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Intrasubband plasmons in semi-infinite n-i-p-i semiconductor superlattices
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A theoretical investigation has been made of the collective intrasubband plasma modes in a semi-
infinite superlattice system consisting of n- and p-type doped semiconductors separated by an undoped
intrinsic (i) semiconductor (n-i-p-i superstructure). The thicknesses of the constituent layers are as-
sumed to be sufficiently large so that quantum-well effects can be ignored. The material layers are
characterized by frequency-dependent (macroscopic) dielectric functions. The nonradiative plasma
modes are defined by the electromagnetic fields that decay exponentially away from each interface and
that have an envelope that decays exponentially away from the end of the truncated superlattice. We
employ a fully retarded theory in the framework of a transfer-matrix method. The general dispersion re-
lations are shown to reproduce exactly the theoretical results for a binary semiconductor (or dielectric)
superlattice. Numerical examples are presented for several illustrative cases.

I. INTRODUCTION

Modern crystal-growth techniques, such as molecular-
beam epitaxy and metal-organic chemical-vapor deposi-
tion, have made possible the synthesis of crystalline semi-
conductor heterostructures with a specified band gap.
Because of their applications as potentially useful devices,
the physics of these artificial semiconducting heterostruc-
tures and superlattices has attracted a great deal of in-
terest in the past decade. ' It has been shown that such
tailor-made superstructures possess electronic and optical
properties, not seen in the host semiconductors, arising
from the predetermined quantum states of two-
dimensional character. The knowledge of elementary
collective excitations in the superlattice systems is of fun-
damental importance to the understanding of the elec-
tronic and optical properties. The collective excitations
include phonons, magnons, plasmons, and polaritons,
which have been studied both theoretically and experi-
mentally.

The collective (bulk and surface) plasmon-polaritons in
binary compositional semiconducting superlattices have
been studied extensively in the recent past. These studies
have been carried out both in the absence and in the
presence ' of an external magnetic field. The lowering
of symmetry caused by an applied magnetic field has been
shown to produce interesting qualitative changes in the
behavior characteristic of the plasmon-polaritons (for in-
stance, the nonreciprocal propagation in the Voigt
geometry" and a large Zeeman-like splitting in the per-
pendicular geometry. ' ' ).

In contrast to compositional superlattices, the n-i-p-i
semiconducting superlattices, which were also included
in original proposal, have received relatively less atten-
tion theoretically as well as experimentally. A greater
part of work on the electronic and optical properties of
n-i-p-i superlattices has been pursued by Dohler and
Ploog. ' The effect of an external magnetic field on the
plasmons in the finite n-i-p-i superlattice in the Voigt

geometry was considered by Johnson and Camley. ' The
propagation of bu1k and surface plasmon-polaritons in
the n-i-p-i structure with charge carriers strictly confined
to the interfaces was considered by Farias, Auto, and Al-
buquerque. ' Recently, this work has been extended by
subjecting the finite n-i-p-i structure to an external mag-
netic field in the Voigt geometry. '

The aim of the present work is to investigate the collec-
tive (bulk and surface) excitations in the n i p isem-ic-on--

ducting superlattices in the "classical limit. " The term
"classical limit" is used here to refer to the situation in
which the layer thicknesses are large enough so that the
quantum-well effects can be neglected and the constituent
layers can be described by macroscopic dielectric func-
tions. We develop a fully retarded theory in the frame-
work of a transfer-matrix method to obtain the general
dispersion relations. The existence of the surface
plasmon-polaritons has been successfully substantiated.
It is found that the highest polariton mode does not
behave properly in the long-wavelength limit if
d&/dz ) 1, where dz and dz are, respectively, the layer
thicknesses of the surface layer and the first intrinsic lay-
er.

The rest of the paper is organized as follows. In Sec. II
we review the transfer-matrix formalism used to obtain
the general dispersion relations for the bulk and surface
collective excitations. In Sec. III we present numerical
examples for several illustrative cases. We consider the
asymptotic limits attained by the bulk plasmon bands and
the surface plasmon-polaritons in Sec. IV. Finally, Sec. V
is devoted to summarizing our theoretical results.

