
PHYSICAL REVIEW B VOLUME 45, NUMBER 11

Optical interdonor hopping in multiple quantum wells
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It is shown that the hopping transitions from neutral center-of-well donors to ionized center-of-barrier
donors in multiple-quantum-well GaAs-Ga, Al As heterostructures may result in an infrared-

absorption maximum of the oscillator strength comparable to that for intradonor 1s-2p transitions. The
weak magnetic-field dependence of the hopping transition energies makes such transitions hard to detect

by variable-field magnetoabsorption techniques but they should show up in direct absorption measure-

ments. Their detection would furnish direct information about the magnitude of electrostatic-potential
fluctuations in multiple quantum wells.

I. INTRODUCTION

It is now well established that the energy spectrum of a
shallow impurity in multiple-quantum-well (MQW) het-
erostructures depends strongly on the geometry of the
structure and on the position of the impurity ion. Start-
ing from the pioneering work of Bastard, ' this idea has
been gradually developed in both theory' and experi-
ment " to the extent that nowadays, far-infrared ab-
sorption and magnetoabsorption spectra of shallow im-
purities in MQW's are used as sources of information on
the doping profiles along the direction of growth of het-
erostructures. For obvious reasons, the case of shallow
donors in GaAs-Ga, „Al„As MQW heterostructures is
the most thoroughly studied.

When analyzing the position dependence of the energy
spectrum of a shallow donor in MQW structure, one
notes two types of extreme points: one in the middle of
the wells; the other in the middle of the barriers. The
first corresponds to the largest binding and transition en-
ergies; the second, to the smallest. These extreme points
are responsible for the singularities in the electronic den-
sity of states (in the case of a continuous doping profile
across the wells and barriers) which show up in the ab-
sorption spectra of intradonor transitions. Note that
wherever the donors may be, in the well or in the barrier,
the electronic wave functions are confined to the wells.
The wave function of the ground state of an electron
bound to a center-of-well donor may overlap with the
wave function of the ground state of the nearby center-
of-barrier donor. In the case of partial compensation, al-
ways existing in GaAs-Ga, „Al„As heterostructures,
barrier donors are first candidates to lose their electrons
in favor of acceptors. This opens a channel for inter-
donor infrared absorption —electrons from the occupied
center-of-well donors may hop to ionized center-of-
barrier ones. Such hopping transitions, representing the
transition between the singularities of the density of
states on the energy scale, might lead to a well-defined
absorption peak of a measurable magnitude. The width
of the peak should depend on the magnitude of the
potential-energy fluctuations within the well. Our objec-

tive is to give quantitative support for these statements.
For simplicity, we consider in the following a MQW

with planar doping in the central planes of all wells and
all barriers. The reason for this is to focus attention on
the most interesting donors. With a proper choice of sur-
face concentrations of donors, the model predictions con-
cerning the absorption due to interdonor hopping should

apply for a broad class of doping profiles, from a strictly
planar to a uniform distribution of donors.

In Sec. II we discuss the ground-state energies and
wave functions for the two categories of donors w and b
located at the rniddle planes of the wells and the barriers,
respectively. In Sec. III we construct the states of an
electron interacting simultaneously with two donors, w

and b. In Sec. IV we calculate the absorption coefficient
resulting from electronic transitions from occupied w

donors to empty b donors. The quantitative results are
presented and discussed in Sec. V.

II. DONOR GROUND STATE IN MQW STRUCTURE

We first list the models of a superlattice periodic poten-
tial used until now in the theoretical treatments of an im-
purity center in MQW. In the first attempt, ' MQW was
considered as a set of independent quantum wells and, as
a consequence, the case of a single GaAs well sandwiched
between infinitely high barriers was treated. In subse-
quent works, the single well with infinitely high bar-
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FIG. 1. Schematic representation of the model potential of
the GaAs-Ga& Al As heterostructure.

1992 The American Physical Society



T. SZWACKA AND J. BLINOWSKI

riers was substituted by a single well of finite depth.
Chaudhuri made an attempt to use more than one well;
he performed variational calculations for the ground
state of an impurity located at the center of a quantum
well, allowing for the spreading of the impurity envelope
wave functions to the first-neighbor wells. Extending this
idea, Lane and Greene considered a model of a donor
atom placed in any position of a periodic square-well po-
tential. The variational wave functions of the ground
state and low-lying excited states of a donor center were

expanded in terms of a fixed Gaussian set with 13 linear
variational parameters.

