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A jellium slab at the average valence-charge density of aluminum (7, =2.07) is studied with use of a
Green’s-function quantum Monte Carlo (GFMC) technique in the fixed-node and diffusion approxima-
tions. The trial function is of Slater-Jastrow type, with a pair-correlation term accounting for the anisot-
ropy arising from the surfaces. The GFMC electron density is very similar to that obtained from local-
density-approximation (LDA) calculations. The GFMC surface energy is slightly higher than the LDA
result and is very close to the value obtained from calculations using the Langreth-Mehl nonlocal-
density functional, but significantly lower than predicted by Fermi-hypernetted-chain calculations.

1. INTRODUCTION

Green’s-function quantum Monte Carlo (GFMC)
methods have been used for calculations on various elec-
tronic systems such as light atoms and molecules,! the
homogeneous electron gas,>* solid hydrogen,* metal clus-
ters modeled by a jellium background,’® and solid silicon.®
In this paper we use the GFMC method, in the fixed-
node and diffusion approximations, to calculate the sur-
face energy of a jellium slab at the average valence-
electron density of aluminum (r, =2.07).

Even within current GFMC algorithms there is room
for considerable technical development. Of particular
importance are developing better pseudopotentials for
real atoms and more accurate trial functions, and remov-
ing the fixed-node approximation which is used here to
circumvent the fermion sign problem. An important
motivation for the present work was to apply the GFMC
to a strongly inhomogeneous and anisotropic system to
test our current methods for obtaining accurate trial
functions. In the study of a jellium surface reported here
we have found it necessary to modify the normal form of
the Jastrow factor in the trial function to account for the
presence of the surfaces.

In the present case we also have the opportunity to test
other quantum-mechanical schemes for calculating total
energies and surface energies. Because of the simplicity
of the model there have been many attempts to calculate
the properties of jellium surfaces using different tech-
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niques including the local-density approximation (LDA)
of density-functional theory,” various nonlocal-density
functionals including gradient-correction schemes,?
Hartree-Fock theory,9 correlated-basis-function
methods,!® and the Fermi-hypernetted-chain (FHNC) ap-
proximation.!"!? Johnson'® performed variational and
Green’s-function quantum Monte Carlo calculations, but
on systems too small and with insufficient accuracy to get
a precise value of the surface energy. Numerous LDA
calculations for realistic metal surfaces have also been
performed which have yielded surface energies in reason-
able agreement with experimental values; however, the
accuracy of the LDA surface energies of jellium have
been questioned. Krotscheck and co-workers have per-
formed FHNC calculations for jellium surfaces for a
range of electron densities'""'? and have reported large
deviations from the LDA results of Lang and Kohn,’
which they attributed to the inadequacy of the LDA for
strongly inhomogeneous systems. In the conclusion of
their paper!! Krotscheck and Kohn state that “the local-
density approximation for the particle-hole interactions is
inadequate to calculate the surface energy of simple met-
als.” From our GFMC results we will conclude that, at
least at the density of r,=2.07 considered here, the
FHNC result is inaccurate and the LDA calculations are
more reliable. In fact our result is very close to that ob-
tained from density-functional calculations using the non-
local Langreth-Mehl functions,® which gives some en-
couragement for such approaches.
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The rest of this paper is organized as follows. In Sec.
IT we describe the GFMC method and give computation-
al details of its application to jellium slabs. In Sec. III we
describe the results of our calculations and compare them
with other results for jellium surfaces, and in Sec. IV we
draw our final conclusions.

II. METHOD AND COMPUTATIONAL DETAILS

A detailed description of the GFMC method in the
fixed-node and diffusion approximations can be found in
Ref. 1. Let a many-body wave function 1 satisfy the
imaginary-time Schrodinger equation

—0W(R,t)/0t =HW(R,t) ,
Y(R,0)=¥(R),

(1)

where H is the Hamiltonian, R represents the electron
coordinates, and W (R) is an arbitrary trial function. It
is simple to show that at large times the wave function
W(R, t — ) approaches the ground-state wave function
exponentially fast (to within a normalization constant), as
long as the trial function is not orthogonal to the ground
state.