II. FORMALISM

The superlattice structure considered in the present pa-
per is depicted in Fig. l. Material layers A, B, C, and D
have frequency-dependent dielectric functions E'g, Eg, E'g,

and eD and layer thicknesses d~, d&, d&, and dD, respec-
tively. The period of the superlattice structure is defined
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Np
e(co}=el 1—

CO

(3)

n*i

where e~ is the background dielectric constant and co is
the plasma frequency of the medium concerned. The sys-
tem of Eqs. (2) admits a nontrivial solution only if the
determinant of the coefficient matrix vanishes. This
leaves us with the following result:

h~0 —q, =a =q —qoe(co) . (4)

We write the field solutions in the four media (of the unit
cell} as follows:

FIG. 1. Schematics of the superlattice geometry considered
in this paper. Material layers A, B, C, and D are, respectively,
n-doped, intrinsic, p-doped, and intrinsic semiconductors, with

respective thicknesses d;, i =—A, B,C,D. The integer n refers to
the number of unit cell. The semi-infinite medium E
{—Oo ~z &0}is an insulator.

as d =d „+d~ +dc +dD. The plasma modes are as-

sumed to propagate along the y direction parallel to the
interfaces with wave vector q and frequency co. We are
interested in the collective excitations characterized by
the electromagnetic (EM) fields localized at and decaying
exponentially away from the interfaces. Although the
whole formalism is quite general where the unit cell of
the superlattice is assumed to be composed of four
different material layers (all characterized by frequency-
dependent dielectric functions), we will later specify our
analytic results corresponding to the n-i-p-i superlattice.

A. Infinite superlattice

We start with the general wave-field equation in terms
of the macroscopic electric field (E) in the absence of an
applied magnetic field:

V X (V XE)—qoeE=0,

where qo=co/c is the vacuum wave vector. We assume
the spatial and temporal dependence of the EM fields to
be of the form -e'q' ". In Eq. (1) e= e(co) is the s—ca-
lar dielectric function for the medium in which the wave
equation is being applied. In the present situation, Eq. (1)
can be written as

E(r, t) =E(z)e

where E(z) for each layer of the nth cell is given by

E(fl)( )
—E{fl) j +E(fl)

2J (6)

M„~ AI")) =Nt) ~B)(")) at z =nd+d„,

Mz ~BI"')=Nc ~C)'"') at z =nd +d„+d~,
Mc~C)'"') =ND~DI")) at z =nd+d„+dan+dc,
MD~D)'"') =N„~ A)'"+") at z =(n +1)d,

(9)

(10)

where j~t'"'), with j =—A, B,C,D and I =1,2, are column
vectors and M. and ¹ are 2 X 2 matrices defined by

M. =

where

e' e

n.eJ —n.e J ' —J~, N=
J J

1 —1

n —n.J J

cx .d.
n =e /a, eJ=e ' ', j=—A, B,C,D . (12)

where j= A, B,C,D. Analogous field solutions can be
written for the magnetic field variable B in the respective
layers.

The standard EM boundary conditions are the con-
tinuity of the tangential electric- and magnetic-field com-
ponents: E, E, B, and B . Note that, in the absence
of an applied magnetic field, only two boundary condi-
tions at each interface are sufficient; we therefore decide
to match E and B field components at the interfaces.
In order to simplify the calculation, we reduce the num-
ber of unknown amplitudes by expressing B in terms of
E . For the sake of brevity, we henceforth suppress the
script y in E'I"', with I=—1,2 and j—= A, B,C,D, and
choose to replace EI."' by jI"', with j=A,B,C,D. As
such, we write the boundary conditions so that

qO& qy qz

qoE

0 E

yqz E
0
0
0

(2)

From Eqs. (7)—(10), it is easy to see that

where T is a 2 X 2 matrix defined by

(13)

In writing Eq. (2) we have used the fact that in the situa-
tion at hand the dielectric function e(co) is simplified by
the symmetry requirements such that e E'yy 6'

and
waxy

=
~yx

=
~yz

=
~zy

=~xz ~zx 0. The dielectric
function relevant to the present situation is defined as

T=xg MD' Mgxg MAN/ Mg (14)

The matrix T in this equation is a transfer matrix which
relates the coefficients of EM fields in the two consecutive
cells. In order to account for the periodicity of the super-
lattice system, we impose Bloch's ansatz defined by
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~

A(n +1) ) eiQ~ A (n) ) (15) The condition that Eqs. (22) and (24) have a nontrivial
solution can be written in the form

where Q =kd, with k =q„ is a dimensionless Bloch wave
vector. Substituting Eq. (15) in Eq. (13) yields e '=T»+pT)2. (26)

