantities. In particular, the discrete nature of
rnatter restricts the number of electrons, holes, and pho-
tons in the various states to integral values. The proper-
ties of such fluctuations, especially those of the thermo-
luminescence itself, can be exploited to glean additional
information about the physical processes in the material.
If the model used to describe these processes is realistic,

one can also obtain values for the model parameters. In
such a case, then, these parameters would have real phys-
ical meaning. In any event, fluctuations in thermo-
luminescence have not been considered; it would seem
useful to determine what additional information they can
provide.

%ith the goal of finding the physical processes and
model parameters involved in thermoluminescent do-
simetry, one could thus propose a stochastic formulation
of the deterministic models and kinetic equations. This
allows one to incorporate the notion of fluctuations into
the usual deterministic scheme. The purpose of this pa-
per is to present the details of such a stochastic approach,
which is based on van Kampen's 0 expansion. To illus-
trate the ideas the simplest possible model will be used, in
which there is one trapping level and one recombination
level. Definitions for the various quantities used and the
kinetic equations for the deterministic macroscopic ver-
sion of this model are presented in the next section. Then
a stochastic formulation is introduced by considering the
probability that the system is in a certain state (defined by
the number of electrons and holes in each level) and by
deriving the master equation this probability must obey.
Because its coefFicients are nonlinear in the number of
particles, the master equation is expanded in a small pa-
rameter that decreases as the size of the system increases.
From this expansion the statistics of the particle densities
are developed; the usual deterministic macroscopic kinet-
ic equations are recovered and the Fokker-Planck equa-
tion governing the fluctuations is obtained. The equa-
tions for the fluctuations of the luminescence itself are
found from a slight generalization of the model. In par-
ticular, one obtains the set of evolution equations for the
two lowest moments of the various fluctuating quantities.
In the linear noise approximation these fluctuations are
described by a multivariate Gaussian distribution that
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varies in time through its dependence on the macroscopic
variables of the model. In the special case of the steady
state, in which all macroscopic variables are independent
of time, the fluctuations obey a set of linear differential
equations with constant coefficients.

Another assumption that will be made is that the pro-
duction rate J of electron-hole pairs is small; all quanti-
ties can be expanded in a power series in J' . The main
result is an expression for the lowest-order autocorrela-
tion function for the observed intensity, from which one
can in principle obtain all the parameters of the model.
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II. THKRMOLUMINESCKNCE MODEL
AND KINETIC EQUATIONS

In a sample of real material there are an unknown
number and type of impurities and defects. Upon irradia-
tion electron-hole pairs form; in this paper the model is
considered in which the electrons migrate to traps and
the holes migrate to recombination centers. Upon
thermal activation the electrons escape from the traps,
enter the conduction band, and eventually recombine
with the holes in the recombination centers, which results
in the emission of light. If the sample is continuously ir-
radiated at a constant rate, electrons and holes will be
generated continuously in the sample, and a nonzero (but
in most cases small) steady state will exist. Such a situa-
tion has several advantages. It allows one to calculate
more easily the fluctuations and to interpret them more
readily in terms of the model parameters. In an experi-
ment, it is easier to measure fluctuations about a constant
mean field than about a rapidly varying signal as occurs
in thermoluminescence studies. The detailed physical
processes that occur are ignored and replaced by simple
parameters to describe the complicated physics.

In a unit volume of the sample material there are N
metastable traps, in which n electrons are trapped. Upon
thermal activation there is a probability s exp( Elk+ T)—
that in unit time an electron will leave a trap and enter
the conduction band, where E is the energy depth of the
trap below the conduction band, T is the temperature, kz
is the Boltzmann constant, and s is a pre-exponential fac-
tor. There are n, electrons per unit volume in the con-
duction band; the probability per unit time that a con-
duction electron falls into a trap or into a recombination
center is A„and A, respectively. Each of the m„holes
per unit volume in the valence band has probability 8
per unit time to enter a recombination center. There are
m holes per unit volume in the recombination centers of
which there are M per unit volume. In this simple model
there is only one trap level and one recombination level;
there is no direct recombination from the traps, only
through the conduction band. The intensity of the
luminescence, I, is determined by the rate of recombina-
tion of electrons and holes; every recombination results in
photon emission, and recombination is the only loss
mechanism for the holes. All photons escape from the
sample without absorption or other interaction. Replace
the complicated details of the interaction of the incident
radiation with the sample and of the production of the
electron-hole pairs by the parameter J, which is the num-
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FIG. 1. Energy levels, transition probabilities, and electron,
hole, and level densities for a simple generalized kinetic model
that allows electron-hole production during luminescence.

deaf —E/kB T= A„(N n)n, —s—e n,

d~c —E/k~ T= —A mn, —A„(N —n)n, +se n+J . (4)

These are not independent, since

d pyg de „dn dll
+ = +

dt dt dt dt

For this model, conservation of charge leads to

m+m, =n+n, .

%hen J and m, are set equal to zero, one recovers the
usual kinetic equations for thermoluminescence. ' The
source term J can be expressed in terms of physical quan-
tities as

J= g J dE I;„,(E)o k(E)Nk,
k

where I;„,(E) is the incident radiation 6ux at energy E
and crk(E) is the cross section for radiation of energy E
to produce an electron-hole pair by interacting with sam-
ple component k, of which there are Nk per unit volume.
The energy emitted per unit sample volume by electron-
hole recombination is given by

I=A mn, .

ber of electrons (or holes) produced in a unit volume of
the sample in a unit time interval. The electrons and
holes are introduced into the conduction and valence
band, respectively.

