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Electronic excitations in thin alkali-metal layers adsorbed on metal surfaces
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The dynamical linear-response properties of realistic Na and K layers adsorbed on a semi-infinite jelli-
um substrate corresponding to the electron density of Al are studied with the aim of elucidating the na-

ture of the adlayer electronic excitations and their variation with coverage. The ground-state properties
are described by a first-principles method and the dynamical response in the long-wavelength limit is

treated within the time-dependent density-functional approach. At coverages near the work-function
minimum, the adsorbate-induced excitations are dominated by intra-atomic excitations between adatom
resonant states. Nevertheless, these atomiclike transitions do not lead to any spectral features in the
electron-energy-loss function because of the strong hybridization between adatom and substrate states.
Instead, as a result of surface screening processes and matrix element effects, a broad loss peak appears
near the threshold for emission. This mechanism explains the frequently observed correlation between

the coverage dependence of the work function and that of the energy loss induced by the alkali-metal ad-

layer. As the coverage is increased to one monolayer, the threshold mechanism is replaced by collective
excitations consisting of heavily broadened volume plasmons and multipole surface plasmons of the
alkali-metal adsorbate. At double-layer coverage, these two modes become very sharp and can clearly be
resolved. These collective excitations show only small inhuence due to the lattice structure of the alkali-

metal adlayer.

I. INTRODUCTION

The electronic response of surfaces to weak external
fields is one of the most basic topics in surface physics
along with the study of structural and electronic proper-
ties in the ground state. This field is of interest because it
covers important subjects such as surface elementary ex-
citations and the screening of electromagnetic fields,
whose knowledge is indispensable for the understanding
of observable quantities in a variety of surface spectros-
copies. ' Of particular interest is the adsorption of
atomic and molecular species on a clean surface. Adsor-
bates not only modify the response properties of the sub-
strate but also lead to additional excitation modes local-
ized in the adlayer.

The electronic excitations of thin adsorbed alkali met-
als have been studied for more than 20 years. These
adsorbates exhibit technologically important properties
such as large work-function changes, surface reconstruc-
tion, and catalytic promotion. ' In addition, the possi-
bility of varying the average density in the adlayer by
changing the adatorn coverage 6 has stimulated interest
in fundamental problems such as the insulator-metal
transition and the collective excitations in quasi-two-
dirnensional systems. In electron-energy-loss spectrosco-
py (EELS), excitation modes characteristic of the adlayer
have been observed for a wide range of 6. These excita-
tions show the following general behavior for a number
of systems: At very small coverages, the loss features
are rather broad; they shift to lower energies with in-
creasing 6 up to a certain coverage around the work-
function minimum; for higher 6, they become rapidly
stronger and shift back to higher energies. In the low 6
range, these excitations were traditionally attributed to

intra-atomic transitions between the alkali-metal-derived
s and p, states or to transitions involving both substrate
and adsorbate states. The rapid growth of loss peaks in
the rnonolayer regime, on the other hand, was often inter-
preted as due to collective modes in the adlayer. At
present, there is no satisfactory understanding of the ad-
layer excitations. In particular, the actual importance of
atomiclike s-p transitions in these systems is not known.
Also, the precise nature of the collective modes, their
variation with coverage, and their dependency on the lat-
tice structure of the adlayer have yet not been fully inves-
tigated.

The main difficulty in surface response theory arises
from the nonlocal nature of the response. For the linear
response, Feibelrnan developed a theory in which devia-
tions from the classical local-optics model in the long-
wavelength limit are expressed in terms of two functions,
dj(co) and d~~(co). ' d~(co) is the centroid of the
screening density induced by a uniform electric field
oriented perpendicular to the surface. Its imaginary part
is proportional to the transition rate for creating surface
electronic excitations at long wavelength. d~~(co) gives the
centroid of the z derivative of the current density induced
by a uniform electric field parallel to the surface. (We
take the z axis as surface normal. ) These functions direct-
ly determine various quantities observable in surface
spectroscopies. In the past, theoretical efforts focused on
evaluating the frequency dependence of the d functions
mainly for the one-dimensional "jellium" model, where
the positive charge of the ionic cores is smeared out into
a uniform background charge which drops to zero at the
surface. Among the most sophisticated ones are the
nonlocal response calculations based on the time-
dependent density-functional theory. ' They fully ac-
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count for the nonlocal nature of surface response, and
treat the ground-state and excitation properties on the
same level of approximation. This is necessary in order
for surface sum rules for the d functions to hold.
For the simple metals, these calculations demonstrate
that the surface excitation spectra show two features:
one near the threshold for emission, i.e., co=4 (work
function), and the second near the so-called multipole
surface plasmon, cu =0.8~ . This latter feature, pre-
dicted by Feibelman, ' is responsible for the local-field
enhancement of the surface photoyield and for the
enormously enhanced second-harmonic intensity of
alkali-metal adsorbates. Analogous response calcula-
tions for simple metal surfaces, carried out at finite paral-
lel momentum transfers, recently gave excellent agree-
ment with the measured wave-vector dispersions of the
ordinary surface plasmon and of the multipole surface
plasmon.

To date, there exist only approximate extensions of
these nonlocal response calculations from semi-infinite
jellium to more realistic surfaces with three-dimensional
lattice structures and to adlayers. For alkali-metal
adlayers, an approximate way of representing the adlayer
is to replace it by a thin jellium slab whose positive back-
ground density is proportional to 8. This "two-step jelli-
um" model was proposed by Lang to study the coverage
dependence of the work function. One of us applied
this model to study the second-harmonic generation and
optical reQectivity problems. ' ' Very recently, it was
used by Liebsch to achieve a systematic understanding
of the adlayer collective modes and their variation with
coverage. Gaspar et al. used the same model and
showed how the collective modes of thin alkali-metal ad-
layers converge on those of clean alkali-metal surfaces as
the thickness of the adlayer is increased. The jellium
model for the adlayer is mainly appropriate in the full-
monolayer range where the orbital overlap among nearby
adatoms is sufficiently large. However, it cannot account
for the effects of interband and atomiclike transitions
which are bound to play the dominant role at low cover-
ages. Several simplified models which approximately ac-
count for the atomic nature of the adlayer excitations
have been proposed. ' ' ' ' They are not based, howev-
er, on self-consistent descriptions of the electronic density
and of the nonlocal response.

To achieve a systematic understanding of the response
properties of alkali-metal adlayers, it is clearly necessary
to have a theory which can describe atomiclike transi-
tions, interband, and collective excitations on the same
footing for a wide range of 6. As a first step in this direc-
tion, we recently studied the linear and nonlinear
response of alkali-metal adlayers to a static electric field,
using a fully three-dimensional model. In the static
limit, the response problem is simplified since it amounts
to a ground-state calculation. Thus, it was possible to use
a scheme to calculate the ground-state electronic struc-
ture of realistic alkali-metal adlayers within the local
density-functional theory. The most important result
of this work was that those quantities which are related
to planar averages, such as the work function and the
linear and nonlinear-induced dipole moments, are not

very sensitive to the atomic structure within the adlayer,
even at coverages as low as 8=—,'. Thus, despite the pro-
nounced atomic corrugation of the actual induced surface
densities, these quantities do not deviate significantly
from the corresponding results obtained in the jellium
model of the adsorbate-substrate system.

