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We prove that reflectivity measurements as a function of angle of incidence allow the measurement of
the exciton-polariton modes in quantum wells. The resonant polaritons at k~~ & ko =co/v manifest them-

selves as peaks in the reflectivity while surface polaritons at k
~~

)ko manifest themselves as dips in the at-

tenuated total reflection. A comparison of the reflectivities with polarization perpendicular and parallel
to the plane of incidence allows us to detect the different polariton modes and to measure the dispersion
relation. We also give expressions to compute reflectivity and transmission for the case of multiple quan-

tum wells, including the effects of multiple reflections. Examples are given for standard reflectivity of
GaAs/Al Ga& „As quantum wells and for attenuated total reflection of CuC1/Cap& quantum wells.

I. INTRODUCTION

Reflectivity measurements have proven to be a power-
ful tool for the study of the optical properties of semicon-
ductors, because they allow the estimate of many impor-
tant bulk parameters related to the oscillator strengths of
exciton resonances. ' Moreover, the use of different in-
cidence angles and of light polarization has given infor-
mation in cases when symmetry is lower than cubic, and
the use of evanescent waves in attenuated total reflection
experiments has allowed the excitation of surface polari-
tons.

Recently, the study of optical properties of semicon-
ductors was extended to quantum wells. In these struc-
tures, quantum confinement effects on electrons and holes
become essential, so that a two-dimensional character is
developed in their behavior. This affects the polariton
states and therefore must be relevant to the reflectivity. '

In 1966 Agranovich and Dubovskii proved that, when
the translational symmetry is broken in one direction, the
polaritons can be of two types, those with k~~

& co/U which
have a finite lifetime (resonant polaritons), and those with

k~~ ) co/U which have an infinite radiative lifetime (surface
polaritons). In a recent paper we have given the disper-
sion of polaritons in quantum wells and the lifetimes of
the resonant ones, thus completing previous studies by
Nakayama 8 Cho, 9 and Andreani and Bassani. 10

The purpose of this paper is to show how these modes
come separately into play in standard and attenuated to-
tal reflection and to compute the resonances to be expect-
ed in the reflectivity curves. We will show how the posi-
tion and shape of the reflectivity resonances are related to
the dispersion laws and the radiative linewidths of the po-
laritons. In the case of the usual reflectivity experiments,
only resonant polaritons will be detected while surface
polaritons can be excited with attenuated total reflection
experiments. We calculate the reflectivity curves for po-
larization of the electric field both parallel and perpendic-

ular to the plane of incidence. In the first case at oblique
incidence two resonances arise from different optically
active electromagnetic modes. %'e also calculate how the
reflectivity curves are modified by the existence of a
medium external to the sample and stress the limitations
imposed by experimental parameters such as the barrier
width, the homogeneous broadening or the angle of in-
cidence, for both standard and attenuated total reflection.

In Sec. II we briefly review the results of Ref. 7, and
also show how it is possible to describe any experimental
configuration in terms of all the independent electromag-
netic modes. In Sec. III we calculate the standard
reflectivity of the quantum well at any angle of incidence.
In Sec. IV we perform a similar calculation for the case of
evanescent waves in the barriers, relevant to an attenuat-
ed total reflection (ATR) experiment. We demonstrate
that attenuation resonance dips appear in the reflectivity
at energies related to those of the surface polaritons. Nu-
merical results are given for cases of interest. Discussion
of the results is presented in Sec. V.

II. ELECTROMAGNETIC MODES
IN A QUANTUM WELL

Following the general approach of linear response
theory" or density matrix theory, ' we may write the sus-
ceptibility of a quantum well arising from the existence of
exciton confined states as a nonlocal function:

1 Pcu PcU
yOw(z, z, k~~, co )

X ~F„(0)~
p(z)p(z'), (I)

where p(z)=c, (z)vh(z) is the product of the confinement
functions for electrons and holes in the well and defines
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the pair of subbands of the exciton considered, p„ is the
dipole matrix element in the bulk material, F„(0) is the
value of the quantum-well exciton envelope function at
the origin in the relative coordinate system, and fico„(kll)
is the energy of the nth exciton level in the quantum well,
including the short-range exchange contribution' and
spatial dispersion. The exciton energies and the other pa-
rameters appearing in Eq. (1) can be computed from the
microscopic theory; results within the effective-mass ap-
proximation have been obtained, for instance, by An-
dreani and Pasquarello. ' The confinement properties of
the electrons and holes are contained in p(z), while the
interaction of the exciton with light is determined by the
oscillator strength per unit area of the optical transitions:

value of k, being real such that

k =k —kZ 0 (4)

