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In the liquid-drop model, the total energy of a system is expanded as a sum of volume, surface, and

curvature terms. We derive an expression for the curvature energy of a metal in terms of the electron-
density profile for a planar surface, and show that the resulting values agree with the fits of calculated or
measured total energies to the liquid-drop expansion. In particular, this expansion accurately describes

the formation energies of microscopic voids (including monovacancies) in metals. In our calculations,
the curvature energy is determined by the bulk density. It is nearly the same for restricted trial density

profiles as for self-consistent Kohn-Sham profiles, for the fourth-order gradient expansion as for the ex-

act kinetic energy, and for jellium as for stabilized jellium. We also report Kohn-Sham results for the
surface energy and work function. The stabilized-jellium model, while retaining the simplicity and

nonempirical character of jellium, gives a significantly more realistic description of the simple metals,

especially those with high bulk densities.

I. INTRODUCTION

Within the liquid-drop model, ' the total energy E of
an extended system with volume V and surface area A is
expanded as

E =aV+o A+ —,'y f dA R

where a, cr, and y are intrinsic volume, surface, and cur-
vature energies, and % ' is the local curvature of area
element dA (i.e., the arithmetic mean of the principal-
axis values %&

' and %2 '). While the accuracy of Eq. (l)
for finite systems (nuclei, metallic clusters) is limited by
shell-structure oscillations, this expansion is surprisingly
accurate for monovacancy-formation energies (Sec. V)
and crystal-face-dependent surface energies in metals of
infinite volume. Thus we seek a priori values of cr and y
for metals, to compare with phenomenological values.

The qualitative physics of the liquid-drop expansion (l)
is simple. If the extended metal is stable at the bulk den-
sity n, then each atom will require an environment that is
as bulklike as possible. The energy will minimize when
the surface is as small in area (for a given volume) and as
concave (for a given area) as possible, i.e., the surface en-
ergy o. and curvature energy y will be positive. More-
over, the bulk stability is the result of a competition be-
tween the electronic kinetic energy (which tries to reduce
n ) and the potential energy (which tries to increase n ).
At the electronic surface, the electrons "spill out" as
their density goes continuously to zero, and this effect
lowers the kinetic energy while increasing the potential
energy. Thus the kinetic-energy components of o. and y
are negative.

Lang and Kohn showed how to calculate the metallic
surface energy cr, using density-functional theory and
the electron-density profile of a planar surface. Here we
will do the same for the metallic curvature energy y, fol-
lowing the leptodermous expansion of nuclear physics.
After our work was completed, we learned of the similar

theory of Pogosov, who derived a curvature-energy ex-
pression which is a special case of ours. (Pogosov also
studied size effects on the ionization energy and electron
affinity, as did other authors. ' )

The volume energy a and surface energy cr of a simple
metal are determined largely by the average valence elec-
tron density in the bulk

n =3/4mr, =kF/3.m. (2)

and the same can be expected of the curvature energy y.
The "stabilized-jellium model" of Perdew, Tran, and
Smith displays this behavior, and provides realistic first-
principles estimates for a and 0. In this model, the total
energy as a functional of the electron density n (r) is

E [n, n+ ]=T, [n]+E„,[n]

+ ,' f d r P—([n,n+ ],r)[n (r) —n+(r)]

+8fd r n+(r)

+—fd r n+(r)[n(r) n+(r)—] .
n

(3)

Here T, and E„, are the noninteracting kinetic and
exchange-correlation energies of the electrons, and

P([n, n+ ],r)= f d r'[n (r') n+(r')]—/ r' —r~

is the electrostatic potential. The positive background
density n+(r) equals the constant n inside a sharp sur-
face, and vanishes outside. For a neutral metal,

f d3r n+(r)= f d r n (r) . (5)

With 8 =C =0, Eq. (3) reduces to the jellium model,
for which the bulk metal is stable (i.e., obeys the zero-
pressure condition) only at r, =4.2. Away from this den-
sity, the jellium model develops unphysical features (e.g.,
negative surface energies for metals with r, ~ 2.5). These
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difficulties are removed by the Madelung and pseudopo-
tential corrections to jellium. In the stabilized-jellium
model, those corrections are simply approximated by
the structureless averages displayed in the last two terms
of Eq. (3), where the constants B and C are determined by
the condition of bulk stability. B contributes only to the
volume energy, and so for present purposes we set B =0.
When n is the equilibrium bulk density (the only case of
interest here),

C = —kF/5+kF/4m+(r, /3)dc, , ldr, ,

where e, (n ) is the correlation energy' per electron in a
uniform gas of density n. (All equations are in atomic
units, in which A =e =m = 1; the atomic units of energy
and distance are hartrees and bohrs, respectively. ) C is
negative for r, & 4.2 and positive for r, )4.2.