In the present work, we go beyond the static limit and
determine the dynamical linear-response properties of
realistic Na and K adlayers in the long-wavelength limit.
Essentially, our scheme combines the self-consistent
method of Ishida for the ground-state electronic prop-
erties of alkali-metal adlayers with the dynamical-
response treatment used by Liebsch ' ' ' for the jellium
versions of adsorbed alkali-metal layers. Thus, the chem-
isorption bonds and their variation with coverage are ac-
curately described in our scheme. Moreover, the elec-
tronic excitations are treated within the time-dependent
density-functional approach without any further ap-
proximation of the occupied or unoccupied states in-
volved in the transitions. The intra-atomic aspects, the
interband contributions, and the collective behavior in-
herent in these excitations are therefore fully taken into
consideration in our calculations. For simplicity, we
represent the substrate by the jellium model. The jellium
substrate is not particularly meant to model transition-
metal substrates with localized d states. However, it may
give a sound basis for understanding the essense of those
response properties which are rather insensitive to the ex-
act nature of the substrate. Here, we use a bulk density
appropriate to Al in order to make contact with a variety
of measurements which have been performed for alkali
metals adsorbed on Al. The results of these first-
principles calculations are compared with dynamical-
response calculations carried out for the jellium model of
alkali-metal adsorption.

The remarkable and surprising result of the present
work is that Imd~(co), which is proportional to the EEL
intensity at long wavelength, shows no evidence for atom-
iclike transitions even at the lowest coverage studied
here, 8=—,', for which the adatom local density of states
is already similar to that in the low coverage limit studied
by Lang and Williams. In fact, the calculated Imd~(co)
is nearly identical to that obtained with the two-step jelli-
um model over the entire 8 range. Therefore, we can
draw the same conclusion as we did previously in the
static limit, namely, that the dynamical dipole moment
induced normal to the surface is insensitive to the atomic
structure in the adlayer. Of course, at low 8, the actual
induced charge densities are highly corrugated and
strongly localized near the adatoms. This means that the
screening process is dominated by intra-atomic excita-
tions. However, the occupied adsorbate levels are too
strongly broadened via hybridization with the substrate
states for any discrete atomiclike peak to appear in

Imdj(co). Instead, at coverages near the work-function

minimum, the spectra show a broad peak at approximate-
ly ~=4. The analysis shows that this threshold peak
arises from surface screening processes as well as matrix
element effects. We are therefore able to understand the
common experimental observation, namely, that the ener-
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gy of the adlayer excitations correlates with the work
function.

As the coverage approaches one monolayer, the
threshold feature is replaced by a strong loss peak con-
sisting of adlayer volume and multipole surface-plasmon
excitations. However, these modes are so strongly
mixed with electron-hole pair excitations that they can-
not be resolved. At the double-layer coverage, one can
distinguish the adsorbate-vacuum and adsorbate-surface
interfaces. As a result, these two collective modes be-
come very sharp and can well be identified in the surface
loss function Imd~(co). The present calculations demon-

strate that the atomic structure within the adsorbate has
only small influence on the frequency and width of the
collective excitations at monolayer and double-layer cov-
erages.

~e also evaluate d~~(co) using the diagonal approxima-
tion which neglects local-field effects. We show that the
contribution of Imd~~(co) to observable quantities is very
small in the energy range relevant for EEL experiments.
Nevertheless, Imd~~(co), which vanishes identically within
the two-step jellium model, diverges as 1/e in the low-
frequency limit. The coefficient of this divergence is
directly related to the adlayer-induced change in the
resistivity of a thin metallic film which currently attracts
much experimental and theoretical attention.

The outline of this paper is as follows. In Sec. II, we
present the model for the chemisorption of alkali-metal
adlayers on a metallic substrate, and describe details of
the computational procedure to calculate the linear
response of adlayers within the time-dependent density-
functional theory. Section III is the main part of the pa-
per. It contains the results of the calculations and a de-
tailed discussion. A summary is given in Sec. IV. Har-
tree atomic units are used throughout this paper. A pre-
liminary account of the present work has already ap-
peared. '

II. THEORY

A. Adlayer model and the Green function

Figure 1 shows the calculational geometry. Our ad-
layer model is an extension to finite coverages of the work
of Lang and Williams, and Hjelmberg, Gunnarsson,
and Lundqvist on the single-atom chemisorption on jel-
lium. The electronic structure of alkali-metal adlayers on
the semi-infinite jellium is calculated within the local-
density approximation in the density-functional theory.
In the self-consistent procedure, the embedded region
with b, z b2 is treated explicitly, while the effect of
the semi-infinite substrate and the vacuum is taken into
account via the complex embedding potential invented by
Inglesfield. The method is fully three dimensional, and
the alkali-ion cores are represented by the norm-
conserving pseudopotential. More details of the com-
putational procedure for the ground-state calculation are
given in Ref. 46.

With the reciprocal-lattice vectors in the planar direc-
tion, g, the Green function

G(r, r', k, s)=(r~[s+i5 H(k, B)] '~r—')

b)

0

jeliium

embedded region

Qdatom

ZQ

b2

FIG. 1. Calculational geometry for alkali-metal adlayers on

semi-infinite jellium.

is expanded as

6(r, r', k, E)=—g exp[i(k+g) x i—(k+g )'x ]'1

S

X G (gz, g'z', k, e),
where x = (x,y), k is the wave vector in the surface Bril-
louin zone, c is the one-electron energy measured from
the bottom of the substrate jellium bands, and S denotes
the surface area. In the embedding region,
6 ( gz, g'z ', k, e ) is expanded using a nonorthogonal
sinusoidal basis set (in obvious cases, we omit the indices
k and E in the Green function):

G(gz, g'z') =exp[ ik (z —b, )]G(gb„g—'z')

(z ~b„z'~b)),
with

k =+2e+i5 (k+g—) (Imkg ~0),
and

~as
6(gz, g'z') = exp(ik~ ~z

—z'~ )
ik

(4)

+ G(gb„g'b, )
—.

~Is
ik

Xexp[ ik (z b, )
—ik .(z' —b, —)], —

(z,z'~b, ) . (5)

The first term of (5) is the free-electron Green function,
whereas the second is the scattering term due to the sur-
face.

B. Linear-response equation

We apply a uniform electric field oriented perpendicu-
lar to the surface. Within the time-dependent density-

G (gz, g'z') =—g 6 (gn, g'n')sin(k„z)sin(k„z')
n, n'

(b, ~z, z'~ b2), (2)

where k„=nell (n & I).. 6(gn, g'n') is calculated nu-
merically by the inversion of cS—H where S and H are
the overlap and Hamiltonian matrices. Using the
Green-function matching technique of Inglesfield, the
Green function is then extended into the entire space as
follows:
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5&„(r,co}=P,„,(z, co)+ fdr', 5n (r', co),
1

r —r'

5V„,(r, co) = V„,(n) ~„(,)5n (r, co) .= a

(7)

In the above, P,„,= —2mz is the external potential, V„, is

the local exchange-correlation potential function, and
no(r) is the ground-state electron density. With the
Green function calculated from the self-consistent
ground-state potential, y0 is expressed as

EF
yo(r, r', co)= f ds f ImG(r, r', k, E)

(2n }

X [G(r, r', k, E+cu)+G'(r, r', k, E —co)] . (9)

The amount of the total induced charge is determined
by the bulk dielectric function of the jellium substrate,
e(co)=1 4ttnlc—o, independently of the details of the
surface electronic structure. (n )0 denotes the bulk elec-
tron density. ) It satisfies

o(co)= —f dr 5n (r, co) =1 E(co )
—1

(10)
S e(to)+ 1

The spectral function d~(co) is defined as the centroid of
5n (r, co) measured relative to the substrate jellium edge:

d~(co)= f dr(z —z )5n(r, co) .
1

functional theory, the linearly induced charge density
5n (r, co) satisfies the response equation,