We then divide the problem into two different regions:
the barrier region with izi )L /2 and the well region with
izi &L/2. In the first region p(z) =0 so that Maxwell's
equation (3) describes free traveling waves. This solution
must be matched to the solution in the well region using
boundary conditions at the izi =L/2 surfaces. We can
define a scattering amplitude a as the ratio of the ampli-
tudes of outgoing and incoming waves. The procedure is
described in Ref. 7.

For the optically active modes, we find a Breit-Wigner
type scattering amplitude of the form

iF(0)i f dz p(z)
Ae

(2) ("ll ~) —ir(kll'co)

co —
co(kll, co)+ i I (kllyco)

Selection rules which depend on the polarization are
also contained in expressions (1) and (2), and can be ob-
tained from symmetry considerations. '

The present approach, which is similar to that of Ref. 8
and 9, treats the exciton-photon interaction by a nonlocal
susceptibility with microscopic parameters. This is to be
compared with a phenomenological model in which the
quantum well is represented by a local dielectric layer. '
The microscopic model is more fundamental, and does
not need any additional boundary conditions in the limit
of thick wells. The local dielectric model usually gives
similar results, but it can fail when the damping becomes
too small, as discussed in Ref. 16.

If we explicitly solve Maxwell's equation

with a resonance at

co„—CO( kll, co ),
and a radiative linewidth I'(kll, co„). In particular, for the
modes indicated in Fig. 1, we obtain the following expres-
sions:

2 iF(0) 2

)=~(k„)—4~ k+(k, )
e

2~p', „IF (0)I'g'(k, ) I,'
I r(kll, co) =

e„h Z

2

V X V X E— e„E+4vrf dz'y(co, kll, z, z')
C QO

coL(kll, co) =co(k l)
—4ir k, P(k, )

e

2irp„iF(0)i Q (k, )

e„A
(10)

X E(co,kll, z') =0, (3)

with the appropriate boundary conditions at the
quantum-well interfaces and at infinity, the latter ones be-
ing determined by the experimental conditions of excita-
tion, we are able to calculate the intensity of the reAected
or transmitted waves.

Since the p(z) confinement factors are even for optical-
ly allowed transitions, it is convenient to find the solu-
tions to the problem which have definite parity under in-
version of the z coordinate. If we take the in-plane wave
vector kii in the x direction, we can first classify solutions
according to their electric field polarization with respect
to x, and within these classes we can classify the solutions
according to the parity in z of the nonzero electric-field
components. For polarization in the plane of incidence
both E„and E, are nonzero, while for perpendicular po-
larization the only nonzero component is E . The four
independent electromagnetic modes which result are
shown in Fig. 1. The two optically active modes with
even y and x polarization are called transverse (T) and
longitudinal (L), respectively. The mode with even z po-
larization is called the Z mode (Z).

In the case of kll & ko =co/cue„we always have trav-
eling waves in the barrier of dielectric constant e, the

„iF(0)i
coz(kll, co) =co(kll )+4ir

e A' f dz p'(z)

—k P(k, ), (11)

2~v,'. IF(0)l'a'(k. ) k'„
I z(kll, co) =

e A Z

(12)

where
+L/2

g(k, )=f dzp(z)cos(k, z),—L/2

P (k, ) = —j dz f dz' sin(k, iz —z'i )—L /2 —L /2 Zkz

(13)

Xp(z)p(z') . (14)

The solution for the antisymmetric mode [(B) of Fig. 1]
is easily found because there is no polarization contribu-
tion from the quantum well. We obtain

(15)

When kll & ko, condition (4) leads to k, pure imaginary

(k, =inc, ), so that only evanescent waves can exist in the
barrier. In this case the resonances are similar to those of
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FIG. 1 . Schematic illustration of the four independent elec-
tromagnetic modes: (A) y polarized (even), (B)y polarized (odd),
(C) E„even, E, odd, (D) E, even, E, odd. The dashed lines
represent propagation direction of the optical waves in the bar-
rier and the solid lines with arrows the electric-6eld directions;
the circles represent y vectors going into the paper ( x, y plane),
or out of it if the circle contains a cross or a dot, respectively.