The exchange-correlation energy in the local-density
approximation is

E„,[n]= f d r n(r)s„,(n(r)), (7)

where e„,(n)= —3(3m n)' /4n+e, (n). The kinetic en-

ergy may be constructed exactly by the Kohn-Sham
method

T, [n) = g fd'r —,
' I~4;(r)l

II. PLANAR-SURFACE EXPRESSIONS
FROM THE LEPTODERMOUS EXPANSION

Let the sharp surface of the positive background be a
sphere of radius R, where R is much bigger than the
thickness of the electronic surface, and expand the energy
in inverse powers of R. The expansion is formally the
same whether the system is a solid sphere in vacuum
(%=R ) or a spherical void in an infinite metal
(A = —R). The former case will be discussed below, al-
though some assumptions behind the expansion may be
more appropriate to the latter. (In particular, we ignore
the compression of the interior density which occurs in
nuclei and real metallic clusters as a result of surface ten-
sion. In other words, we study a metal with a rigid, uni-
form positive-charge background density. Because of the
long range of the electrostatic interaction, the bulk
compressibility of the electrons in such a metal vanishes,
and so does the compressive contribution to its curva-
ture energy. )

The "nonvolume" contribution to the total energy is

&g =Eg [ng, n+ ]
—e f «4~r'ng(r), (15)

0

where c, =a/n is the bulk energy per electron. The sub-
script R reminds us that both the energy functional E
and the electron-density profile n depend upon R. Define
the distance from the surface

n(r)= g Ig, (r)I z=r —R, (16)

T, [n] = To[n]+ Tz [n]+ T~[n],

To[n]= f d r —'(3m. ) n'

Tz(n) =f d r —,',
I
vn

I

(3 2) —2i3
T4[n]= f d r n'~

540

(10)

(12)

where the g; are self-consistent orbitals. Continuum
density-functional approximations include the gradient
expansion:

and note that

n (z (0)+0(&0)
n„(r)=n(z)+f(z)/R+0(R ),

(17)

f dz f (z)= P([n, n +],
—oo ) .

00 2' (19)

where n (z) is the electron-density profile for the planar
surface of the semi-infinite (R ~ ~ ) metal. From Appen-
dix A of Ref. 7 (or from Ref. 6),

V n
2 Here p([n, n+ ],z) is the electrostatic potential for the

planar surface, with

9 V2n

8 n

2 4
Vn 1 Vn

n 3 n

(13)

P([n, n+ ], ~ ) =0 . (20)

Functional Taylor expansion of Eq. (15) about the
planar-surface profile, combined with the Euler equation
(14), yields

5E [n, n + ] /6n (r ) =p, (14)

The density which minimizes E [n, n+ ] is found approxi-
mately by variation of parameters, or exactly by solution
of the Euler equation

b~ =Ez [n, n+] —e f dz 4'(R +z) n (z)—R

+(p —s)f dz 4'(R+z) +O(R ),—R R
(21)

where the Lagrange multiplier p is the chemical poten-
tial.

Equations (7) and (10) constitute the Thomas-Fermi-
Dirac-Gombas-Weizsacker-4 (TFDGW4) approximation.
Simpler approximations include TFDGW (neglect of T4)
and TF (neglect of E„,+ Tz+ T4).

where p is the chemical potential in the limit R ~ ao.
The energy functional for the sphere, evaluated for the

planar-surface profile, is

Ez[n, n+ ]=f dz 4m.(R +z) ez([n, n+ ],z), (22)—R

where the energy density must also be expanded:
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ez([n, n+ ],z) =e ([n, n+ ],z)

+g ([n, n+ ],z)/R +0 (R ) . (23)

Neglecting discrete-level effects that may arise for a solid

sphere but not for a spherical void, we assert that
n n—+, e s—n, f, and g vanish rapidly away from the

surface, and thus
~= —p= —p ([n, n+ ],0)—s+ C [n (0)ln —1] .