5n (r, co) =f dr'yo(r, r', co)[5&„(r',co)+5 V„,(r', co)] . (6)

Here yo(r, r, co) is the independent-particle susceptibility;
and 5P,&

and 5 V„, are the Coulomb and exchange-
correlation contributions to the linear potential change:

charge fills the space in the range —z ~ z ~ z . We apply
an electric field E, =4m with frequency co in the z direc-
tion. Because the total system is neutral,

F„+F +F.=0, (12)

where F„F„and F- denote the forces in the z direction
per unit area acting on the electrons, on the ion cores of
the adlayers, and on the positive background charge of
the jellium slab, respectively. With use of the equation of
motion for the electrons, F„ is given as

d z;F„=—gs
1 d fdrzn(r, t)IS,s dt2

(13)

= —2 a5F, = dr[ n, (x,—z —z, )]5/,~(r, co)S„az.

where z, is the z coordinate of the ith electron, and n (r, t)
denotes the total electron density at time t Fro. m (12)
and (13), one has for the linearly induced term,

5F, +5F~=co f dzz5n(z, a))

=2' f (z —zj )5n(z, co)+2z co o(co), (14)

where 5n (z, co) denotes the planar average of 5n (r, to).
Next we calculate 6F and 5F, in an alternative way.

'6F can be evaluated from the induced electric field
d (5P„)/dz as

z.
I — I5F =2( —n ) f dz 4' 1 —o(co)+ f dz'5n(z', co)J 0 0

z.

=2'~ f dz(z —z )5n(z, co) 2' z, [1——o(co)],
0

(15)

where co =4mn. 6F, is calculated from the linear change
in the Hellman-Feynrnan force acting on an adatom as

C. Sum rule for the induced dipole moment
+5( V„, & (16)

The direct numerical evaluation of d~(co) using (11) is
not practical because of the Friedel oscillations which
5n (r, co) exhibits in the interior of the metal. For the jel-
lium surface, utilizing the dynamical-force-sum rule, an
analytical formula can be derived ' that relates d~(co) to
the dipole moment of 5n (r, co) evaluated only in the sur-
face region. We extend this formula to the case where
the surface has a three-dimensional adlayer.

Let us consider a thick jellium slab covered by an
atomic monolayer on each surface. The adlayers are lo-
cated at z =z, and —z„and the positive background

I

where n, (x,z —z, })0 is the localized positive-charge
distribution which represents the local part of the ion-
core pseudopotential, 5( V„& ) is the linear change in the
expectation value of the nonlocal pseudopotential term in
the Hamiltonian (per atom), S„denotes the unit area per
adatom, and the prefactor 2 comes from the adlayer in
the back surface.

By inserting (15) and (16) into the left-hand side of (14),
and noting that the second term on the right-hand side of
(14} cancels that of (15} since o(co)=[a(co)—I]/e(co)
holds for the slab geometry, one has

f dz(z —z. )5n(z, co)= f dz(z —z )5n(z, co) f dr —n, (x,z —z, )5&,&(r, co) — 5( V„&)
E(co)—1 1 a a

&(to) S ri)

(17)

Since (17) should also hold for the semi-infinite geometry, by dividing (17) by o (co), one finally obtains
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dj (co}=e(~)+1 1 8 af dz(z —z. )5n(z, co) — f dr n, (x,z —z, )5$,&(r, co) — 5( V„&)
E(c'o ) 'J S„co

(18)

The first term in the right-hand side of (18) gives the sum rule for the clean jellium surface. ' For the jellium adlayer

represented by the positive background charge,

n, (z) =n, [0(z —z ) —8(z —z,.—d, )], (19)

(20)

E
de f dr dr'dr" V„&(r,r', z, )ImG (r, r",k, s)[G (r', r",k, a+co)+ G'(r', r",k, s —co)]

7T (2m. )

the third term in (18) is missing, and one obtains from (18) after some manipulation

g(co)+ 1 na ~ na )le
d~(co) = 1 — f dz (z —zj )5n(zco, )+ f dz (z —zj —d, )5n (z, co) + d, .

7l j l7 j a n

Let us denote the linear change in the wave function of the one-electron state with energy s as 5'„(r,a }. Then, 5( V„& )
in (18) is calculated as

E
5( V„&)=f de dr dr'g'(r, e)V„&(r,r', z, }5/„(r',e)+ f de dr dr'5$' (r', e}V„&(r,r', z, )g(r', s}

X [5$„(r",co)+5V„,(r",co)] . (21)

It should be noted that if V„& is a local function given as To account explicitly for the asymptotic behavior of P„ it
is convenient to write

V„~(r,r', z, ) = V, (x,z —z, )5(r—r'),

Eq. (21) is reduced to an obvious form,

5( V„, ) =f dr V, (x,z —z, )5n(r, co) . (22)

5n (r, co) =5no(z, co)+5n, (r, co),

P, (r, co)=5/0(z, co)+5/, (r, co) .

(26)

(27)

In (26), 5no is a model charge density having the weight
o(co) and the dipole moment do+id„ i.e.,

D. Computational procedure

Our procedure to solve the response equation (6) is an
extension of the method developed in Ref. 31 for jellium
surfaces to the three-dimensional case. First, we decom-
pose 5$,&

into the two terms as
Im5no(z, co) =

Z] Z2
cr(co)

«5n( ,zc)o= c(Tc)o—exp[ —(z —z.—do) I ],r
(28)

5$,,(r, co) =P~(z, co)+P,(r, co),

with

(23) X [exp[ —(z —z —z, ) I ]

—exp[ —(z —z —z2) I ]] . (29)

P~(z, co) = —2n.[1—cr(co)][z —d~(co)] . (24)

P, is taken to vanish in the interior of the metal. In the
vacuum, P, has the asymptotic form 4mcr(co)—(z —do id, ) (z—»0) . (30)

The corresponding Coulomb potential 5/0 is defined as

5/0(z, co) = 4~f —dz'(z z')5no(z—', co)

P, (r, co) = 4vrcr(co)[z —d~(co)] (—z &&0) . (25)
I

The response equation for 5n, and 5$, now reads as

5n, (r, co)=Q(r, co)+ f dr'yo(r, r', co) 5$,(r', co}+ V„,(n) 5n, (r', co)
a

Bn
(31}

with

h(r, co}=g(r,co) 5no(z, co—)+f dr'yo(r, r', co) 5/0(r', co)+ V„,(n) 5no(r', co)
np(I' )

(32)

where the driving term g is defined as

g(r, co) =f dr'go(r, r', co)Pz(z', co)

2vr[1 cr(co)]f d—r'z—'yo(r, r', co) . (33)

I

In calculating g, one needs to perform the integral over r'

in the entire space. The contribution from the bulk re-
gion z ~ b, can be calculated analytically using (3) in the
expression of po.
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We give a trial input dipole moment d;„=do+id&. If
it is equal to d~(co), both 5n, and 5$& become localized in

the surface. We assume that they are finite only in the
embedding region. By inserting (2) into (9), one finds that

go in the embedding region has the form,

K
C (N, N')5$, (N') =K(N, N') 5n i (N')+ —5$,(N')

where

(43)

go(r, r', co)= g go(gn, g'n', co)exp(ig x—ig' x')
I I

g, n, g, n

X cos(k„z)cos(k„,z'), (34)

where b, ~z, z'~b2 and n, n'~0. In the same way, 5 is
expanded as

E(N, N') = 2~6, b,f dzdz' cos(k„z)
1Kg

Xexp( —sslz —z'I }cos(k„.z') .