surface states and have been called quantum-well surface
po 1 aritons. These modes have zero radiative 1inewidth.
Their dispersion laws are given again by Eqs. (6), (7), (9),
and ( 1 1), provided the expression for P ( k, ) is replaced by

P(~, )= J dz I dz' e ' p(z)p(z')
L /2 —L /2 2Kz

( 16)

We wish to remark that the above results take into ac-
count the interaction of the electronic excitations with
the electromagnetic field, including retardation. As
shown in Ref. 10, the long-range electron-hole exchange
of the microscopic theory represents the interaction with
the electrornagnetic field in the instantaneous approxima-
tion (c~ cc ) and is responsible for the internal structure
(separation of the exciton modes). The effect of consider-
ing retardation is to introduce a discontinuity in the
dispersion relation at k

~~

=k o, and to give rise to reso-
nances with finite radiative lifetime for k

~~

& k 0 ~ It ap-
pears that the differences occur in the vicinity of k

~~

=k 0,
for large values of k

~~

the retarded radiative correction
coincides with that obtained from the long-range e-h ex-
change. The situation is exemplified in Fig. 2 for the case
of GaAs/Ga I „Al„As quantum wells; we can observe
the crossing between the L and Z modes at a high value
of k

~~,
and the approaching of the Z mode to the T mode

as k
~~

increases.
It may also be of interest to compare the quantum-well

po lariton modes with the surface po 1ariton modes which
appear at the interface of a semi-infinite medium�. They
bear similarities because in both cases the translational
symmetry is broken in one direction and the good quan-
tum number is k

~~,
but they also differ because in the in-

terface case the Green's function corresponding to ex-
pression ( 1 ) contains the bulk excitons, as shown by
Maradudin and Mills ' and Cho. The most important
difference is the existence of resonant polaritons in the
quantum wel 1, which makes possible a coupling with
traveling electromagnetic waves. Another significant

0
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0

L

L,
0

T T

0.5 10 20 30 40 50
kI (10 cm )

FIG. 2. Comparison of the dispersion due to the long-range
e-h exchange (dashed line) and that due to the full electromag-
netic interaction with retardation (solid line) ~ The case of a 60-
A-wide GaAs/Ga& „Al„As quantum well (with x =0.4 ) is con-
sidered. The oscillator strength f„»=f, /4 =35 X 10 ' A
from Ref. 13 has been used. Energies are referred to the exciton
energy (E,„,= 1.6 eU) without center-of-mass dispersion.

difference is the existence of the T mode in the quantum
well.

A useful comparison may be with the modes in a thin
slab. Kloos ' proved that when two surfaces are separat-
ed by a thin slab of metal lic material the two surface
plasmon polaritons interact and produce both the L
mode and Z plasmon polariton mode. This also occurs
for excitons in a thin semiconductor slab, with results
qualitatively similar to those described above. A quanti-
tative analysis however requires the use of nonlocal sus-
ceptibility and the microscopic calculation of confined ex-
citons.

The above described independent modes are sufficient
to interpret a number of physical effects re lated to the be-
havior of the electromagnetic radiation interacting with
the medium�. In particular, an appropriate combination
of symmetric and antisymmetric modes produces the sit-
uation of an incoming beam partly reflected and partly
transmitted. In the next two sections we wi 11 show how
the experimental reflection and transmission coefficients
are related to the polariton modes and allow their mea-
surement.

III. STANDARD REFLECTIVITY
AND RESONANT POLAR ITONS

l Qw —,'(aT, —aT, ), tQw =
—,'(aT, +aT, ), (17)

We show in Fig . 3 that the addition of the odd and
even modes for a definite polarization leaves only one in-
coming wave on the quantum well, together with the
reflected and transmitted beams. The reflectivity and
transmission coefficients for perpendicular polarization
are
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In order to take into account another kind of relaxa-
tion process, like the interaction with phonons, for exam-
ple, we introduce a phenomenological damping parame-
ter y, using co+i y in the denominator of (1) instead of co

alone. %'e do not give here the full expressions for
Ir~&w I

and Irqw I obtained from (17) and (18) because in
real experiments the background reflectivity from the
barrier —external-medium interface always has to be tak-
en into account. When this is done, as in the typical ex-
perimental scheme shown in Fig. 4, considering also mul-
tiple reflection, we obtain