We find

(27)

bulk density is uniform). The leading term on the right of
Eq. (26) is the first moment of the surface contribution to
the energy density. For stabilized jellium, the second
term simplifies with the help of Eq. (19) and the
displaced-profile expression" for the work function

b,a=4~R 0+4~R +O(R ),

where

o.= dz e n n+, z —cn z

(24)

(25)

(p —s)f dz f (z)= p([n, n+ ], —oo )

X [P([n, n +],0)

+C[1 n( 0—)/n]} . (28)

—,'y = f "
dz 2z [e ([n, n+ ],z) —en (z) ]

+(p —.)f" dz f(z)+ f dzg([n, n+],z) . (26)

f dz g„([n,n+ ],z) =—1
[P([n, n+ ], —oo )] . (29)

In Appendix A, we show that the electrostatic contnbu-
tion to the final term of Eq. (26) is

Equation (25) is a standard expression for the surface en-

ergy, and Eq. (26) is a general expression for the curva- Within the TFDGW4 approximation for stabilized jelli-
ture energy (valid for any kind of particle, so long as the um,

'2

e([n, n+],z)= —,'o(3n ) n '+ 1 dn (3n )

72n dz 54Q

r '2
$ d2n

dz

9 1 dn
8 n dz2

1 dn 1 1 dn

n dz 3 n dz

4

r

n+(z)
+ns„,(n)+ ,'[n (z—) n(+z—)]P([n, n]+,z)+C [n (z) n+(z—)],

n

s= ' (3n. ) n +E (n)

(30)

(31)

(32)

in T4 makes a second (and final) contribution to the last
term of Eq. (26)

(3 2) —2/3

f dzg4([n, n+],z)= f" dz

4 dn

n dz

n'"

n

dz2

3
9 dn

4n 3 dz
(33)

Thus the TFDGW4 expression for the curvature ener-

gy is Eq. (26), supplemented by Eqs. (28), (29)—(31), and
(33). When the contributions from T4 and C are neglect-
ed (i.e., within TFDGW for jellium), our Eq. (26) reduces
to Eq. (22) of Pogosov, since

oo 1dzz n z —n+ z = — n, n+, —Oo
oo 4m.

(34)

In principle, our expressions require the density profile
n (z) which solves the Euler equation (14). However, they

Moreover, the curvature contribution to the Laplacian

V2= d + 2 d = d' + 2 d +O(R 2)-
dr2 r dr dz2 R dz

C
P( [n, n + ], —oo )[1 n(0) In ] . — (36)

These direct terms would cancel exactly for an
antisymmetric trial charge distribution [ [n (

—z)
n+ ( —z)—]= [n (z) —n+ (—z) ]}, leaving only the in-

direct effect of C u'pon n (z). With a more realistic trial
density, the situation is not so simple but the conclusion
remains the same. (A similar argument explains why the

also accept the profile which minimizes (25) over a re-
stricted class of trial densities. While the surface energy
has the obvious variational accuracy of the total energy,
the variational accuracy of the work function or curva-
ture energy is more subtle: The work function of Eq. (27)
is the difference" (divided by X) between total energies
per unit area for the neutral surface and the surface with
infinitesimal charge X, while the curvature energy is
essentially the difference (divided by % ') between total
energies per unit area for the Hat surface and the surface
with infinitesimal curvature %

Unlike the surface energy cr, the curvature energy y
turns out to be about the same for stabilized jellium as for
jellium. This behavior might be expected from Eq. (26),
which contains two contributions proportional to C:

2C f dz z [n (z) —n+ (z) ] (35)

and
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work function &of Eq. (27) depends only weakly upon C;
the argument follows from equating (27) to the Koop-
mans expression W= —P([n, n+ ], —~ ) —p —C, and
leads to the estimate W =p —2c., where

p =d [n s(n ) ]/dn. )

TABLE I. Curvature energy y (in units of millihartree/bohr)
for jellium in the TFDGW4 approximation. Values from Eq.
(26) in the simple analytic model of Eq. (37) are compared to the
results of fitting E=a4mR'/3+o. 4m.R +y2m. R to the total en-
ergies for jellium spheres with radii R.