(44)

These two equations suggest that one should expand 5n,
and 5$, in the same form,

5 n(r, co)= g exp(ig x)5n, (gz)

= + 5n& ( gn )exp( ig x)cos( k„z),
gn

5$,(r, co)= g exp(ig x)5$,(gz)

(36)

= g 5$,(gn)exp(ig. x}cos(k„z) .
gn

(37)

By inserting (34)—(37) into (31), one obtains the response
equation in the matrix form,

5n, (N) =go(N, N', co)C (N', N" )5$,(N" )

+go(N, N', co) V'„,(N', N")5n, (N")+A(N),

(38)

where N represents the set of indices I gn], summation is
implied for repeated indices, and

b2
C(N, N') =5ss. dz cos(k„z)cos(k„.z), (39)

gg b

V„',(N, N')= —fdx f dz V(n)l„
~I

X exp I
—i (g —g') x]cos(k„z)cos(k„.z) . (40

5n, and 5$, are related by the Poisson equation. In-
troducing a short-range kernel as in the one-dimensional
case, the Poisson equation is written as

b, (r, co)= g b, (gn, co)exp(ig x)cos(k„z) (b& ~z ~bz) .
g, n

(35)

Equations (38) and (43) are combined to calculate 5n&

and 5$, , and the output dipole moment d,„, is calculated
with use of the sum rule (18). If we obtain self-
consistency, i.e., if d;„=d,„„our assumption that 5n~
and 5$, are localized near the surface is satisfied. There-
fore, d~(co) is given by do+id, . The solution should be
independent of the parameters, I, z, , z2, and K. In prac-
tice, we use the higher-dimensional Anderson procedure,
reformulated by Bliigel in the language of the quasi-
Newton method, for the iteration procedure towards
self-consistency.

E. Electron-energy-loss intensity

In the dipole scattering approximation, the energy-loss
probability in EELS is proportional to the imaginary part
of the loss function g (q~~, co). At long wavelength (q~~ =0},
g (q~~, co ) is given' by

e(co) —1

dpi�(co)

+e(co)d ~(co )

I+2lq[fl

a.f dr(z —zj ) 1(((r,co)J azdl(~)=
adr j~~ r co
az

jll(r, co)= f dr'o ~(r, r', co)E~(r', co) . (47)

Here a denotes the direction of
q~~

and E~ is the P com-
ponent of the self-consistent electric field. Within the
random-phase approximation, the conductivity tensor
o. ~ is expressed as

(46)

o ~(r, r', co)=cr ~d(r, r', co) +o ~(r, r', co),

(45)

where d
~~

(co ) is the centroid of the z derivative of the
current density when a uniform electric field oriented
parallel to the wave vector is applied to the system, i.e.,

g I 2 1T
5$&(gz) = f„dz'exp( —Ic lz —z'I )

l g

K
X 5n, (gz'}+—5$,(gz')

where

(41)

o d~(r, r', co) =—no(r)5 P(r —r'),
CO

o ~(r, r', co) =—g j,"(r)j~(r'),
co . . c. - —E +co+i5 "

i,j i J

where

(49)

(50)

Ic =(Ic'+
I gl2)

Equation (41) can be expressed in matrix form as

j, (r) =—g,*(r) 1(I, (r)—
a

g,*(r) g, (r)a
Xa

(51)
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In Eq. (51), g; is the wave function of the one-electron
state with energy e, , and f; denotes the Fermi distribu-

tion function.
As pointed out by Feibelrnan, ' for the quasi-one-

dimensional models, the term containing 0. ~ vanishes
after the integration over r' and d

~~

becomes a frequency-
independent real number. Physically, this means that an
electron with momentum k cannot be scattered to anoth-
er state with different k because of translational invari-
ance in the planar direction. In the present case, where
the surface has a three-dimensional adlayer, electrons can
be scattered from k to k+g. Thus, this term gives rise to
a finite complex-current density localized in the surface.
Since our main interest is to estimate the order of

ICE dr dr'o (r, r', co),
nS

(52)

where no(z) is the planar average of n (r), and we in-

tegrated by part with respect to z for the second term.
Using the Green function (1), Eq. (52) is reexpressed as

Imd~~(co), we neglect the local-field corrections (electric
fields with nonzero g), and assume E~(r, co) =5 &El. (As
the d-parameter theory is correct only up to the order of
q~~, one can ignore the z dependence of E~~, which is con-
stant in the range of I/~q~~ ~.) We then have

d~~(co)= —— dz(z —z ) no(z)
1

n

d~~(co)= ——f dz(z —z ) no(z) —f ds f g f dz dz'(k+g) (k+g') ImG(gz, g'z', k, e}1 d 1 F 2dk

n dz 71 K (2~)' s s

X [G (gz, g'z', k, a+co)+G*(gz, g'z', k, e —co)], (53)

p =/[If p]~J~~ ~

=f drdr'Reer@ (r, r )E~~ (54)

where the macroscopic current in the film, J~~, originates
from crz, i.e.,

(55)

From (52), (54), and (55), one finds

l&p = ——Imdll (co }
CO

n
(56)

The same result was previously derived by Persson with
a phenomenological approach in connection with the life-
tirne of the frustrated motion of adsorbates parallel to the
surface. l&p remains finite in the limit of co~0. As seen
from (56), this means that Imd~~ should diverge as 1/co in

the static limit. We note that the local-field correction

where the integral over z and z' in the bulk region
z, z'~b, is calculated analytically with (3) and (5). Be-
cause of high symmetry, d(co) does not depend on the
direction of

q~~
for hexagonal and square adlayers studied

in the next section. It will be shown that, in the energy
range relevant for EEL experiments on alkali-metal ad-
layers, Imd~~(co) is actually smaller by several orders of
magnitude than Imdi(co). Since e(co) is a real quantity in
this energy range, the energy-loss spectrum is essentially
proportional to Imdi(co) apart from a kinematical prefac-
tor. "

Before closing this section, we discuss the relation be-
tween

Imd
(co) and the adlayer-induced change in resis-

tivity of a thin metallic film. We apply a uniform electric
field Ei to a metallic film with thickness I& (100—1000 A).
Introducing the film resistivity p, the total energy loss in
the film per unit time is given by

I

which we neglected in (52} does not contribute to the
divergence of Imd~~(co). Hence, l&p in the static limit is

calculated exactly from (52).

III. RESULTS AND DISCUSSION

In the present work, we study Na and K adlayers on
semi-infinite jellium with r, =2, which corresponds to the
free-electron density of Al. Up to rnonolayer coverage,
the adlayer is assumed to form a hexagonal lattice, and
the coverage is varied by changing the lattice constant a~~.

We define the adlayer with a~~
='7.183 a.u. as 8~,=1 for

Na, and the adlayer with a~~
=9.294 a.u. as 8„=1for K.

The distance between the jellium edge and the adlayer,
z, —z is chosen as 3.0 and 3.5 a.u. for the Na and K ad-
layers, respectively. These values correspond to the
total-energy minimum obtained by Lang and Williams
in the low-coverage limit. Actually, the adlayer exhibits
a small outward relaxation with increasing 8 due to the
weakening in the adatom-jellium bonding. ' ' However,
since the orbital size of the alkali-metal s and p states are
much larger than the amount of this relaxation, it is ex-
pected that the response properties of the adlayer change
only rather little within this relaxation range.