FIG. 3. Superposition of even and odd modes to obtain
quantum-well reflectivity and transmission for perpendicular
polarization and parallel polarization.

and for parallel polarization

5 2

rp 2

s s iPr12+rqwe

1+r'12r Qwe'

"12+r Qwe
p p iP

1+r'12r Qwe"
QW ( L +Z) QW ( L+ Z) (18)

where
Taking into account the Breit-Wigner —type form (5)

for the a, coefficients, it is easily seen that IrowI has a
single Lorentzian resonance, whose resonance energy is
given by the condition (6), and whose width is the radia-
tive linewidth introduced in (8). Equation (7) gives the
dispersion law of the resonant polaritons, so that it is pos-
sible to determine the dispersion law of the transverse
resonant polariton together with its radiative linewidth
from the reflectivity measurements at various angles.

For parallel polarization we have two resonances rela-
tive to the L and Z modes, respectively, as seen from ex-
pression (18). These resonances are separated in frequen-
cy by the first factor in parenthesis of (11), proportional
to jdz p (z), the other factor being very small in the ra-

diative region we are considering. However, they can be
simultaneously seen in the reflectivity curves only using
incidence angles which are neither perpendicular nor
grazing. At normal incidence we have k~~

=0, I z =0, and
for this reason the Z mode is optically inactive. In this
case the scattering amplitude az is also given by (15). At
grazing incidence only the Z mode is optically active.
The general trend at increasing incidence angles from
normal to grazing incidence is a gain of strength of the Z
mode and a loss of the L mode.

k, ,„,—k,

k„„+k, ' (21)

e„tk, —e„k„„t
12 ~ oo kz, ext+ ~extkz

(22)

C

are the external-material —to —barrier reflectivities in per-
pendicular and parallel polarization, respectively, 0 is the
incidence angle in the external material, e,„t its dielectric
constant, assumed real, and /=2k, D is the phase gained
by the electromagnetic wave in the barrier region of
width D. If e,„t)e, the incidence angles have to be lim-
ited to 9&9„;,=sin 'Qe„/e, „,. In the case of a single
quantum well we may usually neglect multiple reflections
and expand in powers of rQw, which is small when the
broadening is bigger than the radiative linewidths in-
volved. In this case, using Irrw I

«1 we obtain an expli-
cit expression for Ir„, I

for the two polarizations:

(I T+y )cosP+(coT —co)sing
Ir,' I

=(r'„)'—2[1—(r j2) ]
( co —coT) + ( I T+ y )

(I L+y)cosP+(coL —co)sin(t
Ir~

I

=(rj' )
—2[1—(r~ ) j — Itot 12 12

( )2+(I, + )2 L
( I z+ y )cosP+ (coz —co)sing

(~—~, )2+(r +1 )'

(23)

Expression (23) reduces to the one already given in Ref.
16 for perpendicular incidence, while it is possible to see
from (24) that if the L and Z resonances are separated by
more than the broadening y, then the ratio of the two
peak heights is given by the ratio of the respective radia-
tive linewidths. It can also be seen that the peak heights
in the reflectivity curves are a direct measure of the ratio
of the radiative linewidths to the total broadening, a pa-

[

rameter which can be extracted from the same data.
From the above procedure we conclude that all param-

eters concerning the resonant polaritons at di6'erent kII

can be measured simultaneously in a standard reflectivity
measurement, provided that the incidence angle, the fre-
quency, and the polarization are suitably scanned.

The refiectivity from a multiple-quantum-well (MQW)
structure can be calculated following the same guidelines,
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E(,")=t. „E(,"-"e'~+r „E',"',
E(n —1)e —i/ g E(n) +r E(n —1)eitti

2 e QW 2 rQW 1

(25)

tMQW
= t21E1(N) ip

E' 'e '~=r21E' 'e'~' n =1,2, . . . , N,
where it is understood that s coefficients must be used
when considering perpendicular polarization and p
coefficients in the other case. This system of 2N+4
equations in 2N+4 variables can be easily solved for
rMQw and tMQw and generalized to systems with a more
complicated geometry, e.g. , with different barrier
thicknesses.