In GFMC calculations, Eq. (1) is solved by simulating
a diffusion process with branching. We use importance
sampling to reduce the statistical error and the fixed-node
approximation to circumvent the fermion sign problem.
For the trial function we use the standard Slater-Jastrow
form

N

> x(r)— >

i=1 1Si<j<N

Vi (R)=exp u(r;) (D4+(R)D (R),

(2)

where D{(R) and D (R) are Slater determinants of up-
and down-spin single-particle states, u (r) is a two-body
correlation function, and y(r) is a one-body term.

We simulate a surface by using a supercell geometry in

V(z)

where p, is the average density within the slab, L is the
length of the supercell in the z direction, and s and —s
are the positions of the edges of the jellium slab.

The electrostatic energy of the positively charged jelli-
um slabs and the uniform component of the electronic
charge density are similar to an Ewald energy because of
the periodic boundary conditions in all three directions,
and are given by

2mpgs®

e (L —2s)%, )

E Ewald Q

where Q is the volume of the unit cell.
For the trial function of Eq. (2), the single-particle or-
bitals in the Slater determinant were generated from an

2mpo[ —s(L —sWL —2s)/3L +(L —2s)z2]/L, |z|<s
= |2mpol —s(L —s)(L —25)/3L +s(—222+2|z|[L —sL)/L], s<l|zl<L/2,
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which a unit cell is repeated periodically throughout
space. The unit cell that we have used is orthorhombic,
being almost square in the xy plane of the surface with di-
mensions 14.853 X 14.293 A 2, and is 14.004 A long in the
z direction perpendicular to the surface. This shape was
used because it conveniently holds a slab of atomic alumi-
num, on which we are currently performing similar
GFMC calculations. Using the same shape unit cell for
the two calculations will facilitate comparison between
them. In the present calculations a jellium slab was
placed in each unit cell with the normal to the surface in
the z direction. The thickness of each slab is equivalent
to four layers of aluminum with the surface normal in the
[111] direction, which gives a thickness of 9.336 A. The
slabs are separated from each other by the equivalent of
two atomic layers of vacuum (4.668 A). Calculations on
a variety of thicknesses of aluminum slabs and vacuum
regions using the LDA have shown that this geometry is
sufficient to give excellent values for the surface energy.'*
This assertion is further supported by the results of the
present calculations which will be described later in this
paper. The density of the jellium slab is equal to the
average valence density of aluminum (r,=2.07). We ap-
plied periodic boundary conditions to the many-body
wave function, which then has 360 electron coordinates.
The number of electrons (360), determined by the above-
described supercell geometry and the average electron
density, is large enough to give reliable results. We as-
sumed equal populations of up and down-spin electrons.
For this supercell geometry, LDA calculations predict a
filled band with an energy gap of 0.05 eV at the Fermi
surface. This gap makes it easy to construct the Slater
determinants in the trial function, but the very small en-
ergy gap means the electrons are in delocalized metallic
states. With the origin of coordinates at the center of the
jellium slab, the potential due to the positive jellium
background and the uniform component of the electronic
charge is, in atomic units,

LDA calculation using a plane-wave basis set including
all plane waves up to a cutoff energy of 20 Ry. If we set
the Jastrow factor to be 1, that is u (r)=0 and y(r)=0,
we recover a wave function whose one-body density is the
LDA density. The total energy, Eyp, is slightly higher
than the correct Hartree-Fock (HF) energy, but following
Ballone,” we use it as a reference to measure the perfor-
mance of our trial function. This total energy is
E 1z =0.8349(52) eV/electron. For a three-dimensional
homogeneous electron gas, the two-body term in the Jas-
trow factor in Fourier space is,® from the random-phase
approximation,
(k== t
284(k)

172
1 47

4S,(k)*  k*

(5)
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This function is long ranged in real space so it is broken
up into a short-range (sr) part and a long-range (Ir) part
which is expanded in plane waves®