The model is illustrated by Fig. 1 and satisfies the ki-
netic equations

dm = —A mn, +8 (M —m)m„,
dt

dN2 = —8 (M —m)m +J,m U
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In this model this emission is due to fluorescence as well
as to thermoluminescence. Integration of (1}—(4) for a
given source J in the limit of very small s exp( E—lks T)
allows one to calculate the initial values for the usual
thermoluminescence case.

In general the set of kinetic equations (1)—(4) cannot be
solved analytically; one must resort to numerical solu-
tions. There is one observed quantity, I, while there are
seven sample parameters, A„, A, B, s, E, 1V, and M,
four initial conditions, m (0), n (0), m„(0), and n, (0), and
two parameters that can be manipulated by the experi-
mentalist, J and T. To obtain values for at least some of
the sample parameters one usually incorporates results
from several different sets of experimental measure-
ments. The kinetic equations govern the evolution of
the macroscopic concentration of electrons and holes,
whereas in any real system there are always fluctuations
about the expected values. Since such fluctuations usual-

ly provide additional information about a system, it ap-
pears useful to study the fluctuations associated with the
model in Fig. 1 and (1)—(4). To that end the next section
takes up a stochastic formulation of the luminescence
model of this section.

III. STOCHASTIC FORMULATION

In the previous section the discrete number of elec-
trons and holes was described by continuous,
differentiable functions. This was possible since the

quantities are macroscopic; the number of particles is so
large that any discrete change is relatively continuous. In
reality, the number of particles is an integer (usually very
large) and any changes (usually very small) are also in-
tegral as well as instantaneous. A continuous,
di8'erentiable function is still available, however, in the
quantity p (k, 1,m, n i t), the probability that at time t there
are k holes in the valence band, l electrons in the conduc-
tion band, m holes in recombination centers, and n elec-
trons in traps. The four numbers k, I, m, and n are not
independent; from (6)

0+m =l+n .

The formulation of a kinetic equation for p(k, l, m, nit)
and its solution under suitable approximations will follow
the work of van Kampen. Consider the small change in

p that occurs in a short time ht by relating the probabili-
ty there are k, l, m, n particles at time t +Et to the prob-
abilities at time t that are connected to k, I, m, n by a sin-
gle transition, i.e., that an electron leaves the conduction
band and recombines with a hole, that a conduction elec-
tron becomes trapped, that a trapped electron is excited
to the conduction band, that a hole leaves the valence
band and enters a recombination center, and that an elec-
tron and hole produced by irradiation enter the conduc-
tion and valence bands. In the limit ht goes to zero this
leads to the master equation

d Am A„
dt '' ' 0
—p(k, l, m, nit)= (E&E —1)Imp(k, l, m, nit)+ (E&E„'—l)l(N n)p(—k, l, m, n, it)0

8
+tr(E& 'E„—1)np(k, l, m, n, it)+ (E&E ' —1)k(M —m)p(k, l, m, nit)

Q

+QJ(E& 'E& ' —1)p(k, l, ,mnit),

where for convenience the quantity

and the step operator E de6ned by

E„f(n, m) =f (n + I, m)

are introduced.
One difference between the deterministic quantities

m„, n„m, n and the probabilistic ones k, l, m, n is that the
former refer to particle numbers per unit volume of the
sample whereas the latter refer to the number of particles
in the entire sample. This difference is expressed by the
relation m, =k/0 and similarly for the other quantities;
here 0 is the volume of the sample. This produces
different units for the coefficients; for example, [ A (m„)]
is in units of cm s ' while [ A (k) ] is in units of s '. To
maintain the more customary former units, in which the
coefficients do not depend on 0, the explicit 0 depen-
dence is shown in (10).' For convenience the source
term J is taken to be a deterministic quantity, so that it
has no fluctuations. The master equation (10) is still

correct when any of the four quantities k, l, m, n vanish if
the corresponding terms with k —1, l —1, m —1, n —1

are dropped. The equations for m =M and n =X have a
natural cutoff. Since particles are continuously generated
via J, there need not be an absolute upper limit on
(k + m) or (I +n) Asuitable . initial condition for (10) is

p(k, l, m, n, it =0)=5(k, ko)5(l, lo)5(m, mo)5(n, no) .

(13)

Each process considered in (10) can affect in two ways
the probability that a particular number of particles ex-
ists: The probability increases if another state changes
into the state in question, and the probability decreases if
this state changes into any other state. This balance has
the immediate consequence of conserving the total proba-
bility. The kinetic equation for the expected value (k )
of a quantity such as k can be derived by multiplying (10)
by k and summing over the four variables; it contains the
higher-order moment in k(M —m). This difficulty (non-
closure of the moment equations) arises because the
coefficients of the p's in (10}are not linear in the particle
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numbers. To obtain the expected values and the fluctua-
tions of the particle numbers, one must use a more so-
phisticated systematic expansion of the master equation.
One such method is the Q expansion of van Kampen,
which is discussed in the next section.

IV. EXPANSION OF THE MASTER EQUATION

Since the relative size of fluctuations decreases as the
system becomes larger, it is natural to approximate (10)
by an expansion in the small parameter Q '. To do so
one must display explicitly the Q dependence of all the
terms in the equation. Now p (k, l, m, n

~
t) itself has some

characteristic dependence on Q. For a linear system of k
particles the fluctuations are of the order k '~, so their
relative effect on the macroscopic properties goes like
k ' . Thus, the relative importance of the fluctuations
depends on the size of the system (denoted by n}. One

expects p to have a sharp peak around Q with a width—Q' . To incorporate these observations into an expan-
sion of the master equation, define k, I, m, and n by the
relations"

k =np(t)+n'i r,
I =np(t)+ n'~'g,

m =nq(t)+n'"~,
n =nq(t)+n'"g,

(14)

(15}

(16}

(17)

where p, P, f, and y are as yet undefined functions and r,
g, rl, and g are variables more directly tied to the fluctua-
tions. The first set of terms, in Q, are macroscopic; if
they are chosen to follow the motion of the peak in time,
the p will not depend on Q when expressed as functions
of r, g, rl, and g. Then write

p(k, l, m, n~t)=p(np+n'~ r, n(t+n' g, ng+n' rl, ny+n' g~t)=II(r, (,rl, g~t) .