III. SIMPLE ANALYTIC MODEL

For simple, quasirealistic estimates of o. and y from
Eqs. (25) and (26), we use the trial density profile of Ref.
9

rs Reference 12

1.84
0.63
0.22
0.06

—0.01

Reference 7

1.64

0.26

0.07

Equat&on (26)

1.77
0.65
0.30
0.17
0.10

n (z) =nF(Pk, z), (37)

is the Thomas-Fermi screening wave vector, and

1 —0.621e~+0.08576e (y &0)
0.46476e ' ~ (y )0)

The corresponding electrostatic potential is

kF
P([n, n+ ],z) = — 4(Pk, z),

3 2

where

(39)

(40)

l. 36628 —0.621e~+0.00956e ~ (y & 0)
0.75486e ' ~ (y )0)

(41)

The density of Eq. (37) matches the Thomas-Fermi (TF)
density at y =0 and (with P= 1)y «0. Thus Eq. (37) be-
comes most realistic in the high-density limit n~oo,
where TF is exact. By construction, n (z) and dn Idz are
continuous, and the charge neutrality condition (5) is
satisfied.

where P is a variational parameter of order 1 [fixed by
minimizing the surface energy (25)],

(38)

This simple analytic model was used in Ref. 9 to esti-
mate the surface energy 0. and work function W for jelli-
um and stabilized jellium. We apply it here to investigate
some general features of the curvature energy y for jelli-
um (deferring more refined calculations to Secs. IV and
VI).

Table I compares Eq. (26) for the curvature energy
against fits of the liquid-drop expansion (1) to the total
energies of neutral jellium spheres containing up to 10
electrons, all within TFDGW4. Seidl, Spina, and Brack'
performed restricted variational calculations for the
spheres, while Engel and Perdew solved the Euler equa-
tion (14) numerically. The close agreement of the present
results with the fits of Refs. 7 and 12 at high densities
should be noticed. The agreement with the Engel-
Perdew fit would presumably be even closer if the densi-
ty profile from Eq. (37) were replaced by that which
solves the Euler equation for the planar surface. The ori-
gin of the negative curvature energy for r, =6 in Ref. 12
is unknown.

Table II decomposes the TFDGW4 curvature energy
of Eq. (26) into contributions of different physical origin.
The individual components are large and tend to cancel
one another, with no single component either dominant
or negligible.

TABLE II. Components (in mhartrees/bohr) of the TFDGW4 curvature energy y for jellium, evalu-
ated from Eq. (26) in the simple analytic model of Eq. (37). "Moment" refers to the first moment of the
surface energy density, i.e., the leading term of Eq. (26). For a critique of this decomposition, see Ap-
pendix B. The densities considered are those of Al (r, =2.07), Na (r, =3.99), and Cs (r, =5.63).

Kinetic Moment
Eq. (33)
Total

r, =2.07
(P= 1.31)

—2.33
—0.40
—2.73

r, =3.99
(P= 1.49)

0.02
—0.14
—0.12

r, =5 ~ 63
(P= 1.51)

0.05
—0.07
—0.02

Exchange-
Correlation

Moment X
Moment C
Total

2.86
0.44
3.30

0.31
0.07
0.38

0.11
0.03
0.14

Electrostatic Moment
Eq. (28)
Eq. (29)
Total

—3.93
9.15

—4.14
1.08

—0.17
0.40

—0.18
0.05

—0.04
0.10

—0.04
0.02

Total 1.65 0.31 0.14
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Table III displays the curvature energy of jellium
within the various density-functional approximations
(TF, TFDGW, and TFDGW4) described at the end of
Sec. I. The TF curvature energy is negative, and scales
like r, . For comparison the TF surface energy' is also
negative, and scales like r, . These facts, together with
Eq. (1), show that the TF metal is unstable against eva-
poration. The curvature energy is systematically in-
creased by inclusion of E„,+Tz(TFDGW) and
T4(TFDGW4). The TFDGW values have also been re-
ported by Iakubov et al. ' We will argue in Sec. VI that
the TFDGW4 values are essentially correct.

Table IV compares the TFDGW4 surface properties of
jellium with those of stabilized jellium. Besides the sur-
face energy cr and curvature energy y, we also display the
work function W of Eq. (27) and the surface dipole mo-
ment

D = —P([n, n+ ], —ao )=4nf .dz z [n (z) —n+(z)] .(42)

Although the correction to jellium has a substantial effect
on o. and D, it has only a weak effect on 8' and y, as ex-
plained at the end of Sec. II.