In the present work we need to know the binding ener-

gies and wave functions of donors located in the center of
the well and in the center of the barrier. Figure 1 shows

a donor placed in position z coinciding with the center
of a well and another one in the center of the neighbor
barrier in position zb. Following Chaudhuri, we propose
the following rnode1 for the periodic potential along the z
axis, which is normal to the interfaces of the superlattice,

Vo for —,'l ( z —z
~

& —,'1+d and —31+d & ~z
—z„~ & oo,

V(z)= '

0 for 0& ~z
—z

~
(—,'I and —,'1+d & ~z

—z„~ & —,'I+d,

for the impurity placed in the center of the well. The parameters l and d denote the width of the well and the barrier,
respectively.

In the above model we allow the spreading of the impurity envelope wave function at most to the neighbor wells la-

beled I and III in Fig. 1. It is justified by the fact that the probability of finding an electron in the ground state within

wells I and III is already much smaller than that of finding it in well II (less than 13% in the case of the heterostruc-
tures we are interested in); consequently in the next wells it must be substantially less. Similar arguments work for a
donor impurity centered in the barrier. We propose the following model of the periodic potential for this case:
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(2)

V(z) given by (2) allows the spreading of the barrier im-

purity envelope wave function to the wells marked by
I—IV in Fig. 1. The barrier height is given by Vo
=0.65Eg, ' ' where the band-gap difference between
the two bulk semiconductors is obtained from the expres-
sion'

b,E =(1.155x+0.37x ) eV .

In the effective-mass approximation the dimensionless
Hamiltonian for the impurity has the form

2 20 = —P' ——+ V(z},
r

where V(z) is given by formula (1) for donors placed in

the center of the well, and by formula (2) for donors
placed in the center of the barrier. The energies are mea-
sured in effective rydbergs R*=m*e /2A e and the
effective Bohr radius az =A e/m 'e is the unit of the dis-

tance. m* and e are the effective mass of the electron
and the static dielectric constant, respectively. We
neglect the difference between the effective masses in the
well and the barrier materials and we use in both cases
the effective mass equal to the bulk GaAs value 0.067m,
and the dielectric constant e = 12.5.

In the region of compositions x that we are interested
in, the barrier height is many times larger than the
effective rydberg; as a consequence the Coulomb binding
energy is small compared to the subband energy and one
can choose the variational wave function l(j for the
ground state of the Hamiltonian Ho as a product of the

ground-state eigenfunction of the square-well potential
problem f(z ) and an envelope wave function G(p, z)

f(p, z ) =Xf(z )G(p, z ), (4)

k
——(1+a)p + 3 — +a + —2 pk k

+—.3—a 2 — —1r r
k k

2

(1+a )=0,y
k

(5)

for the donor placed in the center of the well, and as a
solution of the equation

2

~+c ~ a —1 ~bc+11

k k k 1+a k

+- +c
2

—a
k 1+a b —c =0,

k
(6)

for the donor placed in the center of the barrier
[k =E'~, y =( Vo E)'~, and —a =tanh(yd ),

b =tanh(yd /2), c =tan(kl), p =tan(kl/2}]. Equations
(5) and (6} result from matching of the wave functions at

where N is the normalization constant and p, z denote cy-
lindrical coordinates. The eigenenergy E of an electron
in the potential given by (1) [or (2)] is obtained as a solu-
tion of the equation
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TABLE I. Calculated variational parameters A, , ~, and binding energies ED for various well and bar-
rier widths (l and d, respectively) and the two positions of donors, for x =0.3. l, d, and A, are in effective
Bohr radius a& .

Donor in the center
of the well

ED/R *

Donor in the center
of the barrier

ED /R

0.5
1

2
2

0.80
0.82
0.98
1.17

1.00
1.05
1.24
1.32

1.71
1.89
2.04
1.71

2.10
2.50
3.17
3.46

1.54
1.59
1.66
1.64

0.95
0.78
0.60
0.50

the interfaces.
Until now two ground-state envelope wave functions

were used —one of the spherical symmetry' with a sin-

gle variational parameter, and the other one more
adequate from the point of view of the symmetry of the
system and involving several linear variational parame-
ters. We decided to choose the envelope wave function in
the form

G(p, z)=exp ——(tt p +z )'2Z

where k and ~ are the variational parameters. This func-
tion takes into account the cylindrical symmetry of the
system but, at the same time, remains quite simple for in-
tuitive interpretations. The presence of the parameter a
makes the behavior of the electron in a plane parallel to
the interfaces less dependent on its behavior in the z
direction than in the case of a spherical function.