S ulry)= 3 ug(r;)+3 3 u,(kexplik-r;) . (6)
i<j i<j k
When Egs. (5) and (6) are used for the two-body term,
and the one-body term Y(r) is adjusted so that the charge
density obtained in a variational Monte Carlo (VMC) cal-
culation is close to the LDA density,'> the VMC energy
is very high. Thus we modify Eq. (6) by omitting all the
terms with k,7<0 in the sum over k. This is equivalent to
using the three-dimensional electron gas form of u (r) in
the xy plane, while in the z direction the long-range part
is smoothly cut off. The cusp condition for parallel and
antiparallel spins is in principle different,® but because of
the Pauli principle, two electrons with parallel spins can
rarely be close enough for the cusp condition to become
important. Therefore, we use the same cusp condition
for both parallel and antiparallel spins (which is correct
for antiparallel spins). Test calculations show that this
simplification does not affect the energy even in VMC.
We then adjust the one-body term y(r) repeatedly until
the charge density obtained in a VMC calculation with
the modified trial function is close to the LDA density.
As shown in Figs. 1 and 2, the VMC density is still about
5% different from the LDA density. Our final VMC en-
ergy is Eypyc=—0.0970(35) eV/electron, recovering
88% of the correlation energy of the GFMC result. We
could have optimized the Jastrow factor more fully than
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FIG. 1. The electron charge density in the z direction per-
pendicular to the slab surfaces. The origin is at the center of the
slab, the thin vertical straight line at 8.821 a.u. is the jellium
edge, and the horizontal thin line is at the average density of the
bulk. The thick solid line is the GFMC result, the dotted line is
the VMC result, the dashed line is the LDA result with the
same periodic boundary conditions applied, and the thin solid
line is the full LDA result for this slab geometry.
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FIG. 2. The ratio of Monte Carlo and LDA charge densities
for the finite system. The dotted line is the VMC-LDA density
ratio and the solid line is the GFMC-LDA density ratio.

this, using, for example, the Fermi-hypernetted-chain
technique developed by Krotscheck, Kohn, and Qian.'?
However, since the GFMC method is very robust with
respect to variations of the trial function, we believe that
our Jastrow factor is sufficiently accurate.

We used a time step of 0.015 a.u. for the GFMC calcu-
lations. Separate tests have shown that the error due to
this finite time step is negligible. The total simulation
time was 290 simulation blocks, where each block con-
sists of 500 steps of 0.015 a.u. The average population of
configurations during the simulation was 200.

III. RESULTS AND COMPARISON WITH OTHER
CALCULATIONS

First we describe how we have obtained the GFMC
surface energy for jellium which is given in Table I. The

TABLE 1. Surface energies of jellium (r, =2.07).

Method Surface energy (eV/A2)
LDA (Wigner formula)® —0.0456
LDA (Ceperley-Alder formula)® —0.0354
Hartree-Fock® —0.091
Hartree-Fock® —0.141(7)
Langreth-Mehl functional® —0.0302
FHNC* —0.0139
GFMC® —0.029(3)
?Lang and Kohn, Ref. 7.
®This work.

°Sahni and Ma, Ref. 9, linearly interpolated between the values
at r,=2.0 and 2.5.

9Zhang, Langreth, and Perdew, Ref. 8.

¢Krotscheck and Kohn, Ref. 11.
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energy per electron of the jellium slab from the GFMC
calculation is shown in Fig. 3 as a function of imaginary
time measured in simulation blocks. After about 100
blocks the system reaches equilibrium. Averaging over
the last 200 blocks, we obtain —0.2294(19) eV /electron.