IV. KOHN-SHAM SURFACE ENERGY
AND WORK FUNCTION

In Kohn-Sham theory, the gradient expansion (10) is
replaced by the exact noninteracting kinetic energy (8),
and the Euler equation (14) is replaced by a self-
consistent one-electron Schrodinger equation for the or-
bitals g, (r). Only the exchange-correlation energy is ap-
proximated, as in Eq. (7). Lang and Kohn3 solved the
Kohn-Sham problem for the electron density, surface en-
ergy, and work function of jellium. Monnier and Per-
dew' solved the Kohn-Sham problem for the jellium sur-
face with external potential Cn+(z)/n, where C was a
variational parameter adjusted to minimize the surface
energy of a crystalline metal. Thus the Monnier-Perdew
computer code is well suited for both jellium (C=O) and
stabilized jellium (C=C), and we have employed an
enhanced version' of this code in our present calcula-
tions.

TF
TFDGW (Ref. 14)
TFDGW
TFDGW4

r, =2.07

—2.35

1.48
1.65

r, =3.99

—0.17
0.20
0.20
0.31

r, =5.63

—0.04
0.07
0.06
0.14

Deferring the curvature energy y to Sec. VI, the other
properties are straightforwardly evaluated, with the re-
sults displayed in Table IV. These results from Kohn-
Sham theory may be compared with those of Table IV
from the cruder TFDGW4 approximation, which is seen
to work reasonably well apart from its overestimation of
the surface dipole moments of the low-density metals (for
which the Kohn-Sham density exhibits strong Friedel os-
cillations ). Table V cotnpares the exact kinetic-energy
component of the Kohn-Sham surface energy against the
gradient expansion applied to the Kohn-Sham density
profile, and shows the improvement coming from T4. A
similar comparison (but for non-self-consistent densities)
was made by Ma and Sahni. '

Table VI compares our Kohn-Sham surface energies
and work functions for jellium and stabilized jellium
against experimental values' ' for simple metals. Espe-
cially for the high-density metals, the stabilized-jellium
model gives a significantly more realistic account of both
properties than does the jellium model. For Al, there is
perfect agreement between theory and experiment. How-
ever, this perfect agreement may be accidental, since the
stabilized-jellium model neglects band-structure effects
which can contribute to surface properties. Moreover,
the local-density approximation is not exact.

TABLE III. Curvature energies y (in mhartrees/bohr) of jel-
lium, evaluated from Eq. (26) in the simple analytic model of
Eq. (37), within various density-functional approximation de-
scribed at the end of Sec. I. [The curvature energies in Table 2
of Ref. 14 are incorrect. We have computed the correct values
from Eq. (13) and Table 1 of Ref. 14. Note that the last column
of Table 1 should be labeled C~ X 10', and that the first term on
the right of Eq. (13) should be C,'n +b '.]

TABLE IV. Surface energy o, work function W, surface dipole moment D, and curvature energy y
(1 hartree/bohr =1.5569 X 10 erg/cm; 1 hartree=27. 21 eV). TFDGW4 results within the simple an-
alytic model of Eq. (37) are compared with Kohn-Sham (KS) results, for jellium and stabilized jellium.

r, =2.07
TFDGW4 KS

r, =3.99
TFDGW4 KS

r, =5.63
TFDGW4 KS

Jellium
o. (erg/cm )

W (eV)
a (eV)

y (mhartrees/bohr)

—642
3.62
6.21
1.65

—605
3.74
6.06
1.77

156
2.81
1.29
0.31

164
2.91
0.88
0.36

71
2.33
0.63
0.14

71
2.35
0.13
0.13

Stabilized
o. (erg/cm )
8' (eV)
D (eV)

y (mhartrees/bohr)

801
3.83
4.16
1.42

953
4.24
4.02
1.82

163
2.83
1.26
0.30

171
2.92
0.84
0.35

59
2.24
0.69
0.13

60
2.24
0.27
0.13
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TABLE V. Test of the gradient expansion (10) applied to the self-consistent Kohn-Sham density

profile of jellium. o., is the exact kinetic-energy component of the Kohn-Sham surface energy

(erg/cm ).

op
Op+02
Op+O2+O4
os

r, =2.07

—5195
—4766
—4699
—4644

r, =3.99

—218
—173
—158
—140

r, =5.63

—37
—23
—17
—10

V. KOHN-SHAM CURVATURE ENERGY
FROM FITS TO THE TOTAL ENERGY

Before we discuss the Kohn-Sham calculation of the
curvature energy y from Eq. (26) (Sec. VI), we pause to
extract y for jellium from fits to Kohn-Sham total ener-
gies. The results will serve as a standard of comparison
in Sec. VI. More importantly, they will expose the validi-

ty, but also the limitations, of the liquid-drop expansion
(1).