[T e'—~I]~ A,'"') =0, (16) Similarly, the condition that Eqs. (22) and (25) have a
nontrivial solution takes the form

where I is a 2X2 unit matrix. Since
~

A1'"') is an arbi-
trary (general) vector of the superlattice system at hand,
the nontrivial solutions are given by the condition

e = T22+ T21 (27)

I
T e'~—I

I

=0 . (17)

The explicit form of the T matrix is relegated to the Ap-
pendix. Using the fact that det(T)=1, Eq. (17) can be
shown to assume the form

The dispersion relation for the surface plasmon-
polaritons in the truncated superlattice system is ob-
tained by equating the two expressions for e given by
Eqs. (26) and (27). The result is

cosg —
—,
' trT=O . (18) P(T, )+PT,2)=T2)+PT22 . (28)

This is the simplified general dispersion relation for the
collective (bulk) excitations of the four-layer superlattice
system under consideration. We have examined Eq. (18)
by subjecting it to the special limits, viz, d~ =dD =0. It
can readily be seen that Eq. (18), for this limit, repro-
duces exactly the dispersion relation for the collective
(bulk) excitations in a binary semiconducting superlattice
[see Eq. (23) in Ref. 8].

B. Truncated superlattice

In order to study the surface plasmon-polaritons in the
superlattice system we consider the geometry when the
superstructure is truncated at z =0 such that the medium
E in the region —~ z 0 is replaced by an insulator
with a dielectric constant ez. We seek solutions to
Maxwell's equations in which the EM fields are localized
at each interface of the superlattice as well as at the inter-
face between the insulator and the first layer of the super-
lattice. Note that the matching of the boundary condi-
tions at z =0 is equivalent to those at z =nd with n =0.
The result is

Equation (28) has been checked by imposing special lim-
its, viz. , dz =dD =0. It is found that our general disper-
sion relation, within these limits, reproduces exactly the
proper results for the collective (surface) excitations in a
binary semiconducting superlattice [see Eq. (31) in Ref.
8].

It is noteworthy that the general formalism of the
four-layer superlattice can easily be transformed corre-
sponding to an n-i-p-i semiconducting superlattice. For
this purpose, we assume that the constituent layers A and
C are, respectively, n- and p-type doped and 8 and D are
the intrinsic semiconductors. Consequently, the plasma
frequency cop+ Npe 7 Npc Nph 7 and pp pD.
Moreover, n -i-p-i superlattices can be fabricated with
any single semiconductor as the host material, since there
are no restrictions on the choice of materials due to the
requirements of lattice matching. In view of this, we
have made an extensive numerical computation for the
n-i-p-i semiconductor superlattice made up of a single
host material.

A' '+ A' '=E'
1 2 y (19) III. NUMERICAL EXAMPLES

n A' ' —n A' '=n E'
2 nE (20)

where

2= 2 2
nF =ezlaz, a@=q q0ez . —

Eliminating E' ' from Eqs. (19) and (20) gives

PA' —A' '=0

(21)

(22)

where

p=(n~ —ng)/(n„+n~) . (23)

(T, ,
—e )A( )+T,2A2( ) =0,

T21 A(10)+(T22 —e-~)A2(0) =0.
(24)

(25)

Since the polariton modes are characterized by the ex-
ponentially decaying fields, we use the ansatz in Eq. (15)
by replacing Q by iAand write E,q. (17) for the vector

~ A) '). The result is

In this section we present numerical examples for the
dispersion relations. The analytical results derived in the
preceding section describe collective excitations which
can arise from many different microscopic mechanisms.
We plot our numerical results in terms of the dimension-
less frequency (=0)/0) „dimensionless wave vector

g =cq /0) „and the dimensionless layer thicknesses

6z =cop, dz /c, 5& =cop, d&/c, 5c= cop, dc/c and

6D cop dD /c. Since the existence of p 1asm on-po laritons
depends upon the relative magnitude of the layer
thicknesses, we have presented several illustrative cases.

The material parameters used in the present computa-
tion are eL (

=el ~
=el &

= eL c= egD ) = 13.13; es = 1.0;
n), =n„mh*=2m, *

cop), =coq, /+2; 5„5s,5c, 5D, 5„
(6~,6~, 6D. Here n, and m;* are, respectively, the car-
rier concentration and the effective mass i—:e, h. The
plasma frequency of the intrinsic layers cop+ 0 copD.