Since

E II(r)=II(r+n ' )= 1+n ' +—n ' + II(r),a 1 a
ar 2 a7

the master equation (10) can be written with explicit n dependence as

d „ail,g aII dp aII dp + aII dQ+ aII dy
dt

'' ' ' at ar dt ag dt arl dt ag dt

=A.n-'In '"(a,-+a )+n-'[ap +-'(a'+a')]+ ]( ny +n'"g)( ny +n'"q) 11

+ A„n-'[n-'~'(a, —a, )+n-'[ —a,a,+-,'(a', +a', )]+
x(np+n'i g)[n(N —y) —n' g]II

+~[n-'"( a,+a—,)+n '[ a-,a, +—,'(a', +a', )]+ ](nq+n'"g)ll

+B.n-'[n-'"(a, —a„)+n-'[—a,a„+ (a', +a'„)]+

X(np+n'i r)[n(M —p) —n' rl]ll

+Jn[n-'"( —a,—a,)+n-'[a,a,+-,'(a', +a', )]+

(19)

(20)

=B p(M —f)—J,dp
dt

(21)

Expand this equation as a series in the system volume
Q, with terms proportional to Q', Q, Q ', and so on.
The leading term, in n'~, must vanish so (20) will not
diverge as Q becomes infinitely large; this condition is
satisfied if

p(0) =ko/n, P(0)=lo/n,

f(0)=m /n, y(0)=n /n .
(25)

I

which are just the macroscopic kinetic equations (1)—(4)
upon making the identification p~m„, P +n„g~— , m
and y~ n. The initial conditions are

d = A PP+ A„P(N —y) —oy —J, There is also the conservation relation

d = A PP —B p(M f), —(23) p+P=4+x. (26)

= —A„Q(N —y)+op, (24)
Now gather together the terms in (20) that are propor-

tional to Q, to obtain
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a" = A. (a,+a„)(y&+yg)11+A.yq[a, a„+-,'(a', +a'„)]ll

+ A„(a,—a, )[—yg+(N —x}g]11+A„y(N —x)[—ap, +-,'(a', +a', )]ll

+~( —a,+a, )gli+ ~x[ —a,a,+-,'(a', +a', ) ]11

+B (a,—a„)[(M —t/i)r —prI]II+B p(M —P) [ —a,a„+-,'(a', +a'„)]ll+I[a,a,+-,'(a', +a', )]11 . (27}

This is a linear Fokker-Planck equation whose solution is
a multivariate Gaussian distribution. ' One need only
find the two lowest moments to determine the solution
completely. To this end define the mean or expected
values

—(g'&= —2[A /+A„(N —X)](g') —2A P(gg)
a

+2(0+A„p)(g)+/[A Q+ A„(N —x)]
+J+o.y, (36)

(7)=f f f f rIIdrdgdgdg (28) —(rI ) = 2(B —p+A P)(r) )+2B (M —Q)(rg)
a 2

and similarly for the other three fluctuation variables.
Normalize the probability density II by imposing the
condition

f f f fIIdrdgdgdg=l . (29)

Since the fluctuations are finite, the integral over all fluc-
tuation space of any spatial derivatives of II will vanish
by partial integration. Multiply (27) successively by r, g,
g, and g and integrate each resulting equation over all of
fluctuation space, dr d g de dg. Integrate by parts to ob-
tain the first moment equations

—2A Q((ri ) + A PQ+B p(M —g), (37)

—
& g'& = —2(~+ A„y)(g'&+2A„(N —x}(g)

a

+ A. 0(N —X)+oX .

To obtain the cross terms, such as ( gq ), insert g into the
( ) of (32) and g into the ( ) of (31); to the sum of these
add the term in /pa&a„of (27), which becomes J times the
integral over II (which is equal to unity). Thus, by in-
spection of (30)—(33) one obtains

—(r) = —B (M —Q)(r)+B p(ri),C)

—(g) = —[A q+ A„(N —x)](g)a

—A P(r))+(0+A„P)(g),

(q) =B (M—q)(r) A—y(g)—a

(30}

(31)

—[A (P+Q)+ A„(N X)+B p]—(gg)

+(0'+ A„p}(rig) + A

—(g') = A„(N —x)(g')+( + A„Q)(g')a

(39}

—&gq) = —A q&g') Ay(q')—+B (M q)(rg)—a

—(A.y+B.q)(»,
—(g)=A„(N —X)(g) —( +A„y)(g) .a
at

(32)

(33)

—~X—A. (N —X)P

—[o+A„Q+ A Q+ A„(N —x)](g')
(40)

As one expects,

and the charge conservation condition yields

(34)

a, (gg) =B (M p)(rg)+ A—„(N —X)(g~) —A y(g)a

—[o+(A„+A )P+B p](gg) . (41)

The covariance o.
&

is defined to be

'. —:(( —
& &)(p—&p&))=( p) —

& )(p&—= (& p&),

(42)

& &+&~&=&g&+&g& . (35)

Note that while J does not explicitly appear in (30)—(33),
it does enter through its influence on the values of p, P, P,
and g.