Perdew et al. ' proposed that y could be extracted
from the formation energy Az of a spherical void of ra-
dius R, which Eq. (1) predicts to be

o4+R2 —y2mR . (43}

y~ =2R (o —cr~ ) (44)

should be independent of R. We test this prediction in
Table VII, using values of o.z and N provided by Man-
ninen. Here N is the number of "atoms" removed to
create the void, i.e., R =(Nz)'~ r„where z is the valence.
Table VII provides a striking confirmation of the accura-
cy of the liquid-drop expansion (1) for even the smallest
physical voids (monovacancies with % =1). Indeed, for
X ~ 1 the values of yz from Eq. (44) are very close to the
R ~ ~ predictions of Eq. (26), as displayed in Table IV.

In the jellium model, of course, a void can have any ra-

Manninen and Nieminen have calculated this energy
for jellium, and reported the results as a graph of
o s = b, z /4mR. From. (43), the quantity

dius R. For r, =2.07, Manninen and Nieminen also
considered the subatomic radius R =1.30 (Table VII).
Their energies for this bulk density can be represented by
the Pade form

1+ — —1.068 R
2o

0 g
—cT

1 —1.068R '+ 1.931R
(45)

a R +o4mR +y2vrR .4m

3
(46)

Thus, a plot of (E~ a4mR/3—)/R .versus R should yield
a straight line

o4nR +y2m. , (47}

with slope 4n.o and intercept 2my. (More precisely, one
uses the straight-line extrapolation of the large-R asymp-
tote. ) This analysis has been applied to the Kohn-Sham
energies of jellium spheres by Utreras-Diaz and Shore,

which has the shape of Fig. 5 of Ref. 20 and effectively
sums the leptodermous expansion to all orders in R
(That o z -R as R ~0 follows from a theorem of Leh-
mann and Ziesche. ') From (45), the first correction to
the right-hand side of the leptodermous expansion (1) for
r, =2.07 jellium is the constant —3.5 mhartrees, but add-
ing just this term actually worsens the resulting estimate
of the monovacancy formation energy.

For a solid sphere of jellium, the total energy E~ from
Eq. (1) is

TABLE VI. Intrinsic surface energy o and work function 8' for simple metals. The jellium (J) and

stabilized-jellium (SJ) values computed in Kohn-Sham theory are compared to experimental values

(expt. ). The experimental value for the intrinsic surface energy o is the zero-temperature extrapolation
of the liquid-metal surface tension (Ref. 18), divided by the corrugation factor 1.2 (Ref. 2}. The experi-

mental work function is the polycrystalline value (Ref. 19).

H
Al
ZIl

Mg
Li
Sr
Ba
Na
K
Rb
Cs

Metal r,

1.58
2.07
2.30
2.65
3.28
3.57
3.71
3.99
4.96
5.23
5.63

—5161
—605
—103

168
220
199
188
164
100
87
71

o. (erg/cm )

SJ

1186
953
741
536
303
238
211
171
89
75
60

expt.

953
828
654
435
349
317
218
121
98
79

3.77
3.74
3.62
3.46
3.21
3.08
3.02
2.91
2.53
2.45
2.35

W (eV)
SJ

4.41
4.24
4.02
3.77
3.33
3.09
3.01
2.92
2.49
2.40
2.24

expt.

4.28
4.33
3.66
2.9
2.59
2.7
2.75
2.30
2.16
2.14
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TABLE VII ~ Curvature energy y for jellium, extracted from Kohn-Sham void formation energies
(Ref. 20). See the discussion around Eq. (44). Here o.

& and 0.=o. are from the calculation of Ref. 20.

r, =2.07
Z=3
o.= —525 erg/crn2

0.083
1

4
6

13
19
38

R =(Nz)' r,
(bohr)

1.30
2.99
4.74
5.43
7.02
7.97

10.04

o.~ ——A~ /4m. R
(erg/cm )

—860
—920
—805
—770
—730
—695
—660

y, =—2R(~ —~, )

(mhartrees/bohr)

0.56
1.52
1.70
1.71
1.85
1.74
1.74

r, =3.93
z=1
o.=181 erg/cm

1

9
15
27

3.93
8.17
9.69

11.79

98
142
150
155

0.42
0.41
0.39
0.39

who found an oscillatory correction to Eq. (47)—
presumably a shell-structure effect due to the high degen-
eracy of the one-electron levels in a spherical potential.
If this oscillatory correction survives undamped in the
limit R ~~, then there is a breakdown of the leptoder-
mous expansion in the Kohn-Sham description of solid
spheres. Stocker and Farine have suggested that such a
breakdown could arise from a failure of Eq. (18) due to
oscillations of amplitude -R ' in the density nz(r) near
the center of the sphere.