barrier QW barrier

in which case multiple reflections must be considered.
We consider a structure of N wells limited on both sides
by overlayer barriers of thickness D, also equal to the
thickness of the barriers between the wells. In each layer
between the quantum well and in the barriers we have
two electromagnetic waves of amplitude E'I"',Ez'"' (n la-
beling the layer considered) traveling in opposite direc-
tions. The reflection and transmission coefficients of the
whole structure can be determined by the reflection and
transmission coefficient at each boundary:

rMQw
= r 12+ t21E2(0)

E' '=t +r E' ' '
1 12 21 2

We have carried out numerical calculations in order to
analyze the effect of MQW's in comparison with that of
the single QW. The position and the width of the
reflectivity peak do not change, but the height of the peak
is increased and is proportional to the number of wells
(unless the total thickness of the MQW structure is com-
parable to the wavelength of light, in which case interfer-
ence effects appear).

For the purpose of illustration we present in Fig. 5 the
reflectivity of a single quantum well of
GaAs/Ga1 „Al,As with an external prism of ZnSe in-
cluding both the heavy-hole (HH) exciton and the light-
hole (LH) exciton used as independent contributions to
the susceptibility (l), with their respective oscillator
strengths (2). It can be noticed that for perpendicular po-
larization R, = ~r, I

shows two peaks corresponding to
the transverse HH and LH excitons. For parallel polar-
ization Rz=~r

~
shows a small structure in correspon-

dence with the longitudinal HH exciton and an un-
resolved doublet of high intensity in correspondence to
the LH exciton (L and Z exciton). We recall that the HH
exciton is forbidden for z polarization. ' The separation
between the Z- and T-polarized LH excitons is about 1.2
meV for a well width of 60 A, as shown in Fig. 2.

Transmission and photoluminescence excitation exper-
iments on multiple GaAs/Al„GaI, As quantum wells
with perpendicular and parallel polarization have been
carried out by Frohlich et al. ' using a ZnSe prism to
achieve an incidence angle of 45' on the quantum well.
The absorption spectra show peaks in correspondence to
the heavy-hole and the light-hole resonant exciton polari-
tons as in our Fig. 5. The comparison of the parallel and
perpendicular polarization absorption shows no displace-

+ 8&8

barrier QW barrier
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FIG. 4. A realistic schematization of a quantum-well
reflectivity experiment. The barrier space, of thickness D, is
limited on the right by the existence of an external prism with
dielectric constant e„,. Both cases of standard reflection and at-
tenuated total reflection are indicated.

FIG. 5. Reflectivity of a single GaAs quantum-we11 structure
with an external prism of ZnSe (n =2.4), for perpendicular (R, )

and parallel (R~ ) polarization at nearly grazing incidence
(8=90 in Fig. 4). Quantum-well parameters for the LH exciton
are as in Fig. 2, and for the HH exciton an oscillator strength of
70)&10 ' A ' has been used.
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ment of the peak for the HH exciton polariton and a dis-
placement to higher energy with parallel polarization by
about 1.2 meV for the LH exciton polariton, in agree-
ment with our results.

Equivalent results have been obtained by Berz et al. ,
who injected the exciting light on a cleaved surface per-
pendicular to the quantum-well plane and therefore could
excite the T and Z polaritons depending on the polariza-
tion, with kll ——ko.

IV. ATTENUATED TOTAL REFLECTION
AND THE DISPERSION

OF THE SURFACE POLARITONS

In Sec. III we showed how standard reflectivity mea-
surements can be made using an external prism having
c,„t)e„, provided the angle of incidence is smaller than
the limit angle at which total reflection occurs. If one
goes beyond this angle, evanescent waves in the z direc-
tion are produced in the barrier region. Surface polari-
tons are characterized by evanescent waves in the barrier,
and are expected to produce reflectivity at angles and fre-
quencies which are related to their dispersion. Another
possibility to excite surface polaritons is to scatter the in-
cident beam on a grating of period d much smaller than
the electromagnetic field wavelength. The scattered
waves in the barrier, having k

II

=kII+ Ak I, with
b, k~~ =n(2~/d), will have kI ) ko as required for surface
polaritons.