The variational ground-state binding energy ED(l, d) is
given by

E =E—min(1(~H ~tp) . (8)

The expectation value of the operator —|I' + V(z} has
the form

(g~[ —V + V(z)]~/) = k +

+ (1—«) 4nN

«

X f dzz f (z)Ei(2z/A, ),
(9)

where E,(x ) =I "dt exp( t )It For —« =1 (in .the case of
a spherically symmetric envelope wave function) expres-
sion (9) reduces to (k + lid, ) and greatly simplifies the
joint expression (9b) and (9d) in the Chaudhuri paper. In
the case of «%1, two of the three integrations involved in
the Coulomb energy (g~( 2/r)~itl) m—ust be evaluated
numerically. The normalization constant N is expressed
analytically and differs from the case of a=1 only by a
factor of lie .

For all quantitative illustrations we selected one typical
concentration of Al ions: x =0.3 in the MQW hetero-
structures. The results of our calculations are summa-
rized in Table I. The general conclusion for a donor at

the center of the well is that if the joint thickness of the
well and barrier does not exceed two Bohr radii ( I
+d ~ 2as ), the optimum value of the parameter « is close
to 1. As a consequence, the spherically symmetric en-

velope wave function proposed by Chaudhuri represents
the proper choice in this case. For example, for
1 =d = lati we obtained « =1.05, and the binding energy

ED =1.89R'. Lane and Greene with their many varia-
tional parameters obtained ED =1.93R ' in this case (the
difference is only 2%}. In the case of heterostructures for
which I+I & 2ati the expected tendency to wider spread-

ing of the envelope wave function in the z direction than
in the plane parallel to the interfaces is observed. For ex-
ample, for I =d =2tts we obtained «=1.32; as a conse-

quence, in the plane parallel to the interfaces the "Bohr
radius" given by the ratio A, /«. =0.89ag is quite difi'erent

from the one in the z direction (A, = l. 17at~i }. At the same

time, the obtained binding energy ED=1.71R* gives

only 2.5% improvement compared with the case of « = l.
On the other hand, our results indicate that when the

donor is placed in the center of the barrier the presence
of the a parameter in the variational envelope wave func-
tion is more important. For example, if I =d = lat'i, we

obtained it=1.59, A, =2.50at't, and ED=0.78R' (A, ltc
=1.57ati}. In the case of «=I we have ED=0.74R';
this means that about 5% improvement occurs when we

allow ~ to act as a second variational parameter. Lane
and Greene obtained 10% smaller binding energy,
Ez =0.71R', for this case. This seems to indicate that
the set of Gaussians selected by Lane and Greene was
not extensive enough for the case of an electron kept at
some distance from the Coulomb center. Summarizing,
we can say that the simple trial functions (7), with two
nonlinear variational parameters, reproduce quite well
the previous results and in some cases give even better
binding energy than the variational procedures involving
13 linear parameters.

III. TWO-CENTER DONOR STATES

Let us consider now two donors: the neutral donor w

situated in the middle of quantum well II at
R (p =0, z~) and the ionized donor b situated in the
middle of the barrier closest to well II (barrier 1 or 2) at
the position Rb(pb, Pb=0, zb). The electric field of the
incident infrared radiation may thus force the electron to
jump from the ground state of donor w to the ground
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state of donor b. Note, however, that the absorption
coefficient resulting from such interdonor jumps may not
be calculated directly from the matrix element of the di-
pole moment between the ground states

~ 1(& & and
~ 1(&z & of

the donors w and b determined in Sec. II as eigenstates of
the Hamiltonian (3) with the periodic potential V(z)
given by Eqs. (1) and (2), respectively. These states, cor-
responding to different electron energies, are not orthogo-
nal since they are the ground states of two different Ham-
iltonians. Each of these states changes when there is
another donor center in the vicinity. Therefore, before
calculating transition probability we have to construct
the eigenstates of the two-center Hamiltonian accounting
for the simultaneous action of the two charged donor
ions on the electron:

H= —V + V(z)— 2 2
l'b

(10)

where r = (r —R„( and r&
= (r —Rz (, and V(z) is the

periodic MQW potential shown in Fig. 1. [The fact that
V(z) here differs from the potentials V(z) given by Eqs.
(1) and (2) is not fundamental since the three potentials
V(z ) differ from each other in the regions of space where
the amplitudes of electronic wave functions g and P&
are practically vanishing. ] In writing the Hamiltonian
(10) we neglected the electrostatic interaction of the elec-
tron with other ionized donors and compensating accep-
tors which might be situated in the vicinity of our w-b
donor pair. Unless the impurity concentration and the
compensation are very high, the potential-energy
difference between the centers w and b due to other
charged centers remains small compared to the difference
between binding energies ED and EDb. In this situation
the effect of neighboring charged impurities may be ac-

counted for by introducing some dispersion of the energy
of the electronic transitions from w to b.

When the average distance between the well and the
barrier donors is much larger than the spatial extension
of the ground-state wave functions g„and g&, the lowest
eigenstates of the Hamiltonian (10) for typical donor
pairs might well be approximated by the two orthogonal
linear combinations of g and lt&&.

q/(r)=c'q (r )+capt, (r$),
P~(r)=c g (r )+c&P&(r&),

where

1&2 1&2
b 1,2

c1,2 (1+2tr S+~2 )
—1/2

(12)

(13)

and

(14)

The lower state ~g, & is predominantly built from the
state ~g & while the state ~1t&z& is built from ~g~ &. The
energy difference between the two states is given by the
formula

H~b —E~ PS

H —Ebb 1,2

where E, z denote the expectation values of the Hamil-
tonian (10) for the states (11) and (12) and the remaining
abbreviations are defined as follows:

[(Hsq+H 2H gS) 4—(HqqH —Hg)(1 —S —)]'
E —E, =

(1—S )
(15)

where H =(f ~H~g &. Figure 2 shows bE=Ez E, —
as a function of variable p for three heterostructures with
the same well thickness, 1=la&, and different barrier
thicknesses: d=0. 5a~, d= la~, and d=2a~. One can
see that the energy AE required for the hopping transi-
tion of the electron from the donor m to the donor b is
not identical for all w-b pairs, but it is a decreasing func-
tion of the hopping distance p finally tending to E,b —E,
for large p [E,& and E, denote the expectation values of
the Hamiltonian (3) with V(z) given by formulas (2) and
(1), respectively]. This leads to asymmetric broadening of
the expected absorption peak. Note that the closely
spaced pairs, for which the approximations (11) and (12)
might be poor, can be excluded from further considera-
tions by imposing the upper limit of the photon energies.

IV. ABSORPTION COEFFICIENT

We now derive the formula for the absorption
coefficient using the pair model. Let N and Nb be the
surface concentrations of the neutral center-of-well

2.0—

1.0—
= 0.5

1 & I0.5
0 2 4 6

q/a",
FIG. 2. The energy difference between the two lowest states

of the two-center Hamiltonian (10) as a function of the variable

p for three GaAs-Gao 7Alo 3As heterostructures with the same

well thickness I = la& and different barrier thicknesses:
d =0.5a~, d = la~, and d =2ag .
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donors w and the ionized center-of-barrier donors b, re-
spectively. Ionized donors w or neutral donors b are
ineffective for hopping in the energy range of interest.
We choose the origin of the coordinate system at the po-
sition of a neutral donor w. The expected number of ion-
ized donors b with the radial coordinates in the range
(p, p+dp) is equal to 2Nb 2npdp. (The factor of 2
reflects the existence of two barriers neighboring with a
well. ) The results of Sec. III indicate that, except for the
smallest radial coordinates p, the electronic wave func-
tions for both considered states of a w-b donor pair are
given by the formulas similar to those in nondegenerate
perturbation theory. This means that the existence of a
few donors b in the vicinity of a given donor w does not
invalidate in general the pair model. If the donors b are
not too close to one another, the admixtures of their wave
functions to the ground-state wave function of the donor
w are approximately additive. As a result the transition
rate W b from the donor w to all nearby donors b may be
calculated independently. The rate is given by the formu-
la

(16)

V)