Because of the oscillation, Utreras-Diaz and Shore
could obtain only a rough estimate of the curvature ener-

gy for jellium (y=5. 1 mhartrees/bohr at r, =2.07, and
0.66 mhartrees/bohr at r, =3.99). They also studied
"pseudojellium, " a serniempirical relative of our
stabilized-jellium model, and found curvature energies
close to those they found for jellium.

VI. CURVATURE ENERGY
FROM THE KOHN-SHAM DENSITY PROFILE

Within the Kohn-Sham method of Eqs. (8) and (9),
there is no obvious way to determine the kinetic-energy
contribution to the function g ( [n, n+ ],z) of Eqs. (23) and
(26). Following a suggestion of Stocker and Farine, we
tried to evaluate Eq. (26) by dropping g and using Eq. (8)
for the kinetic-energy density; this ansatz gave a curva-
ture energy that was an order of magnitude too big.
Thus, to calculate the curvature energy y from Eq. (26),
we apply the fourth-order gradient expansion of Eq. (10)
to the Kohn-Sham density. We expect this hybrid ap-
proach to be adequate for y, as it would be for the sur-
face energy 0, because the kinetic-energy component of
either is most important in the high-density metals, for
which the relative error of the gradient expansion is
smallest. Tables II, IV, and V support this argument. A

posteriori, the hybrid approach is justified by the close
agreement between its "Kohn-Sham" curvature energies
for jellium (Table IV) and the true Kohn-Sham values
from void formation energies (Table VII).

The main qualitative difference between the Kohn-
Sham and TFDGW4 planar-surface density profiles is the

Friedel oscillation of the Kohn-Sham density: As
z —+ 00~

n (z)~n [1+3cos(2kFz —5+)/(2kFz) +0(z )], (48)

where 5z is a phase shift. This oscillation does not invali-

date the leptodermous derivation of Eqs. (25} and (26),
nor does it create any special difficulty for the evaluation
of the required integrals. In our calculations, we evaluate
the integrals numerically for z )z, = —3(2n /kF ), and
analytically for z (z, . For example,

f dz 2z[e([n, n+ ],z) —En (z)]

=(P—e)f dz(2z)3n cos(2kFz —5F)/(2kFz)

(49)
where p=d [ns(n )]/dn. The contributions from z (z,
are found to be small.

In Table VIII, we compare our calculated curvature
energies y against phenornenological values. The latter
have been extracted from measured monovacancy forma-
tion energies E„„and surface energies cr, using Eq. (43}:

„„=cr4rr(z'i ,r, ) y2rr(z'i r, ) . — (50)

As we have shown in Table VII, Eq. (50) can be highly

Metal rs

y (mhartrees/bohr)
SJ expt.

H
Al
Zn

Mg
Li
Na
K
Rb
Cs

1.58
2.07
2.30
2.65
3.28
3.99
4.96
5.23
5.63

2.6
1.8
1.4
1.0
0.6
0.4
0.2
0.1

0.1

3.2
1.8
1.4
1.0
0.6
0.4
0.2
0.1

0.1

2.3
2.0
1.2
1.2
0.5
0.3
0.3
0.3

TABLE VIII. Curvature energies y for simple metals. The
jellium (J) and stabilized-jellium (SJ) values computed from the
Kohn-Sham density via Eq. (26) are compared to phenomeno-
logical values (expt. ) from vacancy-formation energies (Ref. 2).
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accurate. In comparison with the phenomenological
values, the calculated curvature energies are somewhat
too low. There is essentially no difference between the
values calculated for jellium and for stabilized jellium.

Rose, Vary, and Smith have proposed a scaling rela-
tion y/or, =1.7 for stable systems, but our results for
stabilized jellium in the metallic range 2 ~ r, ~ 6 can be
fitted by

(51)

An otherwise stable metal will also be stable against va-
cancy formation, provided that Eq. (50) is positive, i.e.,
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acknowledge partial support from the Instituto Nacional
de Investigacao Cientifica, Lisbon. He also acknowledges
the warm hospitality he has enjoyed at Tulane Universi-
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Science Foundation Grant No. DMR 88-17866.