The subscripts e and i) refer to electrons (layer A) and
holes (layer C), respectively.
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A. 5~ ~5g, 5~, 5D

The first case that we consider is illustrated by the
specific example 5„=1.0, 5~ ==0.5, 5c=1.0, 5D=0.5.
The results are shown in Fig. 2. There are four bulk
plasmon bands (BPB) shown by the shaded regions and
four surface plasmon-polaritons (SPP) plotted as the dot-
ted curves. The lower pair of BPB starts from the origin,
observes a gap between the two with the increasing g, and
approaches the same asymptotic limit at large g. The
upper pair of BPB starts from the light line (az =0) with
a gap between the two, except at the value of reduced
wave vector (=2.0. The upper pair of BPB also reaches
the same asymptotic limit. The lowest SPP starts from
the origin and propagates in the gap between the lower
pair of BPB to merge into the upper edge of the lowest
BPB at large g. The second-lowest SPP starts from the

1.0

light line (a@=0) in the gap between the two pairs of
BPB, changes its group velocity twice during the course
of propagation, and finally merges into the upper BPB of
the lower pair of BPB. The third-lowest SPP starts from
the light line (a+ =0) within the gap between the upper
pair of BPB, propagates with exactly the same charac-
teristics as the second-lowest SPP, and never merges into
either of the BPB. The uppermost SPP starts from the
upper edge of the uppermost BPB and approaches the
asymptotic limit assigned by e~ +ez =0.

The other examples in this case are shown by reducing
thickness of the p-doped medium (layer C) to 5C=0.75
(Fig. 3) and 5C =0.5 (Fig. 4). It is found that the gap be-
tween the lower pair of BPB increases with decreasing
the thickness of the p-doped layer. Similarly, the gap be-
tween the upper pair of BPB increases at the small wave
vectors and their touching point appears at relatively
large wave vectors. Apart from a minor difference in the
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FIG. 2. Dispersion curves for the surface plasmon-polaritons
(dotted curves) of the truncated superlattice and the allowed
bulk bands (shaded regions) of the infinite superlattice. The
symbol r is defined as r =~~&/m~, . The dashed lines marked
aE=0 and a& =aD=0 are the light lines, respectively, in the
media E and B (or D). The parameters used are listed in the
figure.
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FIG. 3. Dispersion curves for the surface plasmon-polaritons
(dotted curves) of the truncated superlattice and the allowed
bulk bands (shaded regions) of the infinite superlattice. The pa-
rameters used are listed in the figure.
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frequencies of the BPB and SPP, particularly at small
wave vectors, the rest of the discussion regarding their
propagation characteristics related to Fig. 2 is still valid.

The case of equal layer thicknesses with

6~ =6~ =6c=6D = 1.0 is depicted in Fig. 5. A
significant difference occurs in the reduction of the spa-
tial gap between the two pairs of the BPB due to an in-

crease (decrease) in the frequencies of the lower (upper)
BPB at small wave vectors. The frequencies of the lowest
SPP increase and those of the second-lowest and the
third-lowest SPP decrease, particularly at small wave vec-
tors. As a result the uppermost SPP starts at relatively
smaller frequencies. It is noteworthy that while the
lowest SPP is a pure polariton mode over the whole wave
vector range, the upper three SPP modes retain their
pure polariton character only towards the right of light
line marked n& =aD=0 where k, a„, az, ac, aD, and

c/E are all real and positive.

B. 5~ ~5~, 5g, 5~

The first case we consider here is demonstrated by the
spe~ifyi~g 6„=0.5, 6a = 1-0 6c —0.5, and 6D = 1.0. The
numerical results are plotted in Fig. 6. There are several
significant differences as compared .to previous cases.
The widths of all the BPB are found to increase when the
thickness of the surface layer (A) is smaller or equal to
that of the interior layers. The frequencies of the lowest
SPP increase and those of the second-lowest and third-
lowest SPP decrease as compared to the previous exam-
ples. A remarkable difference is seen in the propagation
characteristic of the uppermost SPP mode which does
not behave properly towards the left of the light line
marked n~ =eD =0, particularly at the small wave vec-