L
O

0
0 4

pi a",

FIG. 3. The function p(~D~ ), where (~D~ ) denotes the
directional average of the modulus squared of the dipole matrix
element (17), as a function of the variable p for the same three
GaAs-Gao &Alo 3As heterostructures as in Fig. 2.

where n denotes the unit vector parallel to the electric
field of radiation, which we assume to be parallel to the
interface planes. I(co) is the intensity of the radiation per
unit interval of the angular frequency co. The dipole rna-

trix element has the form

cb +cbc.' ) & g lr nlrb ) +Rb n cbcb (17)

The two terms in the above expression have opposite
signs and partially compensate. If we overlooked the
nonorthogonality of the wave functions tp and gb we
would get only the first term with the bracket replaced by
1 overestimating the transition rate.

Now we average the transition rate over all possible
directions of the unit electric-field vector n with respect
to vector Rb and we sum up the contributions from all
donor pairs. This leads to the following formula for the
absorption coefficient for a structure with j two-layer
periods:

a=j 4nNNbfico J dpp, z (~D~ )5(co bE!fi), —
cA' E'

(18)

where (~D~ ) denotes the directional average of the
modulus squared of the dipole matrix element (17), and
I(co) was replaced by 5(co hE/fi) In —Fig. 3 w.e plotted
the function p( ~D

~
) as a function of p. One can see that

the dominant contribution to the total oscillator strength
for interdonor transitions comes from pairs having the
radial coordinate p of the order of 2—4 Bohr radii az.

In deriving Eq. (18) we neglected the electrostatic in-
teraction of the electron in the states localized at donors
w and b with other ionized donors and compensating ac-
ceptors present in the sample. In principle this interac-
tion introduces an additional term in the two-center

Hamiltonian (10) which modifies both the energies and
the wave functions of the two-center states (11), (12), and
(15). However, as long as the electrostatic potential-
energy difference hV b between ions w and b remains
much smaller than b,E(p) given by Eq. (15), we can ac-
count for the electrostatic interaction with the impurities
by first-order perturbation theory. This amounts to add-
ing the additional term hV b to AE(p) in the argument
of the 5 function in Eq. (18). If we approximate the prob-
ability distribution of 6V b by a Gaussian we get, for the
absorption coefficient, the formula

4m ea=j4~N N~Aco
cA6

X pR D

1 [fico —b,E(p) ]
(277)' ir 2cr

Strictly speaking, the dispersion o of the probability dis-
tribution should depend on the distance between w and b.
We simplify the problem by using, for all pairs, the com-
rnon value of o proper for pairs giving the dominant con-
tribution to the oscillator strength.

V. RESULTS AND DISCUSSION

One can show (following Morgan' ) that for a com-
pletely random spatial distribution of point charges, and
in the absence of any screening, the difference between
the potential energies at two arbitrary points r, and r2 is
a random variable with the Gaussian distribution of zero
mean value and the dispersion

o =4[~~r, —r2~(ai'i) N„„]' R' .

Here N„„& denotes the average volume concentration of
charged centers. In MQW with Nb =10' cm, 1=d
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= lag, and ~r&
—

r2~ =3as, we get o =1R ". This seems to
be a serious overestimate of the magnitude of the root-
mean-square potential-energy difference in real MQW
with the above characteristics. The relatively low tem-
perature of the growth, together with the important la-
teral mobility of atoms during the process of molecular-
beam epitaxy, seem to favor strong spatial correlations
between the negatively and positively charged impurities.
As a result, the spatial distribution of charged impurities
in MBE-grown systems should resemble the random dis-
tribution of electric dipoles composed of closely spaced
ionized-donor —ionized-acceptor pairs rather than the
random distribution of uncorrelated ionized donors and
acceptors. The calculation, or even the estimation, of the
dispersion of the distribution of the potential-energy
differences in such correlated system with planar doping
of donors and volume doping of acceptors would require
many ad hoc hypotheses. We note, however, that the
potential-energy differences in a system of randomly dis-
tributed electric dipoles are at least an order of magni-
tude lower than in the system of random uncorrelated
charges of the same volume concentration. In our
opinion the information on the dispersion o of the
potential-energy distribution in real MQW should come
from experiment. In order to visualize the sensitivity of
the absorption spectrum on the dispersion o of the distri-
bution of the transition energies for interdonor hopping
we performed our numerical calculations for three
different values of o. =0.05R *,0. 1R *, and 0.2R *.