APPENDIX A: DERIVATION OF EQ. (29)

As show in Appendix A of Ref. 7, the electrostatic po-
tential for the neutral sphere of radius R is

Pz ([nz, n+ ],z) =P([n, n+ ],z)+h (z)/R +0 (R ),
(A 1)

(2 1/3
CTP

(52) where

This condition is satisfied by the stabilized-jellium model
for all the metals in Tables VI and VIII except rnonatom-
ic hydrogen, which is in fact unstable against dimeriza-
tion.

VII. CONCLUSIONS

The liquid-drop expansion (1) gives a remarkably accu-
rate account of metallic total energies, even when the sur-
face is structured on the atomic scale. This suggestion
from Refs. 2 and 7 is dramatically confirmed by Table
VII for the case of microscopic voids in jellium.

We have derived an expression for the metallic curva-
ture energy [Eq. (26)] in terms of the electron-density
profile for the planar surface, and shown that the result-
ing values agree with fits of Eq. (1) to calculated or mea-
sured total energies. We find that the curvature energy is
determined largely by the bulk density n. It is nearly the
same (Table IV) for restricted trial density profiles as for
self-consistent Kohn-Sham densities, nearly the same
within the Thomas-Fermi-Dirac-Gombas-Weizsacker-4
approximation as within Kohn-Sham theory, and nearly
the same for jellium as for stabilized jelliurn.

We have also reported self-consistent Kohn-Sham re-
sults (Table VI) for the surface energy and work function
of jellium and of stabilized jellium. We find that the
stabilized-jellium model gives a reasonable description of
simple metals over the full range of bulk densities n, and
is significantly more realistic than jellium for the high-
density metals.

z I dh(z)= —f dz, f dzz 2 ([n, n+],zz)
00 00 Qzp

+4m f (zz) +h ( —oo ) (A2)

and f (z) is defined by the expansion (18). By Eq (19).,
h (z) tends to a constant limit as z ~+ ~; h ( —~ ) is
chosen to make this constant equal to zero.

But the expansion (23) requires the electrostatic poten-
tial of a charged sphere of radius R, in which the density
profile is that of the planar surface:

(()~([n, n+ ],z)=(t([n, n+ ],z)+h(z)/R +0(R ) .

(A3)

Aside from an irrelevant additive constant, h is just the
first term of (A2):

h(z)= —2f dz&[P([n, n+],z&) —P([n, n+], —oo)] .

(A4)

Note that h decreases linearly with z as z ~+ ~, as befits
the electrostatic potential outside a charged planar sur-
face.

Now the electrostatic contribution to Eq. (23) gives
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g„([n,n+ ],z) = ,' [n (z) ——n+(z)]h (z) .

Finally, we integrate by parts:

(A5)

f dz g„([n,n+ ],z)= —f dz [n (z) —n+(z)] f dz'[P([n, n+ ],z') —P([n, n+ ], —~ )]

=f dz[P([n, n],+z)
—P([n, n+], —oo)] f dz'[n(z') n+(z')]—

= f" dz[&([n, n+ ],z) —P([n, n+ ], —~ )]
1 d

[y([n, n+ ],z) —Ijl([n, n+ ], —~ )], (A6)4' dz
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where the last step follows from Gauss's law for the pla-
nar surface. Evaluation of the integral (A6) [with applica-
tion of Eq. (20)] yields Eq. (29).

component of y/2 is

f dz[5T, /5n(z) —
—,
' (3' ) i3n ]f(z) . (Bl)

APPENDIX B: COMPONENTS
OF THE CURVATURE ENERGY

All terms of the surface energy (25), and most terms of
the curvature energy (26), have a transparent physical
origin, but the contribution from Eq. (28} is an exception.
For convenience in Table II, we have assigned the first
term of Eq. (28) to the electrostatic energy, and the
second to the pseudopotential energy. But in fact Eq.
(28}contributes to other components of the curvature en-

ergy. For example, its contribution to the kinetic-energy

Only when f (z) of Eq. (18) assumes (or is constrained to)
the displaced-profile" form

(t'([& n+] — } dn(z)f (z)=-
27Tn dz

(B2)

is our decomposition of Table II fully correct. Under this
assumption, terms like (B1) vanish.

The components of the curvature energy shown in
Table II are less meaningful than the total. They are also
more sensitive to the density profile and to the difference
between jellium and stabilized jellium.
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