tors where the retardation effect is stronger. We have de-
voted a separate figure (Fig. 10) to discuss the strange be-
havior of this mode.
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FIG. 5. Dispersion curves for the surface plasmon-polaritons
(dotted curves) of the truncated superlattice and the allowed
bulk bands (shaded regions) of the infinite superlattice. The pa-
rameters used are listed in the figure.
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The case of increasing the thickness of the p-doped lay-
er is illustrated by the examples 5c=0.75 (Fig. 7) and
5C=1.0 (Fig. 8). It is seen that the frequencies of the
lowest and the second-lowest SPP modes increase, while
those of the third-lowest SPP mode decrease at small
wave vectors. The gap between the lower pair of the BPB
reduces and the touching point between the upper pair of
the BPB tends to move towards smaller wave vectors. In
fact, the touching point between the upper pair of the
BPB disappears altogether (Fig. 8).

The last example we consider in this case is shown, for
the equal layer thicknesses with 5„=5&=5C =5D =0.5,
in Fig. 9. However, it seems to be more pertinent to com-
pare the results in Fig. 9 with those in Fig. 5 of the
preceding subsection. Thus it is seen that the widths of
the BPB increase with decreasing the layer thicknesses.
The gap between the lower as well as the upper pair of
BPB increases. The touching point of the upper pair of
BPB moves towards the lower wave vector. The frequen-

cies of the lowest SPP mode decrease whereas those of
the second-lowest and third-lowest ones increase, with
decreasing layer thicknesses, at the small wave vectors.
The remark made about the uppermost SPP mode in
Figs. 6—8 is, however, still valid.

Finally, we comment on the difference in the behavior
characteristic of the uppermost SPP mode when
5~ & 5z ~ 1. For this purpose, we have plotted this mode
for several values of 5„keeping 5z, 5C, and 5D constant.
It can be seen that when 5~ & 5~, this SPP mode does not
propagate the way it does when 5„~5~ ~ 1, and observes
a kind of resonance splitting in the wave-vector range
(1S(52.5) where the retardation efFect is important.
The magnitude of the resonance splitting (measured in
terms of the vertical distance) is found to increase with
decreasing 5~. %e understand that the important factors
which play simultaneously a significant role in restraining
this mode to attain a pure polariton character in this situ-
ation and in this range of propagation are the following.
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First, the decay constants aII and ap (and even ac ) are
purely imaginary in this range. Remember, we do not
mean that this is not so in other cases where the upper-
most surface mode behaves properly. Second, when
6„(5s, the semi-infinite medium ( —00 ~z ~ 0) interacts
presumably easily with the intrinsic layer B. This means
that this surface mode is virtually describable by the rela-
tion

2 2 ~E~B
gy =gP

&E &B

where ez (=1.0) and ez ( =EL =13.13) are both positive
quantities. This leads us to infer that the two "surface-
wave-inactive" media in contact with each other will not
support true polariton m.odes. The splitting of this mode,
as seen at (=2.25 in Fig. 10, is understood to take place
due to the resonance interaction between the constituent
layers.

IV. ANALYTICAL DIAGNOSIS—
ASYMPTOTIC LIMITS

In the preceding section we demonstrated that the bulk
plasmon bands in the infinite superlattice and the surface
plasmon-polaritons in the semi-infinite superlattice be-
come asymptotic to certain characteristic frequencies in
the nonretarded limit (c~~ ). In this section we focus
on the analytical diagnosis of the exact dispersion rela-
tions in order to understand the asymptotic limits at-
tained by the bulk bands and the surface modes.

Let us first recall the general dispersion relation for the
collective (bulk) excitations, Eq. (18). In the nonretarded
limit, this reduces to (see Appendix)

P, P~ =(n„+np)(np+nc)(nc+ns)(ns+n„)
= (Eg +'sp )(ep +ec )( Bc+ca )(Eg +Fg ) =0, (29)

0.9

0.8

0.7

I

I

I

I

I

I

I

I

I/
I

I

I

I

)

I

I

I

I

II'''
I

/
I

I
I

I
I

IO,I

//

O /

//
I

I
I

1.0

0.9

0.8

0.7

I

)
I

I

I

I

I
l

O
lt

I

I

I

I

I

I

I

I

I
I

I
I

I
I

I
I

I
IO, /

//

O I
I

I/
/

I
I

I

O
0.6

LLI

o.5

(3

w 06
IN

IJJ I '
(

0.5

0.4
UJ
C3

D
w 0

0.4
LIJ
C3

O
0.3

lX

0.2 0.2

0. 1

0.0
1.0 2.0 3.0 4.0 5.0

0.0
1.0 2.0 4.0 5.0

REDUCED WAVE VECTOR REDUCED WAVE VECTOR
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FIG. 9. Dispersion curves for the surface plasmon-polaritons
(dotted curves) of the truncated superlattice and the allowed

bulk bands (shaded regions) of the infinite superlattice. The pa-
rameters used are listed in the figure.
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Since es =eD, the third equality in Eq. (29) yields two
possible solutions:

E'g+Eg =0 (31)

or
EC+68 —o- (32)

Equation (31), with the aid of Eqs. (30), yields

1

v2 ' (33)

and Eq. (32) gives

co 1 pI

rope V 2 cope
(34)

PzP~(P, PI —PzR I )=0,
where

(35)

Equations (33) and (34), for the parameters used in the
present numerical examples, reproduce exactly the fre-
quencies approached, respectively, by the upper and the
lower pairs of the bulk bands in the nonretarded limits
(see, e.g., Figs. 2-9).

Similarly, Eq. (28), which is the dispersion relation for
the collective (surface) excitations, in the nonretarded
limit assumes the form (see Appendix)

0.0 1.0 2.0 &.0 4.0 5.0
REDUCED WAVE V ECTO R

6.0

FIG. 10. Dispersion characteristic of the uppermost surface
mode. (a) 5~ =5m =5c=5D =1.0; (b) 5& =0.9,
53 =5c=5D =1.0; (c) 5& =0.7, 5& =5c=5D =1.0; (d) 5& =0.5,
5& =5c=5D =1.0. We ca11 attention to the resonance splitting
(encircled regions) at the frequency specified by e„+eE=0 [see
Eq. (37)].

p] ng nE, p2 —ng +nE (36)

CO ~E1+
COpe E'I

' —1/2

(37)

and the rest of the symbols are as defined in the Appen-
dix. Equating the first prefactor in Eq. (35) to zero gives

p2—=(n„+nE) =(Eg+CE)=0

where The second prefactor, in Eq. (35), equated to zero
yields

E'g =6L

2
Q)pe1—
N

for intrinsic layer B,
for n-doped layer A,

P2 ( n c+ns )( n/I + n g ) = ( Ec + e/I )( E/I +Eg ) =0 . (38)

EC —EL

ED =EL

for p-doped layer C,
2

Cog

CO2

for intrinsic layer D .

(30)

The last equality in this equation reproduces exactly the
two solutions given by Eqs. (31) and (32) and hence by
Eqs. (33) and (34).

The third factor in Eq. (35) equated to zero gives

(PIP, P2R,—)=(n +Dn )[(en& —nE)(n„+nD) —(n„+nE)(n„nD)]—
= (ED +EC )[(Eg EE )(Eg +ED ) (Eg +es' )(Eg ED ) ]

=0. (39)
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Setting the first factor in the last equality to zero yields
ED +Ec = E'D +Eg =0, which is exactly the same as Eq.
(32) and hence Eq. (34).

The second factor in the last equality in Eq. (39) equat-
ed to zero can be written as

2eg (eD eE ) 0 ~ (40)

Now e„&0, otherwise Eq. (31) can never be satisfied.
Similarly, eD —ez does not vanish since eD&ez. Thus
the second factor in the last equality in Eq. (39) does not
vanish.

In conclusion, it is established that the uppermost po-
lariton mode approaches the asymptotic limit specified by
Eq. (37). The third-lowest polariton mode reaches the
same asymptotic limit as the upper pair of the bulk
plasmon bands which is defined by Eq. (33). The lowest
and the second-lowest polariton modes approach the
asymptotic limit specified by Eq. (34}, which is also the
asymptotic limit attained by the lower pair of the bulk
plasmon bands.

V. CONCLUSION

The purpose of this paper has been to investigate the
dispersion characteristics of the collective (bulk and sur-
face) excitations in an n i p i-se-m-iconducting superlat-
tice. The model theory presented in the framework of a
transfer-matrix method has the advantage of being
simpler and describes the analytical results in a compact
form which are otherwise quite involved. While we have
confined our attention to the case of a superlattice
comprised of a single semiconductor as the host material,
the theory quite clearly applies to the superlattice system
made up of different host materials. Considering the
moderate thicknesses of the constituent layers justifies the
use of macroscopic dielectric functions and the neglect of
quantum-well effects. The approximate analytical diag-
nosis presented in Sec. IV has proved to be very useful in
understanding the asymptotic limits attained by the bulk
plasmon bands and the surface plasmon polaritons in the
short-wavelength limit. The analytical derivations are in-
dependent of any particular model. For instance, one can
easily incorporate the effect of free-carrier collisions and
of the coupling to the optical phonons.