In Fig. 4 we give the absorption coefficient as a func-

tion of photon energy for GaAs-Ga07A103As hetero-

structure with 100 periods with I = la&, d =0.5az. Simi-

0.06—
C

~~
0

~ 0.04
O

o: 6 =0.05
b: & =o. ) Z~

e: 5 =o.z g»

0
~ 0.02
0

0.00
I.O I.2 1.4 l.6

Photon energy (units of %*}

FIG. 5. The absorption coefficient vs photon energy for
GaAs-Ga07A103As heterostructure with 100 periods with well
thickness I=la& and barrier thickness d=la& (N =Nb=
2X10' cm ), for three values of dispersion 0.:0.05R, 0. 1R
and 0.2R *.

lar results of the absorption coefficient for the hetero-
structures with I =la&, 8= la& and I = la&, d=2az are
given in Figs. 5 and 6, respectively. The maximal value
of absorption coefficient in our ranges of parameters
characterizing the GaAs-Gao 7A10 3As heterostructures
under consideration is 0.13 for %co=4.55 meV, for the
MQW with 1= las, d =0.Sas, and o =0.05R '
(N =Nb=2X10' cm ).

The position of the maximum of each absorption curve
is determined by the following factors: the weak depen-

dence of bE(p) on p for p) 4as, the rapid increase of

bE(p) for p lower then 4as, where the element p( ~D ~ )
has its maximal value (see Figs. 2 and 3), and by the value

of 0 which, via the function exp t
—[Ace —b E(p)] /2cr I,

~ ~
O

V
OP

O
O

4
C
0)
O

b:
e:

6 = 0.05%
6 =0. 18'
8 =0.2%

0.05

0o 0,02-
0

o 0.01

O.O I

O.6 0.8 I.O 1.2

Photon energy (units of Q )

14 1.7 19
Photon energy (units of A )

FIG. 4. The absorption coe%cient vs photon energy for
GaAs-Ga07A103As heterostructure with 100 periods with well

thickness l =1az and barrier thickness d =0.5a& (N =Nb
=2X10' cm ), for three values of dispersion o. : 0.05R*,
0. 1R*,and 0.2R*.

FIG. 6. The absorption coe%cient vs photon energy for
GaAs-Gao 7Alo 3As heterostructure with 100 periods with well

thickness l = 1a& and barrier thickness d =2az (N =Nb =
2 X 10' cm }, for three values of dispersion o". 0.05R
0. 1R*,and 0.2R*.
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decides the range of p contributing mostly to the absorp-
tion coefBcient for fixed photon energy. The first factor
tends to locate the maximum of the absorption curve
quite close to the energy EE(p) 5a~), while the second
factor produces the shift of the maximum towards higher
energies; finally, the dispersion o. decides which of these
two tendencies dominate.

One can see in Figs. 4—6 that the shift of the maximum
of the absorption coeScient with increasing dispersion o.

is quite pronounced. The shift, as well as the width of the
maximum, can provide information about the magnitude
of potential-energy Iluctuations in MQW heterostruc-
tures. Unfortunately, contrary to the case of intradonor
transitions, the interdonor transition energies only weak-
ly depend on the magnetic field. This makes the
variable-field magnetoabsorption techniques inappropri-
ate for the detection of the interdonor transitions and the
direct, i.e., interferometric absorption measurements

have to be used for their detection. We believe, however,
that the experimental effort is worth the investment, since
the observation of the interdonor absorption could bring
quite unique and relatively direct information on the
magnitude of potential-energy Auctuations and on the
correlation between the positions of the oppositely
charged impurities in MBE-grown structures.

As has already been pointed out, our model predictions
concerning the absorption due to interdonor hopping
should apply not only to the case of planar doping in the
central planes of wells and barriers, but to a broad class
of doping profiles. In the case of uniform distribution of
donors all barrier (well) donors which have similar bind-

ing energies of their ground states contribute in a similar
way to the absorption under consideration. It means that
by properly increasing surface concentrations of donors
we should obtain absorption curves similar to those for
the case of the strictly planar doping.

'Permanant address: Departamento de Fisica, Facultad de
Ciencias, Universidad de Los Andes, Merida, Venezuela.
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