For the second-order moments, multiply in turn by
r, r(, rg, . . . before integrating (27). Since r can be re-
placed by g+g —g, only the latter quantities need to be
calculated. Again by partial integration the equations for
(g ), (q ), and (g ) become

so the covariances satisfy the same kinetic equations as
do the second moments (this is obvious for the cross
terms from the way in which they were derived).

In an actual experiment none of these quantities would
be observed directly. The statistics of interest are those
of the emitted light. From the previous derivations, the
model of Fig. 1 is self-contained and makes no reference
to any radiation emission. The relation I = 2 mn, is
imposed after m and n, are calculated from the kinetic
equations. The problem is to relate the fluctuations in
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this self-contained model to the observable fluctuations in
the emitted radiation intensity, and to remain consistent
with the various approximations of the Q expansion in so
doing. One way to do this is to consider the more general
probability p (i, k, I, m, n

~ t), the probability that i photons
have been emitted by the sample up to time t, and so on
as before for the other variables. This is also the proba-
bility that a perfect detector (no internal noise and it
counts all incident photons) has recorded i counts up to
time t; this approach can be generalized to include detec-
tor statistics, but to illustrate the method the simplest
possibility will be used. It should also be noted that i
refers to the integrated number of photons emitted up to
time t, not the intensity at time t; the latter is the time
derivative of the former.

To implement this, replace (10) by

A—p(i, k, l, m, n~t)= (E; 'EIE —1}

xlmp(i, k, l, m, n~t) +. . . , (43)

i =QA, +0' v, (44)

so that p (i, k, l, m, n,
~
t)~II(v, r, g, g, g ~

t) and (20) be-
comes

that is, substitute the five-variable probability for the
four-variable one and replace the first term of (10) by the
term shown explicitly in (43); the ellipses refer to the
remaining (unchanged) terms. Also set

an „„,andz
at

"
a

= A 0 '[Q '
(
—8,)+0 '( —B„Bg—B„B„+—,'8„)+ ]

X(ny+ n'"g)(ny+ n'"q) II+ (45)

where the ellipses refer to all the terms on both sides of
(20); they are unchanged except that II now includes the
v dependence. The leading term, in 0', of (45) again
must vanish, so that

I

found from (48). The pairs involving only r, g, rt, and g
pick up no contribution from the BII/Bv terms; the set
(36)—(41) is recovered, and again a self-contained system
of equations is obtained. The pairs involving v lead to

dA

dt
= —A (46) —

& v & =2A~(P& vent &+/& vg& )+ A
a

(51)

=I, A(t)=A(0)+ J I(t')dt'.
dt 0

(47)

The terms in (45) proportional to 0 yield the equation

Since the identification p ~n, and 1(~m has already
been made, this becomes the macroscopic intensity rela-
tion if one sets +(~+ A„((})& vg&

+A (y&gr/&+/&/'&) —A (52)

—
& vr/ & =8 (M —y) & vr &

—A 1it & vg &

—&vg&= —[A /+A„(N —y)]&vg& —A ((}&vg&

Am (0m+ 4—k)

+ A. y@( —a.a, —a„a„+-,'a'„)11+.. . , (48)

—(A.(t+a.p)&»
+ A. (y&q'&+y& gq&) A.yq, —(53)

where the ellipses refer to all the terms on the right-hand
side of (27). Now

11(r,g, q, g~t)= III(v, , g, g, g~t)dv, (49)

—&.&=A. (y&~&+y&g&) .a
at

(50)

Equations (30)—(33) again form a self-contained system
independent of the emitted radiation; the & g & and & g&
derived from them [as well as P and P from (24)] are in-
serted into (50} to find &v&. Also, just as dk, /dt was
equated to the intensity I, 8& v & /Bt can be considered to
be the mean value of the (first-order) fluctuations in the
intensity. The second-order moments can also be readily

so integration over v reduces (48) to (27). The extra
terms in BII/Bv in (48) contribute nothing to the expect-
ed values & r &, & g &, & g &, and & g &. Similarly, the
remaining terms contribute nothing to & v &. Consequent-
ly, (30)—(33}are recovered along with

—
& vg& = A„(N —g)& vg& —(o+ A„P)& vg&

a

+A (/&7'&+y&g&}. (54)

m„-k/0-p+0 (55}

where r is determined by the moments & r & and & r &.

The second moments that do not involve v can be found
separately by solving (36)—(41) and are then inserted into
(51)—(54) to yield a set of inhomogeneous difl'erential
equations for the second moments involving v. Thus, the
kinetic equations for the model of Fig. 1 can be solved by
themselves; these solutions can then be inserted into the
equations for the emitted intensity to find its statistics.
The quantities found will be the macroscopic functions p,
P, g, y, and dk, /dt and the two lowest moments of the
multivariate Gaussian probability distribution in the vari-
ables r, g', ri, g, and dvldt. These are related to the origi-
nal particle densities by, for example,
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V. THK STEADY-STATE MACROSCOPIC SOLUTION

Thermoluminescence is used to determine the radiation
dose to which a sample has been exposed. ' In a typical
situation the sample material has a weak response to the
incident radiation, that is, the production rate of
electron-hole pairs is very small. After a sufficiently long
exposure time there is an appreciable number of trapped
electrons and holes, while the bands are essentially emp-
ty. When the sample is heated the luminescence will in-
crease, reach a peak, and then decrease to zero as the
trapped electrons are depleted. If the sample is con-
currently irradiated by electron-hole pair-producing radi-
ation and heated to a constant temperature high enough
to excite trapped electrons into the conduction band,
there will exist a steady state in which the particle num-
bers are not zero.