Before calculating the surface energy we must apply a
finite size correction to our GFMC jellium slab results,
which we obtain from LDA calculations. We have calcu-
lated the total energy within the LDA for the same su-
percell as was used for the GFMC calculations and ap-
plying the same periodic boundary conditions to the
determinant of single-particle orbitals (i.e., with the same
single-particle orbitals as used in our trial function) and
for a number of larger supercells in which the thickness
of the jellium slab, the thickness of the vacuum region,
and the repeat distance within the surface plane were sys-
tematically increased. From these results we obtained a
finite-size correction which is quite modest, amounting to
a correction to the surface energy of —0.0058 eV/ A2

To calculate the surface energy we also require a value
for the energy of bulk jellium calculated in the same
fixed-node GFMC approximation. Such calculations
were performed by Ceperley and Alder!® who obtained a
value of —0.2017 eV/electron. Ceperley and Alder? also
performed release-node GFMC calculations for bulk jelli-
um, but it is not currently possible to do such calcula-
tions for the jellium slab. However, we expect a large de-
gree of cancellation between the fixed-node error in the
slab and the bulk calculations, and therefore we believe
that our surface energy is reliable. In fact the release-
node correction in bulk jellium is very small at this densi-
ty, being only —0.0023 eV/electron, but it would be
quite inappropriate to apply this correction to the bulk
and not to the slab because the energy per electron of the
slab would not approach the bulk energy as the thickness
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FIG. 3. The GFMC energy of the jellium slab as a function
of imaginary time measured in blocks of 500 moves of 0.015 a.u.
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of the slab was increased.

The above analysis gives us a surface energy of
—0.0292(18) eV/A 2. There are five possible sources for
systematic error: (a) the time step error, which we be-
lieve is negligible; (b) the finite-size error, which we
roughly estimate at 20% of the LDA correction, that is,
~0.0012 eV/AZ% (c) the fixed-node error (ie., the
difference of the release-node corrections between the
slab and the bulk) which should not be more than half of
the roelease-node correction in the bulk, that is, ~0.0010
eV/A S % (d) a possible convergence error of ~0.002
eV/A 2, and (e) a possible underestimate of the statistical
error (due to sequential correlation) of ~0.001 eV/A 2
Hence we arrive at our final value for the surface energy
of jellium at a density of r,=2.07 of —0.029(3) eV/A 2

We now compare our GFMC value for the surface en-
ergy with the results of other calculations (see Table I).
Our value for the LDA surface energy of jellium, using
the Ceperley-Alder’ exchange- correlatlon energy as
parametrlzed by Perdew and Zunger, is —0.0354
eV/A2 This is 51gn1ﬁcantly higher than that given by
Lang and Kohn’ of —0.0456 eV/A 2 This dlfference
arises because Lang and Kohn used the Wigner!® form
for the exchange-correlation energy. We have repeated
our calculation using the Wigner form, and obtained a
surface energy of —0.0436 eV/A 2, in close agreement
with the result of Lang and Kohn. The GFMC surface
energy is therefore a little higher than the LDA value ob-
tained using the Ceperley-Alder form, but the difference
is not large. The GFMC surface energy is actually very
close to that obtained from density-functional calcula-
tions using the Langreth-Mehl nonlocal-density function-
al® (which is essentially a scheme employing corrections
to the LDA involving the gradient of the charge density).
The surface energy obtained by Sahni and Ma’ is an
upper bound to the Hartree-Fock surface energy, and
indeed the surface energy from our Hartree-Fock calcula-
tion (using the LDA wave functions) is lower than that of
Sahni and Ma. However, the Hartree-Fock surface ener-
gies from both calculations are much lower than the
GFMC surface energy.

The difference between our surface energy and that ob-
tained by Krotscheck and co-workers'"!? using the
FHNC approximation is large and we can only conclude
that the FHNC calculation are inaccurate at this density.