For the sake of comparison, we perform parallel
response calculations for Lang's two-step jellium mod-
el. With the above definitions of parameters, the hexag-
onal adlayers at the full-monolayer coverage have the
same electron density as the jelliurn slab with r, =4 and
d, (slab thickness) =6 a.u. for Na, and as the jellium slab
with r, =5 and d, =7 a.u. for K, respectively. These jelli-
um slabs were previously used to model the Na and K
monolayers in the second-harmonic generation and EEL
calculations. ' At low 8, we fix d, as above and
change the positive-background density of the jellium
slab in proportion to 8.

For Na, we also study the adlayer at the two-
monolayer coverage where the second Na layer adsorbs
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on the first one. In order to keep the inversion symmetry
in the planar direction, the first and second Na layers are
assumed to form a square lattice (a~~ =6.684 a.u. ) instead

of a hexagonal lattice, and Na atoms in the second layer
adsorb on the fourfold hollow sites of the first layer. The
distance between the jellium edge and the Na layers is
chosen as 3 and 9 a.u. for the first and second layers, so
that the adlayer has the same electron density as the jelli-
um slab with r, =4 and d, = 12 a.u.

We use the following parameter sets: For Na at

eN, 1, b, =2, z. =10, b2 =24, and 1=26 a.u. ; for Na at

GN =2 b] =2 z&
= 10, b2 =30, and I=32 a.u. ; for K,

b, =2, z. =10, b2=26, and I=28 a.u. By virtue of the
efficient screening of the substrate (the bulk-plasmon fre-

quency of jellium with r, =2 is 16.65 eV), these parameter
sets are found to be sufficient to describe not only the
ground-state charge but also the linearly induced charge
density as long as co is smaller than —10 eV. The cutoff
energy for the basis functions in expanding the Green
function (1) is set to 5 Ry. With this value, the number of
basis functions for the largest system is —1000. By mak-

ing use of symmetry properties, the matrix size of the
response equations (38) and (43) can be reduced to -950.

A. Ground state

We first discuss briefly the ground-state electronic
structure of alkali-metal adlayers. (See Ref. 46 for more
details. ) Figure 2 shows the contour map of the ground-
state charge density for hexagonal Na layers on jellium
with r, =2 on a vertical plane containing neighboring
adatoms (The. origin of the z axis in this and all subse-
quent figures is chosen to coincide with the substrate jelli-
um edge. ) The charge density is highly corrugated near
the adatoms and appears atomiclike at eN, = 4, whereas

5
O

I I I

0 6

x (a.u. )

0-3 0 3

FIG. 2. Contour maps of ground-state charge density no(r)
for hexagonal Na adlayers on jellium with r, =2 in a plane nor-
mal to the surface containing neighboring Na atoms. The con-
tour spacing is 0.0005 a.u. The solid circles and dotted lines in-
dicate the Na nuclei and the jellium edge, respectively. Con-
tours with no(r} 0.01 are not shown.

the Na valence electrons are almost uniformly distributed
in the adlayer at eN, =1. To be accurate, these charge
densities are always polarized toward the interface. This
causes the electric dipole layer to reduce the work func-
tion of the substrate. The calculated work functions +
are 2.35, 2.55, and 3.20 for eN, = 4, —,', and 1, respective-
ly. For the present system, the minimum of the work
function occurs at eN, =0.35.

The 8 dependence of the adatom electronic structure
is more clearly seen in the adatom local density of states,
p, (s, 8), and the dipole density of states, p, (e,8), which
are defined as

p, (e,8)=f dr f dk 21m[6(r, r, k, s)~e —G(r, r, k, e)~e=p]
2

R (2'�)

p, (c,, 8)= f dr(z —z, ) f dk
2 Im[G (r, r, k, E) ~e

—G (r, r, k, E) ~e 0],2

(2~)'

(57)

(5g)

where the integral over r is performed in a small adatom
sphere with radius R. One-electron states with positive
(negative) )M, are polarized toward the interface (vacuum)
side of the adlayer and, therefore, may be regarded as
bonding (antibonding) states with respect to the adatom-
substrate bonding. The calculated p, and p, for Na ad-
layers are shown in Fig. 3(a). At 8N, =

—,', p, has two
atomiclike resonances above EF. It is already similar to

p, given by Lang and Williams in the low e limit.
Thus, the direct Na-Na interaction is fairly small at this
coverage. The lower peak corresponds to the hybridized
state of Na 3s and 3p„and the higher one is Na 3p~~.

It is important that, owing to the strong interaction be-
tween the substrate states and adatom orbital with a
symmetry, Na 3s and 3p„which are not good quantum
numbers for the adatom, do not form separate reso-
nances. Therefore, for the present system, there is no

reason to expect that a loss peak appears at the energy
close to the energy separation between the 3s and 3p, lev-
els of a free Na atom.

While p, is smooth and has no particular structure at
EI;, p, changes its sign very rapidly near EF. The hybri-
dized 3s-3p, resonance is seen to be an antibonding state
whose wave function is strongly polarized towards the
vacuum. It is thus expected that the excitations from the
occupied bonding states to the antibonding resonance
have large dipole matrix elements leading to an induced
charge localized on the vacuum side of the adatoms.
With increasing e, the atomic peaks in p, are smeared
out because of the formation of wide adlayer bands. The
broadening of the peaks, however, does not imply the
disappearance of resonances. They are still sharp if p, is

decomposed in k space. The band width of the lowest
hybridized 3s-3p, state along the I -K line in the surface
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0.5- (a) Na s+ p
— — (b

0 I I I
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FIG. 3. Adatom density of states p, (c,e) and dipole density

of states p,, (c,,e) for (a) Na and (b) K adlayers on jellium with

p~ =2.

Brillouin zone is 0.4, 1.6, and 3.7 eV for 6N, = 4, —,', and

1, respectively. The area of the occupied part of p, is al-

most constant up to -6N, =0.7, while the large overlap
of the valence charge among nearby adatoms leads to its
appreciable increase at 8N, =1. In Fig. 3(b) we show p,
and p, for K adlayers. Their qualitative features are
similar to those in the densities of states for Na, except
that p, and p, for K above EF is much more complicated
due to the low-lying d states.

B. Induced density and potential

Figures 4(a) —4(c) show contour maps of the real part of
the normalized induced charge density 5n (r, co)/o (co) for
Na on jellium with r, =2 as a function of co for three ad-
layers in the same plane as in Fig. 2. Note that Re5n /o
is normalized to unity when integrated over a unit cell in-
dependently of 6 and co. The solid, dashed, and dot-
dashed contours correspond to positive, negative, and
zero values, respectively, and the contour spacing is 0.08
a.u. The contour maps at the lowest frequency (co= 1 eV)
are very similar to those of the linearly induced charge in
our previous work calculated in the static limit (co=0) for
Na on jellium with r, =3, except that the Friedel oscil-
lations which 5n exhibits in the substrate have a shorter
wavelength because of the higher jellium density used in
the present work.

First we discuss the 6 dependence of Re5n. At
6N, =4 and low co, Re5n has a localized peak with a
large amplitude on the vacuum side of the Na atoms.
The peak height is -4 times larger than the planar aver-
age of the induced density at the same z coordinate. As
discussed in the static limit, the kidney-shaped-induced
density can be understood as resulting from excitations to
the hybridized s-p, resonance since its wave function is
strongly polarized toward the vacuum. Therefore, at low
co, the screening of the external field is dominated by

intra-atomic excitations between adatom resonances.
With increasing 6, the induced density exhibits a con-
tinuous transition to a more uniform charge distribution
in the planar direction.