To calculate the ATR spectrum, we introduce as be-
fore scattering coefficients to take into account the ap-
propriate boundary conditions. In this case k, is purely
imaginary and we use k, =iKz For the symmetric T
mode, with the method explained in Ref. 7, we obtain

(E,"+E;"')I, „,,=E, l, „,

with
+L/2

Q(K ) = dz p(z)cosh(a. ,z )—L/2

and P already given in (16). Substituting 3 into (28) and
(27), we obtain

(30)

—v L
AT=e

k
(~„,rd) rd —i e— —

Q 'p,', lF(0)l'T
II g cv

Kz

CO T ( k
~
~,

Cd ) Cd i E

(31)

where the definition of the rd is the same as in (7), provid-
ed that we use P in place of P.

The important feature of (31) is the pole at the surface
polariton frequency, which produces a pole also in the
reflectivity amplitude r&w. Nevertheless, it is physically
clear that the total reflectivity remains finite, and in par-
ticular lr„, l

=1 unless some channel for dissipation oth-
er than the radiative one is taken into account in the cal-
culation, because the transmitted energy flux is zero.
This requires the use of the full expression (19) with the
inclusion of damping to calculate r„,. If we recall the
definition (21) of r i2, where we must now use the imagi-
nary values k„we obtain lr', 2l= 1, and we can use this
property to transform (19) into the following:

1+(r', 2
)"r &we

r,'„=r',
~ ~, $=2ir2D .

1+r12rQwe '
We can write the above equation more clearly:

(32)

COT(kll'Cd)+firdT(kll'rd) Cd il'+il T
rt t r12 (33)

+a~, (k„,~)—~ —
1

—l.,
where

B,(E'"'+E'"')l =ir, (E'"' E'"')l—
=a,E, l

and

(26)
k

I T= —Im r'„e ~ Q p,'„lF(0)l

k
5cdT(k~~, co) =Re r', 2e ~ Q p,,„ lF(0)

l

Ae„ K

(34)

(35)

gout
V

E IIIC

E„— B,E
1

Kz

E, + az,1

Kz
z =L/2

(27)

1 —x, Iz —z'I
E = f dz' e ' p(z')+ A (co, ~, )cosh(a. ,z),

2Kz

(28)

where the 3 coefficient satisfies the condition

k,' I p,,', lF(0)l1=4' — [ 3 (co, K )Q(v, )+P(~, )j,
e vari cd(klan) rd ie——

(29)

The analytic form for the solution in the lzl (L /2 region
1S

AT(ki~i, co)+5rsr(k~i, co) =co . (36)

It is also evident that if y=0, then lr„, l
=1, as we al-

ready anticipated. Taking the reflectivity
l r,„, l

from
(33), we find a Lorentzian resonance dip, with the
effective resonance frequency (36), and a width given by
the sum of the homogeneous broadening y and the "radi-
ative" linewidth I .

Similar calculations can be repeated for the L and Z
modes to obtain the attenuated total reflection for the
parallel polarization. We obtain

We notice that I is positive and, apart from the two
factors which account for attenuation in the barrier and
coupling to the external prism, its form is quite similar to
that of the linewidth introduced in the radiative region.
We also notice the appearance of the frequency shift
6rdT(k~, co). The effective surface polariton dispersion is
obtained by solving the equation
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—]c L
&L=e

cot (kl, co) —tII —i E+ Q P,„IF(0)I a,
Re„

kI (10 cm )
2000 2400

I
)

I I I
)

I I

2800
I

)
I

(37)

—x„L
az =e

co (k~~, aI) a—I i—e — Q IM,„IF(0)I
oo z

,(k„, )—

(38)

0.2

8

0.1

1+(re'2 )'r~gwe
r~ =r~, $=2Ir D,tot 12 1+ p p —y

& zf ]2r Q~e
(39)

5~,= Re(r~„—)e ~ " Q'p2„IF(0)l'», , (40)

(41)

2

5aIz= —Re(r &~I)e
~ Q P„IF(0)I2~ 2 2 kII

oo z

(42)

I z =Im(r~&z)e ~ Q p„IF(0)I
oo z

(43)

It is again evident that if r~&w is real, i.e., @=0, then

I rf II =O1, but two dips appear when yAO and they can be
resolved if y is smaller than coL

—mz. The relative
strength of the two modes relates to the ratio of I L to I z
as in the standard reAectivity case. Also in this case we
could consider the MQW structure as in Eq. (25), and we

expect a similar increase in the peak intensity unless the
barrier between the wells is wider than 1/~, .