Figure 1 shows the electron density of the jellium slab.
The GFMC density (thick solid line) is very close to that
obtained from the LDA (dashed line), in agreement with
Ballone’s results on clusters,’ although the input density
for the GFMC calculations (VMC density, dotted line) is
about 5% off (the GFMC results shown are calculated
from the mixed estimate by the linear extrapolation
method!®). This provides support for our procedure of
constraining the trial function to reproduce the LDA
charge density. The LDA density for the slab, but with
periodic boundary conditions applied at infinity within
the surface plane, is also plotted in Fig. 1 (thin solid line).
The oscillations in this charge density (thin solid line) are
smaller than in the supercell GFMC and LDA densities.
These smaller oscillations are from the combined effects
of the finite thickness of the slab and the heavily damped
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Friedel oscillations due to the presence of the surfaces.
Note that the charge density in the center of the vacuum
region is almost zero, which suggests that the thickness
of the vacuum region is adequate. To compare the densi-
ties in detail, we plot the ratio of Monte Carlo and LDA
densities for the finite system in Fig. 2. The VMC density
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is less than the LDA density inside the slab and greater
than it outside the slab, reflecting that the Jastrow factor
in the trial function is slightly too repulsive. On the oth-
er hand, the GFMC density is very close to the LDA
density inside the slab, while being much smaller outside.
We believe that this result in physical, since the LDA is
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FIG. 4. The normalized pair density g,(r;,r,) for parallel and antiparallel spins. The upper plots are for parallel spins and the
lower ones are for antiparallel spins. The left panels are contour plots, where the horizontal axis is in the z direction (perpendicular
to surface), and the vertical axis is in the plane of the surface. In the large area between the contours labeled 0.92, p,(r},15) is close to
unity. The right panels show p,(r,,r,) plotted along the straight line perpendicular to the surface which passes through r,. The
dashed lines represent the edges of the positive charge density of the jellium slab, and the arrow indicate the position of ry, (a), (b), (c),
and (d) are for different positions of r;.
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less accurate when the charge density becomes small and
the self-interaction corrections become important.

The normalized pair density p,(r;,r,)=p,(r,,1;)
/pgp1(r,) measures the correlation between two electrons
at r, and r,, where p, is the average bulk density, p,(r;) is
the one-body density at r, (plotted in Fig. 1), and p,(r;,1,)
is the pair density defined as the probability of finding
one electron at r; and another at r,. Plots of g,(r,r,) are
shown in Fig. 4 for selected r, points and parallel and an-
tiparallel spins. Some of the oscillatory behavior in these
plots is undoubtedly due to statistical noise in the sam-
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pling. The normalized pair densities are close to unity
when the two electron coordinates are far apart, except
near the edge of the jellium slab where they go to zero be-
cause the electron density vanishes. There is an
exchange-correlation hole when r; and r, are close to
each other, and p; ;,(r;,r,) goes to zero when r;=r, be-
cause of the Pauli principle. g, ;,(r},r,) is similar except
that the correlation hole is not as deep. When r, is in the
center of the slab [Fig. 4(a)] the exchange-correlation
holes for parallel and antiparallel spins are, to within the
numerical noise, spherical, which indicates that the effect
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FIG. 4. (Continued).
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of the surfaces on electrons near the center of the slab is
small. When r; is moved toward the edge of the slab the
most obvious effect is that the exchange-correlation hole
moves with the electron coordinate. When r, is close to
the surface, the exchange-correlation hole becomes flat-
tened in the plane of surface. It would be interesting to
calculate g,(r;,r,) for r; outside of the jellium surface,
however this would require development of a special
GFMC algorithm. The current code cannot accurately
calculate higher-order correlation functions where the
electron density is small.

IV. CONCLUSIONS

We have performed a GFMC calculation in the fixed-
node and diffusion approximations for a jellium slab at
the average valence charge density of aluminum
(r,=2.07). We found that it was necessary to modify the
pair-correlation term in the Jastrow factor of the trial
function to account for the inhomogeneity and anisotro-
py arising from the surfaces. We also chose the one-body
term in the trial function so as to reproduce, as closely as
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possible, the calculated LDA charge density. This ap-
pears to be a good procedure in this case because the final
GFMC electron density was very close to the LDA re-
sult. The GFMC electron density was very close to the
LDA result. The GFMC surface energy is slightly higher
than the LDA result and is very close to the value from
calculations using the Langreth-Mehl nonlocal-density
functional. However, our GFMC result is significantly
lower than the value obtained from Fermi-hypernetted-
chain calculations.
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