The numerical examples presented in this paper exhibit
various significant features. Let us first comment on the
situation provided by the bulk bands. It is seen that there
are four bulk plasrnon bands —two of which start from
the origin and approach the same asymptotic limit as de-
scribed by Eq. (34) and the other two start from the light
line (az =0) with a gap between the two, except at a re-
duced wave vector where their inner edges touch each
other. The latter pair of bulk bands attains the asymptot-
ic limit specified by Eq. (33). It is found that the magni-
tude of the gap, both between the lower and upper pairs
of the bulk bands, is inversely proportional to the width
of the p-doped layer. The same is true about the oc-
currence of the touching point of the inner edges of the
upper pair of the bulk bands.

There are four surface plasmon-polariton modes in the
frequency interval 0~/&1. The lowest one starts from

at the origin, propagates within the gap between the
lower pair of the bulk bands, and merges into the upper
edge of the lowest bulk band in the short-wavelength lim-
it. The second-lowest mode starts from at the light line
(az =0) in the gap between the lower and the upper pairs
of bulk bands, and changes the sign of its group velocity
twice before merging into the upper edge of the second-
lowest bulk band. The third-lowest polariton mode also
starts from at the light line (a+=0) and propagates
within the gap between the upper pair of the bulk bands
without merging into either of these two bands until final-

ly it, together with the two bands, approaches the asymp-
totic limit. The uppermost polariton mode, which attains
exactly the same asymptotic limit as the one approached
by the surface or interface polariton propagating at an in-
terface z =0, has a varied story regarding its behavior in
the wave-vector range where the retardation effect is im-
portant. It is found that in the situation that 5~ & 5~ this
mode behaves properly (see Figs. 2—5), whereas in the
case that 5„(5z its polariton character is perturbed and
it observes a resonance splitting due, possibly, to the in-
teraction between the constituent layers. This is shown

by some specific examples in Fig. 10 relevant to Figs. 6—9.
Attractive possibilities for the experimental observa-

tion of the surface plasmon-polariton modes predicted in

the truncated n -i-p-i semiconductor superlattices are the
attenuated total refiection or Raman (or, inelastic light)
scattering techniques. We currently have n-i-p-i super-
lattices subjected to a strong magnetic field in the perpen-
dicular configuration under study and the results will be
reported elsewhere.
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APPENDIX

The transfer matrix T introduced in Eq. (14) has an ex-

plicit form given by

T11 T12
(A 1)

21 22

where

T&&
=—[(P&e +PIe )(P2e +P'ze }e

+(Q, e +Q,e )(R2e +R~e )e ]e",

T&2
=—[(P,e +PIe )(Qze +Q2e )e

+(Q&e +Q&e )(S2e +S2e )e ]e
(A2)

T2&
=—[(R &e +R &e )(P2e +Pze }e

+(S&eD+S&e )(R2e +Rze )e ]e",

Tz2 =—[(R &e +R '&e )(Qze +Qze }e

+(S,e +S',e )(S~e +S~e )e ]e
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where

Q = 16/lg ngng&D

and

(A3)

P, ={n„+nD){nD+nc), PI =(n„n—D)(nD nc—);
Q] =(n„+nD)(nD nc—), Q', =(n„n—D)( nD+ nc);

R, =(n„nD—)(nD+nc), R', =(nq+nD)(nD nc);—

S, =(n„n—D)(nD —nc), S', =(n„+nD)(nD+nc);
(A4)

P2 =(nc+ n~ )(n~ +n „),
Q2 =(nc+ ns )(n~ n—„),
R2=(nc —n~ )(ns+n„),

$2 = (nc —n~ )(ns —n„),

P2 =(nc —ns)(n~ —n„);
Q2 =(nc ns—)(ns+n„);
R', =(n, +n, )(n, n—, );
S2=(nc+n~)(ns+n„) .

det(T)=1 . (A5)

Here the exponential terms in Eq. (A2) and

n, j:—A, B,C,D are just as defined in Eq. (12) in the text.
It is noteworthy that the transfer matrix T satisfies the
following identity:
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