Next, we discuss the co dependence of Re5n. At low co,

Re5n is located mostly on the vacuum side of the Na
plane irrespective of 6, reAecting the efficient screening
due to Na valence electrons. The applied field cannot
penetrate into the adlayer in this co range. Up to a cer-
tain frequency which strongly depends on 6, the centroid
of 5n/o shifts slightly toward the vacuum. Then it starts
to move inward and crosses the plane of Na nuclei.
When the centroid of Re5n moves across the Na plane,
the density becomes strongly distorted near the Na nuclei
in such a way that 5n is repelled from the Na cores (e.g. ,
see 5n /0 at co=6 eV at 8N, = 1). This behavior is caused

by the repulsive Na pseudopotential. For higher co, the
adlayer becomes essentially transparent to the applied
field. Re5n becomes negative on the vacuum side of the
adlayer, and the screening is caused by the fairly uniform
induced charge built up at the substrate-adsorbate inter-
face.

In Figs. 4(d) —4(f) we show contour maps of
Im5n(r, co)/cr(co). Since cr(co) is a real quantity, Im5n
vanishes when integrated over a unit cell. Irn5n disap-
pears also in the static limit as yo is a real function when
m=O [see (9)]. Imdj (co) is given by the dipole potential
barrier caused by these charge distributions. Again, one
clearly sees in these contour maps the continuous transi-
tion from atomiclike response at low 6 to laterally more
uniform response at higher 6. In contrast to Re5n/0. ,
the shape of these contour maps does not show a strong co

dependence, except that the induced charge becomes
slightly negative on the vacuum region at the highest co.

On the other hand, the amplitude of Im5n/o. depends

greatly on co. It reaches its maximum in the co range
where the centroid of Red~(co) crosses the Na plane.
This resonant behavior is expected, since Redj(co) and
Imd~(co) are related via a Kramers-Kronig relation.
The origin of this resonant peak will be discussed in de-
tail below.

The solid curves in Fig. 5 show the planar average of
the real part of the induced charge density,
5n(z, co)/o(co) for Na adlayers as a function of co. They
are compared with the corresponding induced densities
calculated using the two-step jellium model, which are
one-dimensional from the beginning (dashed curves). Ex-
cept for 6N, =—' where the atomic character of the exci-
tations is dominant, the agreement with the solid curves
is surprisingly good, especially at low frequencies. This is
so despite the fact that the actual induced charge at
6N, =

—,
' is appreciably corrugated as shown in Fig. 4.

Therefore, the two-step jellium model can describe planar
averages of linear response properties of real alkali-metal
adlayers quite well for coverages higher than the work-
function minimum. This was also the case in the static
limit.

In the upper panels of Fig. 6, we show contour maps of
the real part of the normalized Hartree potential,
5$„(r,co)/o (co) at 8N, =—,

' for several frequencies. It can
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clearly be seen how the external electric field is screened
out by the induced densities. In the vacuum region, the
potential decreases linearly with the slope,
—27r(1+a(co))/o(co). With increasing co, the electric
field penetrates more into the interior of the adlayer since
the screening becomes less efficient. Because of the long-
range nature of the Coulomb potential, the three-
dimensional corrugations of 5g„are much less pro-
nounced than those in the corresponding contour maps of
5n in Fig. 4.

The lower panels of Fig. 6 show the corresponding
contour maps of the real part of the total self-consistent

potential,

1))scF(r,~)=5/, ,(r, co)+5 V„,(r, co), (59)

divided by cr(co). Here, the one-dimensional nature of the
potential is much more enhanced because of significant
cancellations of 5$,&

and 5V„,. As a result, the atomic-
like nature of the contours seen in 5$,&

on the vacuum
side of the Na plane at low ~ is entirely absent in the cor-

10—

I I ' ! I I I f 1 I I I
' I I

ZeV— 3eV—
I I I

4eV—

C&~&&

-5 0 5

(/

~~ 1/ )~

c. /

C

I I I Q I I I I I

-5 0 5

/
I I I I I

-5 0 5 -5 0 5

x (u. u. )

(b) e=) i2
I I I I

t
I I I

+=1eV- 2eV -— 3eV—
I I 'I

) I I I I

4eV-
1 I 1 1 t I I I I

1

5eV—
I I I I

i
I I I I

C5

0

I l I I I I

0 4 4 0 4 -4 0 4 -4 0 4 -4 0 4 -4 0

x (u.u }

(c) 6=1
I I I

(
I I I I I I

/

I I I I I I
/ I i I
I

10—
& =1eV- 2eV— 3eV—

4eV—
5eV— 6eV—

7eV
8eV-

)

-3 0 3
L~

-3 0 3
I I

-3
)

0 3
I I I ) 1 I

-3 0 3 -3 0 3 -3 0 3 -3 0 3
x (o.u. )

-3 0 3

FIG. 4. (a)—(c) Contour maps of the real part of induced density 5n (r, co) for hexagonal Na layers on jellium with r, =2 on the
same cut plane as in Fig. 2 as functions of 6 and cg. The solid, dashed, and dot-dashed contours correspond to positive, negative, and
zero values. The contour spacing is 0.08 a.u. (d) —(fl Corresponding contour maps of the imaginary part of 5n (r, co).
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FIG. 6. Contour maps of the real part of induced Coulomb
potential 5$„(r,III) for Na at BN~= —' (upper panels). Corre-
sponding contour maps of real part of self-consistent potential
psc„(r, III) (lower panels). The contour spacing is 10 a.u.
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responding contour map of Regsc„/o. . The one dimen-
sionality of the potential is further enhanced at higher O.
Therefore, the essential features of z~ bz~scF can e under-

stood from its planar average shown in Fig. 7. In con-
trast to the induced densities shown in Fig. 5, these po-
tential curves show no Friedel oscillations in the interior
of the metal. As compared with 5P„, the positions where

the potential starts to decrease are shifted by 2 —3 a.u. to-
ward the metal side due to negative contribution of 6VXC'

Nevertheless, as a result of screening processes, PscF(r, co)

at low frequencies nearly vanishes on the interface side of
the Na nuclei, where one-electron wave functions of the
occupied states have larger weight because of the Na-
jellium bonding. At higher 8, this potential penetrates
the adlayer even less, i.e., it is finite only in the outer re-
gions of the adlayer-vacuum interface. As will be dis-
cussed below, this behavior has important consequences
for the co dependence of the adlayer excitations. With in-
creasing cu, these potential curves shift slightly outward
up to a certain frequency and then shift rapidly back-
ward, corresponding to the resonant behavior of
Re5n (r, co) discussed above. At the same time, since the

o.(co) ~ 1

external field is overscreened in the pres t
[o. co 1 j, the potential shows a positive slope inside the
metal.
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can be extended to the case of the two-step jellium model
as,

00

deuto Imdt(co) =4vrnk, , (60)
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FIG. 7. Plananar average of self-consistent potential, PscF(z, col

for Na adla yers on jellium with r, =2 as functions of 6 and co.

where k is expressed in terms of the ground-state de ensity

n z. +dj a 00

dz no(z)+ f dz no(z) . (61)

If the adlayer thickness d, is large enough, the second
tertn of (61) does not depend on d d

'
hon, an gives the same

value as A, for clean alkali-metal surfaces. Then A, in-
creases linearly with the slope (1—n / ), f—n, n n, as a unction
of d, . This slope takes a maximum value of 0 25 hna w en
n, = . n.