In the presence of constant incident radiation and con-
stant sample temperature, after a sufFiciently long time a
steady state will be achieved in which the time derivatives
of the macroscopic equations (21)—(24) vanish, leading to
a set of algebraic equations. Since these equations are not
independent, also consider the charge conservation con-
dition (26). These functions of time are now constants,
the steady-state values; thus p(t)~p', but for conveni-
ence p' will be written as p. First combine the stationary
versions of (21) and (23) to find

I=A PQ=J, (56)

that is, in the steady state of this model electrons and
holes recombine (and so emit radiation) at the same rate
at which they are produced. The steady-state emission
reveals nothing about the sample (I=J independent of
the model parameters), although absolute measurements
of I and a knowledge of J could discern the presence of
nonradiative recombination processes.

Solve in turn the stationary versions of (21), (24), and
(56) to obtain

J 1 J 1

8 (M —1()' 8 P

A„NP

A„(N —y)
' o+A„PX

(57)

(58)

J 1

A
(59)

J 1

A

By using these equations, one can express the functions p,
P, g, and y in terms of any one of the four. Write (26) in
terms of each of these in turn. For example,
g(P)+p(P) =g(P)+ P becomes the fourth-order polyno-
mial

One can use these polynomials to find the various
steady-state electron and hole densities in the bands and
traps as functions of the model parameters. %'hen J=0,
all four quantities have triple roots at zero, one of which
is the physically correct (positive for all positive J) solu-
tion. Even if it were possible to find analytic expressions
for polynomials such as these, the solutions would be
quite complicated expressions involving the model pa-
rameters. To maintain simple expressions that can be in-
terpreted in a straightforward manner, consider the spe-
cial case in which J is small in some sense (which will be
specified later). In the limit J =0, all four quantities p, P,
P, and y vanish, so one would expect them to remain
small for small J and in fact to be proportional to some
power of J. Thus, expand all four quantities in power
series in J, and retain only the first two terms in the final
results. From (56), the leading term for the expansion of
both P and g is proportional to J'~ . Hence, write

P(J)=P J' +P J+P J +
g(J)=g J' +f J+f J +

(61)

—xJ +xJ+x J +' (63)

Similarly substitute the expansion for 1(t(J) into the first
part of (57) to obtain

P(J)= + + ''' =p J+p J + (64)
J3/2y

3/2
MS

Multiply expansions (61) and (62) and insert into (56) to
obtain

01=1/(A 01)

z= —Pz/(A Pf) .

(65)

(66)

Thus all first and second coefficients can be expressed in
terms of P, and $2.

Substitute the expansion (61) for P(J) into (60), the
fourth-order polynomial for P; the coefficient of the
lowest-order term yields

1/2

Substitute the expansion for P(J) into the second part of
(58) to find

A„N
X(J)= [t))~J' +[Pq —(A /o)P ]J +

A„A 8 MP +[A 8 M(cr+A„N)
—JA„(A +8 )]P

—J [cr( A +8 )+ A„B (N +M)]$2
—JB [oM J(A„/A )]P+J —oB /A =0;

(60)

similar equations are obtained for the other three vari-
ables.

A (cr+ A„N)

The next term gives

o A (cr+ A„N)+MNA„B
42=

2MA 8 (o+ A„N)

Then by (63)—(66) one obtains

(67)

(68)
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o+A„N
o. A

A„N
1] o A (o+ A„N)

cr A (o'+ A„N)+MNA„B
2MA B o(o+ AN)

' 1/2

(69)

(70)

(71)

0= —[A,„/+A„(N —y)]&( &
—A p&gr)&

+(o + A„P)&g'&+J+og,
()= —[A y+B (M —1p+p)]&rI &

+ [
—A P+B (M —Q)]& fr) &

(75)

ances. One obtains the set of six equations for the steady
state

A„N
X2= [cr A (o+ A„N)

2oMA B (o+ A„N)

—A „B M(2o+A „N. )],

+B.(M —1()& qg&+ J,
0= —( + A„y) &g'&+ A„(N —y)&g &+ y,
0=[ A. q—+B.(M q)]&—g'& A. P—& n'&

(77)

1
P2

m

(72)

(73) (78)

—[A ($+Q)+ A„(N —y)+B (M —1('+p)]&Jr) &

+B (M y) & gg
—&+(o+ A„P)& qg &+J,

0=A„(N —y)&g'&+( +A„y)&g'&
1

P3
m

o.+ A„N
(74)

With these results it is possible to set a condition on
how small "small J" must be, viz. , the second term in a
series must be small in comparison to the first term. For
example, in the series (61), pzJ« p 1J'r2 or J 'r

« p, /p2. From t(, the condition is J ' « 1)'j, /1)r2
=P, /$2 as before. For y, one finds

Xl /X2 01/( I( 2 A 01/o ) 01/02

Finally, for p the condition is J' «p2/p3=MA
There is also a limit on how small J can be. Terms in the
fluctuations on the order of single particles, i.e., of order
0 ' relative to the macroscopic values, are given by
terms in the 0 expansion of higher order than the linear-
noise approximation (Q 'r relative to the macroscopic
terms) of the next section. Thus, if the luminescence
( =J) is so weak that single photons must be observed,
higher-order terms of the 0 expansion must also be con-
sidered. '

—[cr+ A 1tr+ A„(N —y+p)]&g'&
—A. y&~g& —2oy,

0=B.(M y)&g'&—+ A„(N y)& gq—&

(79)

+ [ —A y+B (M —tP)]& g&
—[o +( A + A„)rtr+B (M f+p)]&r—g& . (80)

Here g, 7), and g are fluctuations associated with the mac-
roscopic quantities P, g, and y. Just as the macroscopic
quantity p(=P+y —P) was eliminated, so is its fiuctua-
tion r( =g+ g

—
rl ).

For small J, it would seem appropriate to expand these
equations in powers of J' . The lowest-order deter-
minant for the covariance coef5cients vanishes, so the co-
variances cannot be determined uniquely by this power-
series expansion. A convenient way to solve this system
of equations (without evaluating 6X6 determinants) is to
eliminate the unknown variables systematically until a set
that can be solved in lowest order remains. Thus, rewrite
(77) as

VI. THE STEADY-STATE FLUCTUATIONS

A„(N —q)&g&+ y
+A P

(81)

Just as the differential equations for the deterministic
quantities became algebraic equations in the steady state,
so do the differential equations (36)—(41) for the covari-

and substitute this expression for & g & into (79) and (80)
to eliminate it from the equations. Similarly rewrite (76)
as

[ —A g+B (M —
g)]&grI &+B (M —g)&rjg&+ J

A $+B (M —Q+p)

and substitute this into (78). Likewise, (79) becomes

(82)

[(o+A„y+A y)&g&+A y&qg&+op],
A„(N —y)

which is to be substituted into (75) and (78).
This leaves a set of three equations in three unknowns ( & gg &, & g' &, and & r)g& ),

0= —A PA„(N —y)&gg& —[o+A /+A„(N y+rtp)]A Q&g'&-
—A /[A y+ A„(N —y)]&rg&+JA„(N —y) —oXA

(83)

(84)
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A P[B (M —g) —A g]0= — A (y+q)+A„(N q—)+B (M q—+p)+

and

[B (M —1()—A 1(t](o + A g+ A„p)+ B (M —q)+ A„N —y

A yB (M q)— A P[B (M 4}—A—0)+ o+A„y — +
A P+B (M —g+p) A„(N —y)

JB (M —g+p) oy[B (M —P)—A„P]+ +
A P+B (M —P+p) A„(N —y)

B (M —P)A„(N —y)0= A„(N —y)(grI&+ B (M p) —AQ—+ &gcr+ A„

oyB (M —g)—[cr+( A + A„)P+B (M —P+p)](rtg&+ cr+ A„

(85}

(86)

To the lowest order in J these three equations become

A„NA P, ((grI &, + (gg&, )+(o + A„N) A Q)(g'&, =0,
(87)

B M
A„N&g~&, +( +A„N) &g&,

l

The set of equations (90)—(95) are the leading terms(-J' ) of the solutions to the steady-state equations
(75)—(80); the expressions for the quantities that include r
can be obtained from them.

In lowest order (31)—(33) become

—&g&, = —A„N&g&, +o&g&„ (96)

(o +B M—) ( rjg &, +B My, =0, (88)

B M—(A„N+B M)(gg&)+(cr+A„N) (g'&)
n

—(q&, =B.M((g&, —(~&,+ & (&,),

—(g&, =A„N(g&, —o(g&) .

(97)

(98)

+cr(r)g&, + B Myi=O, (89)
n

The sum of (96) and (98) shows ( g & &+ (g &
&

is constant,

which have the solution (g&, +(g&, =(g&,(0)+(g&,(0)=K,

(90} so that

(99)

A„N

o+A„N 2

A„N P)

Similarly (81)—(83) yield

(91)

(92)

cr+ A„N

A„N
cr+ A„N

+A N'cr+ A„N

(100)

A„N —~~+ ~ wr
g )(0)o+A„N

cr+2A„N P,
cr+ A„N 2

(93)
( rj & )

=K—[K ( r) & &(0) ]e

(101)

(102)

o+A„N P,
C7 2

2o+ A„N A„N P,
o. + A„N o. 2

(94)

(95)

The autocorrelation matrix elements can be obtained by
combining the kinetic solutions (100)—(102) with the
steady-state values (90)—(95) for the second moments or
covariances. ' For example,

(g(0)g(r)&, = ((g'&, +(g&, )—
o.+ A„N

((g'&, + (g &, )
—(g'&, ~

'
0.+ A„N

a+A„X 2
(103)
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& rI(0)g(t) &, =
cr+ A„N P,

CT 2

Other elements that will be needed are

(104)
+~ ]/2 d V gl +Q 1 /2

dt dt
(107)

sociated with the observable intensity of radiation emit-
ted from the sample. By (47)

& g(0)g(t) &, =

& rt(0}g(t) &, = (106)

and (50) becomes to lowest order

—&v&, =&i&,=A (P, &q&, +1t,&g&, ) . (108)

Now the stochastic quantities of interest are those as-

I

This leads to the autocorrelation function

& t (0)t(t) &
= A ' [y'& q(0)q(t) &+yy[& q(Og(t) &+ & g(0)q(t) & ]+P'&g(op(t) & j

—[~+ ~„x)f »2=A Q, 2+ e " J + (109)

This is the central result of the paper, since it relates the
observable intensity autocorrelation function to the mod-
el parameters. Another way to derive this result is to ex-
press the variation of the relation I = A

I +5I= A (P+5$)(/+5'), in the form

AQI+0'~ i = (OP+0'~ g)(QQ+0'~ rt), (110)
Q

from which one obtains i =A (Prt+fg) and the auto-
correlation function (109) for the observed radiation. In
the limiting case t ~0, one recovers the covariance

A„N
Ay, —2+ " J'"+

Now one expects that as t~~ the correlations will
vanish, ' &i(0)i(t)&2~0 and similarly for (103)—(106).
The constant terms that contradict this are only approxi-
mations; to the next order in J they also decay exponen-
tially. The system of equations (31)—(33) is given to
lowest order by (96)—(98). The characteristic equation of
the latter yields the eigenvalues (again to lowest order)
Re=[0, BM, —(—cr+A„N)]. To the next order, the
eigenvalues A, =ko+ A,

&

J' must satisfy

—A„N+( A„yi —A fi)J'i —
A,

8 M —(A +8~)f)J'~
A„N —A„y J'/2

—A PJ' cr+A P J'
—8~M+[8 (P, —p)) —A $)]J' —

A, 8 M BQ,J'~ —=0,
0 cr —A„p)J'~ —A—,

(112)

so

I(= I
—2A (t)), 8 P), (A„/o )$)[(A„—A )N —cr]] .