The comparison of d~(co) with the results of the two-
step jellium model demonstrates that the spectral func-
tion Imd (co) sht I d~ ows no evidence of atomiclike excita-
tions, even at low O. The atomic structure of the adla er
is seen to cause only a slight narrowing of the spectral
features. This narrowing signifies that the wave functions
of Na valence states are actually more tightly bound in
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the adlayer region than described by the jellium model
(especially the unoccupied states), so that the jellium
model overestimates the damping of adlayer excitations
due to coupling to electron-hole pair excitations at the
substrate-adsorbate interface.

First, we discuss the collective excitations in the ad-
layer. For an adsorbate double layer (6N, =2), the
adlayer-substrate and adlayer-vacuum interfaces are well
separated. Thus two adlayer-induced collective modes
are found: one at the Na volume plasma frequency,
co~=co~(ads), which is the analog of the q~~=O mode in
the local-optics model, " and the other at
co (ads) =0.geo~ (ads) due to the multipole surface
plasmon at the adlayer-vacuum interface. Note that the
energy of the lower mode, in the long wavelength limit,
does not approach the surface plasma frequency,
co, =co~(ads)/&2, even for a thicker adlayer. The ordi-
nary (monopole) surface plasmon arising from the classi-
cal boundary condition E(co)+ 1 =0 appears at
co&(sub)/&2 (11.8 eV in the present system). On the other
hand, it was recently shown within the two-step jellium
model that the two adlayer-induced volume and mul-
tipole surface-plasmon modes exhibit a negative energy
dispersion at small

q~~
and that their frequencies converge

to those of the multipole and monopole surface-plasmon
modes of the semi-infinite alkali-metal surfaces at
q~~=1/d, . For thicker d„we expect that more Na bulk
plasrnons with different wavelengths in the z direction
may contribute to Imd~(co), since A, increases linearly
with d, .

At eN, = 1, the planar average of the ground-state den-
sity does not show a plateau in the adlayer region. As a
result, the adlayer volume and multipole surface-plasmon
modes become heavily broadened due to coupling to
electron-hole pairs. Therefore, only one asymmetric
spectral peak remains. Finally, at coverages near the
work-function minimum, the average density of the ad-
layers is much smaller and the spectral weight associated
with collective modes has nearly vanished. Instead, the
excitation spectra are dominated by a broad peak near
the threshold for emission, i.e., near co =4.

While the collective behavior of the excitations at
higher e is not surprising, the absence of any atomiclike
peak in Imd~(co) at 6N, =

—,
' is indeed an unexpected re-

sult of the three-dimensional response calculation. Since
p, (E,8) at 8N, =

—,
' is already very similar to that in the

single adatom limit, we do not assume that atomiclike
structures become more prominent in the surface loss
function at even lower e. Of course, as was shown
above, the screening processes are dominated by intra-
atomic excitations from the occupied bonding states to
the hybridized Na 3s-3p, resonance at low e. The peak
in the Na local density of states, p, (s,6), due to this res-
onance which is located —1 eV above EF, is rather sharp.
However, since the occupied part of the Na-state density
exhibits only a broad taillike structure due to the strong
adatom-substrate chemical interaction, these atomic tran-
sitions do not lead to observable spectral features in the
response function Imdr(co).

Therefore, at least for alkali-metal adsorption on Al,

the traditional interpretation ' that the observed loss
peak in EELS should be assigned to an excitation be-
tween alkali-metal s and p, states or to an excitation from
EF to the unoccupied resonance, must be regarded as in-
correct. We expect this conclusion to hold also at finite
wave vectors ( ~q~~~

~0.2 A ) since the field oscillations
in the planar direction are much longer than the atomic
corrugation. In the case of transition-metal substrates
such as W or Ni, atomiclike features in the loss function
may become more prominent because of weaker adatom-
substrate hybridization or because of the formation of
quasi-discrete adsorbate surface states. Also, intra-
atomic excitations may be somewhat more important for
Cs adlayers because of the larger separation from the sub-
strate. Further study is necessary in this direction.

Having demonstrated the absence of atomiclike peaks
in Imd~(co) at low 8, we need to answer the question of
why this spectral function shows a peak at co=4. To an-
alyze the origin of this behavior, it is useful to express
Imd~(co) using the golden-rule formula,

1
Imdr(co) =

2m-o (co)[o (co)+1]
X f dr dr'PscF(r, co)Imago(r, r', co)&scF(r

(62)

This may be written as a sum over transition-matrix ele-
ments of the form

2
v(E, co, k)= g fdr/;a ~(r)kscF(r, co)1(,+„z (r)

l,J

(63)
with initial states in the range EF —co ~ c. ~EF. Here
g, z;(r) denotes the one-electron wave function with en-
ergy c at k, and the indices i and j distinguish the degen-
erate states. If the effective potential t))scF is replaced by
the unscreened external potential, the excitation spectra
at all coverages are smooth functions of cu without any
features at 4, co (ads), and co~(ads). Thus the threshold
excitation found at low e is not a density-of-states effect
related to the shape of the ground-state surface-barrier
potential at the vacuum level. Instead, this peak is inti-
mately connected with the fact that pscF has appreciable
weight only on the vacuum side of the adlayer (see Fig.
7). As a result of electronic surface screening, the
transition-matrix elements (63) probe effectively only the
outer regions of the occupied and unoccupied adsorbate
wave functions.

This effect is shown in more detail in Fig. 9. In panel
(a), Imdr(co) at 6N, =

—,
' is plotted for various cutoffs zo

(measured from the jellium edge), i.e., the contribution to
the matrix elements from the regions z zo is neglected.
Also, PscF(r, co) is rePlaced by its Planar average. The
spectral feature near co=+ remains discernible even if zo
is located on the vacuum side of the Na nuclei, i.e., far
from the center of the bonding region of the adsorbate-
substate states. In Fig. 9(b), we show v (a=Ed, co, k=O)
at GN, = 4 which gives the most important contribution
to Imdr(co). If the threshold for emission is approached
from below, the amplitude of the unoccupied state in the
outer region of the adlayer-vacuum interface grows so
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FIG. 9. (a) Imd&(co) for Na on jellium (r, =2) at 6N, =
~ for

various cutoffs zo (see text). (b) Matrix element v(EF, co, k=0)
for Na at 6N, = 4. (c) v (EF,co,k =0) for Na at 6N, = 1.

that the matrix element increases. Above threshold, the
continuum states oscillate more rapidly and the matrix
element eventually begins to decrease. Thus, the matrix
elements reach their maxima when co=4. For the sake
of comparison, we show in Fig. 9(c) v (EF,rv, k=0) at

eN, =1. The threshold enhancement of the matrix ele-
ment is clearly seen also in this case, although it appears
-0.5 eV below 4. Upon integration over initial states,
this feature is suppressed. Instead, a peak at higher u
corresponding to the plasmon modes arises from the co

dependence of PscF(r, co). Thus, the two peaks in this
figure have quite different origins.