(113)

Thus, the "constant" term decays very slowly,
-exp( 2A P&J—' t) In lowes. t order, (109) does not in-
clude a term that decays like exp( BMt); to the —next
order in J it does, so to measure all three relaxation times
one may need to exceed some minimum value for J. One
could then extrapolate from such measurements to 6nd
the relaxation times for small J, from which the model
parameters will be derived.

I

mates for at least some of these parameters. The purpose
of the stochastic approach is to relate the fluctuations in
the observed luminescence to the underlying physical
processes in the sample. In this section will be shown
how to use these additional fluctuation measurements to
determine the model parameters.

The first question is what can be determined, at least in
principle, from the results such as (109). The observed
intensity consists of a macroscopic part Y(t}, which is
constant in the steady-state case, and a fluctuation about
this value, 5Y(t). Since Yis an observed intensity while I
and J are intensities per unit volume of the source, one
has for the steady state

VII. DEDUCl ION OF MODEL PARAMETERS Y+5Y=A(I+0 ' t)=Q(J+0 '
t ),

'(114)

In the previous sections a stochastic formulation was
developed for a simple thermally stimulated system.
There are several model parameters and of the particle
densities only the luminescence from the recombination
of conduction electrons and trapped holes is observable.
By combining various measurements one can obtain esti-

so that

(115)

Thus, the average of the observed intensity immediately
yields the electron-hole production rate in the sample.
The covariance of the autocorrelation for the observed
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(118)
where the r's are obtained from measurements of the in-
tensity fluctuations.

The quantity B M can be obtained immediately from
its identification with rz . Since the product
ri 1 3

=4' A J, by performing the measurements at
two different temperatures T, and Tz and by taking the
ratio

r] '(T])r3 (T, ) o(T, )
D

7 ] '( T2 )r3 ( T2 ) cr( T2 }

as well as the difference

r] '(T, ) —r] '(T2)=o(T, ) —o(T2),

(119)

(120)

one obtains two equations for the two unknowns o ( T] }

and o ( T2 ). Hence

7] (T2)1r3 (T2)[r] (T] ) 7] (T2)]o.(T2) =
~] '(T ) ](rT3, )

—r] (T, ) (rT32)

and since A„N=w] '(Tz) cr(T2), —

'r] '(T, )r] '(T~)[r3 (T] ) 73 (T2)]A„X=
1] (T])r3 (T]) r] (T2)13 (T2)

(121}

(122)

intensity becomes

(((Y+6Y)p( Y+5Y), )) =Q(i (0)i(t) )

=Q(i (0)i(t)) ]J + .

(116)

By measuring the autocorrelation of the observed intensi-
ty for various delay times t, one can construct F(t), the
autocorrelation function defined to be the left-hand side
of (116). It has the form

n

F(t)= g G;e (117)
i=I

where the amplitudes 6; and the relaxation times r; are
functions of the sample temperature T and of the genera-
tion rate J, as well as of the model parameters. The num-
ber of such quantities n is determined by how many phys-
ical processes occur [in the model for n (theory) and in
the sample material for n (experiment)]; this helps one to
decide if the model used is appropriate for the material
under investigation. By standard methods' ' one can
extract the G; and r; from an observed F(t). For small J
in the simple model considered here, one can find the
three inverse relaxation times B M, o + A„N, and
2A P]J'i . The last inverse relaxation time is the small-
est and is the one that will vary the most as the incident
intensity is varied; call it r3 . If the measurements are
made for different temperatures T, only B M will not
vary; call it r2 . The remaining inverse relaxation time
can also be identified by its having the largest change
with temperature; call it ri . Thus, the three observed
relaxation times can be identified with those of the model,

40 A~J
ri '=0+ A„N, r2 '=B M, r3 '=

cr+ A„N

Similarly, one has

Am
=r] '( T2 )T3 ( T2 ) /4o ( Tz )J

so that

&] '(T]) 3 (T])—~] '(T2)r3 (T2)
A

4J[r] '(T, )
—r] '(T~)]

(123)

Now o.=s exp( E/—ks T ), so this quantity depends on
two model parameters. Suppose s =so, a constant in-
dependent of temperature. Then (119)leads to

—lnD i2
(124)

so that

1sp=o(Tp)
Di2

' T) /(, T2 —Ti )

(125)

If the frequency factor s has some power-law dependence
on the temperature, s ( T)=s T', (124) is replaced by

—lnD]2+a ln(T, /T2)
1 1

k~T, k~T2

while (125) becomes

(126)

o(T, )
~aa Ta

2

Tl 1

Tz Di2

Ti /(T~ —Ti )

(127)

From the luminescence autocorrelation relaxation
times in the steady state one can thus obtain values for
the model parameters s, E, A, and the products B M
and A„N. From (67)—(74) it is also possible to obtain the
electron and hole densities, at least to lowest order in J.
The coefficients G; in front of the exponentials in (109)
will not provide any additional information, but they can
serve to confirm the values found from the relaxation
times r;. The trap and recombination center densities N
and M occur only in products because only the lowest-
order (in J) solutions have been used. If the production
rate J can be increased enough to make the corrections of
(113) large enough to be observed, both B and A„can
be determined along with all the other parameters solely
by a suitable set of measurements of the autocorrelation
relaxation times. The J'i term of rz ' is B P]; since all

the quantities in f] are known from (121)—(123), B is

immediately determined. The J term of r2
' is B M, so

M is also found. Similarly, the J' term of r, ',
[( A„—A )N cr ]A„t]/cr],]can be ex—pressed as known

quantities except for A„. Hence A„ is found and from
(122) so is ¹ Thus, the initial rise of the relaxation times
as functions of J' should be determined along with the
relaxation times themselves.