To make the above argument more quantitative, we
consider a one-dimensional model with the ground-state
potential, V(z) = —VO( —z). As Psc„, we adopt a simple
screened form, PscF=(z —zo)0(z —zo), with zo)0. The
initial-state energy is chosen as E, = —k; /2 (measured
from the vacuum level). In case the final state is also a
bound state with cf = —kf /2, we have

2+2 V —k, exp[ —2( k, +kf )zo j
v(E, , co=sf —e;)=

V(k, +kf)
(64)

15

I

0=1.0
I

K/ AI

CO

10
3

For E~E~, the peak in U(c, ~, k~~) should shift to
co =4+ (EF—e ). However, its absolute value decreases
rapidly with decreasing c, since the amplitude of the
wave function which spills out into the outer region of
the adlayer-vacuum interface becomes rapidly smaller.
Therefore, Imdz(co) shows only a rather broad peak near
4 after the summation over all initial states. For smaller
values of zo, v (EF,co, k

ii
) in Fig. 9(b) exhibits a strong

shoulder on the low-energy side of the peak. As is in Fig.
9(c), this feature is absent in the correspond matrix ele-
ments at higher e, and thus can be attributed to the
intra-atomic transitions to the 3s-3p, resonance. Howev-

er, after the integration over c, this structure is smeared
out, and it is outweighed by the peak at co =4.

The threshold excitation seen in Imd j (co) is therefore a
consequence of two factors: (i) the eff'ective potential
causing the electronic surface excitations is screened out
on the substrate side of the adlayer nuclei, and (ii) the
general form of the wave functions near the adlayer-
vacuum interface favors transitions for co=4. Because of
the importance of the self-consistent surface screening for
this threshold feature, it should also be regarded as col-
lective in nature and not as a single-particle phenomenon.
We point out here that, because of the large width of the
loss function at low coverages, the rapid frequency
dependence of the kinematic factor might lead to an
effective skewing of the loss profile. Thus, the measured
loss features might be shifted from the work function.

It is interesting that the threshold enhancement at low
coverages appears as a maximum in Imd~(co) for the al-

kali adlayers while, in the case of clean A1, it only gives
rise to a steplike feature. ' The reason for this
difference is presumably the smaller energy range of ini-
tial states available within the adsorbate region which
contribute to the matrix elements mainly at low frequen-
cies.

In Fig. 10, we show Imd~(co) for hexagonal K adlayers
for three coverages. Again, the excitation peak at low e
is related to 4, whereas the strong peak at the monolayer
coverage at co-3 eV is due to collective modes. As com-
pared with the spectra for Na, the adsorbate excitation

For Ef =kf/2&0, there are two orthogonal final states
which contribute to the matrix elements. After some cal-
culations, we obtain

4 exp( —2k;zo )
v(E;,co=sf —e;)=

(k +Qk +2V)(k +k )

(65)
0

0

(o (eV)

Therefore, v ( e, , co ) reaches its maximum value,
(8/V)' exp( —2k, zo)/k, , when the initial state is at EF
and when the final state is located at the vacuum level

(kf =0).

FIG. 10. Imaginary parts of spectral function, d~(co), for K-
covered jellium surfaces (symbols). The solid lines show d, (co)

for the corresponding one-dimensional model calculations. The
vertical dashes denote the work function.
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peaks for K shift to lower energies and become sharper.
The latter effect reflects the fact that the adsorbate exci-
tations in K layers couple to electron-hole pairs less
strongly than in Na layers because of the larger adlayer-
jellium separation. Also, the agreement with the corre-
sponding jelliurn adlayers becomes somewhat worse than
for Na layers: The two-step jellium model overestimates
the width of the excitation peaks, and their weight is
shifted to higher energies. We suggest that the low-lying
d states slightly above Ez which are absent in the jellium
model are responsible for this large discrepancy. Never-
theless, apart from these differences, the localized d states
do not introduce any characteristic features in d~(co).
There appears no additional interband or intra-atomic ex-
citation involving K 3d states, even at low e.

Finally, we turn to the discussion of the second
response function d~~(co). As stated in Sec. II, for the
two-step jellium model, the second term on the right-
hand side of (53) vanishes, and the first term gives,

co (sub)
Imd~(co) =g, Imdll(co)

co (sub)
'

CO

(67)

we have

Equation (66} is derived from a simple argument on
charge neutrality. Figure 11 shows the calculated real
and imaginary parts of d~~(co) for three-dimensional Na
adlayers at higher 8. The deviation of Red~~(co) from
Eq.(66) is seen to be negligibly small in the whole co range
investigated here. Also, the absolute value of Imd~~(co) is
two to three orders of magnitude smaller than Imdj (co).
Therefore, one can ignore the contribution of d~~(co) in
the loss function g (q~~, co) in the energy range characteris-
tic of the alkali-metal adsorbate excitations. In the inset
of Fig. 11, we show Imd~~(co) at 8N, =1 at very low fre-
quencies. This function diverges as 1/co in the low co lim-
it. If we write Imdj(co) and Imd~~(co) in the low-

frequency limit as

n,
di(co)=zj. + d, .

n
(66}

Img(q(~~) =2Iq((l(g+n)

1.5

1.0

8

'U
0.5

K

0

I
I

I

(a)

e=1/2

We obtained 10 g=6.2, 3.3, and 4.2 a.u. for eN, = 4, —,',
and 1, respectively. They are negligibly small compared
to g. Therefore, the low-frequency behavior of Imd~~(co)

may be best detected by the resistivity measurement as
discussed in Sec. II. For the present system,

lfp =4m r)/co~(sub) =20 5r) a..u. Since Imd~~(co) arises
from the inelastic scattering of conduction electrons by
adatoms, it is proportional to e at very low e where
multiple-scattering effects can be ignored. It would be
enhanced appreciably if the adlayer has a disordered
structure instead of the ordered layers assumed in the
present study.

I i I
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FIG. 11. (a) Real and (b) imaginary parts of spectral func-
tion, dII(co), for Na-covered jellium surfaces. The inset shows
Imd II(m) at eN, = 1 at very low frequencies.

IV. SUMMARY

We have studied the dynamical linear-response proper-
ties of alkali-metal adlayers on metal surfaces in the
long-wavelength limit based on a first-principles method.
Realistic three-dimensional Na and K layers in a wide
range of coverage values were used as adlayers, and the
metal substrate was modeled by semi-infinite jellium with
r, =2 corresponding to the electron density of Al. We
calculated the density response to a uniform electric field
oriented normal to the surface and also the current
response to a uniform field parallel to the surface within
the time-dependent density-functional theory in order to
elucidate how the nature of the adsorbate excitations
changes with coverage.

At low 6, the screening process is dominated by the
intra-atomic excitations between adsorbate resonances,
and the induced density is strongly localized near the
adatorns. However, it was found that these atomiclike
transitions are rather broad because of the strong
adsorbate-substrate orbital interaction. Thus, in contrast
to the traditional picture, these transitions do not lead to
any observable features in the electron-energy-loss func-
tion. Instead, as a consequence of the surface screening
process and matrix-element effects, the loss function at e
near the work-function minimum exhibits a threshold
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enhancement which correlates with the 8 dependence of
the work function. Toward monolayer coverage, a strong
peak appears in the loss function due to collective excita-
tions localized in the quasi-two-dimensional adlayer be-
cause of the formation of wide free-electron-like resonant
bands. At monolayer and double-layer coverages, the
adlayer-induced collective modes (multipole surface
plasmon and adsorbate volume plasmon) are virtually
unaffected by the lattice structure of Na and K layers and
they are well described within the two-step jellium model.

The plasmon excitations in adsorbed alkali-metal layer
have been observed not only on Al as investigated here
but also on transition metals and even on semiconduc-
tors. In the latter case, the free-electron-like resonant
bands of alkali-metal adlayers are strongly modified by

the interaction with localized substrate states. Neverthe-
less, the observed features of the adsorbate response
properties in such systems are quite similar to those on
Al. It would be interesting to study how the results ob-
tained in the present study using a jellium substrate (delo-
calized limit) may be generalized to systems involving
more localized states.
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