To illustrate the method, attention has been directed to
the sample material and the stochastic nature of the pro-
cesses that occur in it. In a real experiment one must also
deal with the stochastic nature of the source term J and
with the statistics of the detector. In a typical case a
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large number of incident partic1es must impinge on the
sample to produce even a weak generation rate J. This is
consistent with assuming no spatial dependence in the
electron-hole pair-production rate (-QJ). If J were time
varying, no steady state could exist. Now because of the
statistical nature of the incident particle beam and of the
particle-sample interactions that produce the electron-
hole pairs, even a macroscopically constant J will have
some fluctuations in time [so consider J+5J(t)]. If the
incoming particles have random arrival times that are in-

dependent, there will be a constant probability per unit
time for electron-hole pair production. ' The particle-
sample interaction fluctuations will have an Q' relative
decrease as the sample volume 0 increases (QJ+0' y,
for example). The stochastic nature of the source itself
can be represented as an external fluctuation acting on
the sample. The kinetic equation for the sample will now
have a random coefficient J, whose effect on the system
can be studied by the use of stochastic differential equa-
tions. The detector will similarly introduce fluctuations
into the measurements. It may not detect all the emitted
photons that it receives (detector efftciency (100%);
also, internal noise may cause spurious counts. This can
be incorporated into the system of equations by consider-
ing the probability p (l„i„k,1, . .

~ t), where i, is the num-
ber of photon counts recorded by the detector and i, is
the number of photons emitted by the sample, both up to
time t. Presumably both source and detector statistics
can be determined independently of any thermolumines-
cence experiments, so they can be taken as a known com-
plication to experimental measurements and data
analysis.

VIII. CONCLUSION

In this paper van Kampen's Q-expansion method has
been applied to a simple model for recombination
luminescence in the presence of retrapping and continu-
ous irradiation. In the lowest order of this expansion,
one recovers the deterministic macroscopic kinetic equa-
tions. The next order yields the Fokker-Planck equation
governing the fluctuations in the linear-noise approxima-
tion. From this equation one derives the evolution equa-
tions for the two lowest moments of the fluctuations. The
kinetic equations (21)—(24) cannot in general be solved
analytically, so the more complicated moment equations
(30)—(33) and (36)—(41) must certainly be solved numeri-
cally. A special case in which this is not so is the steady
state, in which the macroscopic differential equations are
replaced by algebraic equations (BIBt=0), and the
differential equations for the moments now have constant
coefficients. Further, the steady state with a weak
electron-hole production rate leads to fairly simple ana-
lytic expressions, which in principle can be used to deter-
mine the model parameters from measurements of the re-
laxation times of the luminescence autocorrelation func-
tion. To carry out this scheme, of course, one must be

able to measure with high enough accuracy and time
resolution the fluctuations of the possibly weak steady-
state luminescence.

There are several features that must be considered if
this method is to be used in actual experiments. To ob-
tain simple expressions from which the model parameters
can be easily found, one imposes the restriction of a weak
electron-hole production rate J; this is physically realistic
in most experiments. To obtain all the parameters, how-
ever, one must have J large enough that the second terms
in the various series expansions can be measured. Thus, J
must be small, but not too small. If it is too large, the ex-
pressions become more involved and interpretation of
them more difficult; if it is too small, not all the parame-
ters can be found and more terms in the Q expansion may
be required.

A second point is the form of (121)—(123), from which
the model parameters are found in terms of the auto-
correlation relaxation times (which are themselves ob-
tained from an analysis of directly observable quantities).
The denominators of these equations involve the
difference between two almost equal quantities (as do the
numerators); the uncertainties in these quantities must be
much smaller than the difference between them if one
wants to obtain sensible values for the model parameters.
This sets a requirement on the accuracy of the measure-
ments.

Finally, the model considered here contains a single
trapping level and recombination center; generalization
to the more realistic case of multiple traps and centers is
straightforward. The algebraic expressions are more in-
volved and the large number of relaxation times (includ-
ing those from cross correlations) will require more
analysis before one can use them to find the model pa-
rameters. There are several special cases of some in-
terest. Not observing a luminescence level is equivalent
to having a nonradiative decay channel. A large number
of closely spaced traps leads to a continuum distribution
of traps. Multiple traps and a single recombination
center would place a heavy burden on the extraction of
information from luminescence. On the other hand, a
large number of recombination centers would lead to
many redundant equations. If the energy separation of
the traps is large compared to the thermal energy k&T,
two special cases can arise. If the temperature is high
enough to cause the normal electron escape from the—E/k~ T
lower traps (-se ), the upper traps will be almost
completely devoid of electrons due to the much higher es-
cape rate. On the other hand, at a temperature low
enough to cause normal escape from the upper traps,
there will be hardly any electron escape from the lower
traps; eventually this would lead to filled lower traps.
Generalization of the model formalism to include multi-
ple traps and recombination centers and its application to
some special cases wiH be discussed in a future publica-
tion.
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