To exemplify the attenuated total re6ection we consid-
er a CuC1 quantum well with a CaF2 barrier, as grown by
Segawa et al. ,

' and a glass prism (n =1.7). The follow-

ing parameters are used for a CuC1 quantum well of 20 A
thickness: m, +mz =2.5~p A~p=3 ~ 4 eV according to
the experimental results of Honerlage, Bivas, and Duy
Phach. In this case the valence band is the I 7 nonde-
generate state and the Z polarization is allowed. The sep-
aration between the three active exciton states (L, T, and
Z) is given in Ref. 7 for all values of k1. They all contrib-
ute to the susceptibility. The computed oscillator
strength per unit area is f„=f,=2.5X10 A (Ref.
7).

We report in Fig. 6 the dependence of the effective
linewidths I L, I z, and I T on the corresponding wave
vector for the condition of attenuated total reAection.
The value of the linewidth depends on the experimental
configuration and is brought about by the
barrier —external-medium interface. In particular the
linewidth vanishes for thick barriers, due to the factor
e

%e similarly report in Fig. 7 the shifts in surface polar-

where r~12 has to be calculated using the imaginary valued

k, in (21), and r~&w combining at and az as in Eq. (18).
We can define the radiative shifts 5toz and 5aIL and radia-
tive widths I z and I L as we did for the T mode:

0—
1 I « I « I t I I I I

0.8 1 1.2 1.4 1.6
e (rad)

FIG. 6. "Radiative" broadenings in an attenuated-total-
0

reflection experiment on a CuC1 quantum well of 20 A width
0

with a 90-A-thick barrier as function of the angle of incidence
from 0&; to grazing incidence. The corresponding kII values are
also indicated. The parameters used are given in the text.

iton dispersion for the three active modes as functions of
k~~ as given by Eqs. (35), (40), and (42).

The computed curves for the attenuated total reQection
on a single quantum well at nearly grazing incidence are
presented in Fig. 8. It can be noticed that a dip appears
in the total reflectivity in correspondence to the excita-
tion of the surface polaritons. This is displaced with
respect to the energy of the polariton dispersion curves
by a quantity which depends on the experimental setup as
shown in Fig. 7 for the case of interest. Also in this re-
gime we can notice a strong difference between R, and

R, the latter containing two dips, one due to the L exci-
ton, the other to the contribution of the Z mode, which
has the largest strength and is appreciably shifted with

I
I

I I I I
i

I I I I

o.e—

tI)

~ 0.4—0

0 —,

1840 1845 1850
kI (10 cm )

FIG. 7. Frequency shifts of the I and Z mode surface polari-
ton in an attenuated-total-reflection experiment on a CuC1
quantum well, as functions of k~~. Parameters are as in Fig. 6,
but the barrier thickness is D =1 pm. The frequency shift is
negligible for the L mode.
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I I I I
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I I I I

perpendicular polarization the transverse surface polari-
ton is not resolved, probably because of the anisotropy in
the coupling of the radiation with the surface grating.

0.99— RP

V. DISCUSSION

0.98—

I i i & i I i » i I

3395 34 3405 341 3415
E(ev)

FIG. 8. Attenuated total reflectivity of a single quantum well
of CuCl for parallel and perpendicular polarization at nearly
grazing incidence. Parameters as in Fig. 6.

respect to the T mode.
When the angle of incidence decreases the position of

the dips in R, and R will be displaced in accordance
with the effective dispersion curves of the polariton and
this should allow a determination of the dispersion law of
the surface exciton polariton modes. Of course, near the
limit angle the reAectivity peak is strongly modified be-
cause of the very large increase in the radiative linewidth,
and this will provide the most stringent test of the above
theory.

To our knowledge, the only available experiment
which detects surface exciton polaritons in
GaAsjGa& „Al,As quantum well is due to Kohl et al. '

With the use of a grating superimposed on the multiple-
quantum we11 they observe in the zero-order diffraction
the resonant HH polariton and in third-order diffraction
with parallel polarization the surface polariton. With

The main results that we have obtained in the preced-
ing sections can be summarized as follows.

The dispersion relation of resonant (k~~ (ko) and sur-

face (kl & ko) polaritons has been obtained, together with

the radiative linewidths of the resonant modes.
We have shown that it is possible to measure the

dispersion of quantum-well polaritons by transmission
and reflectivity experiments with polarized light. For sta-
tionary polaritons the experimenta1 condition of attenuat-
ed total reAection is shown to be required, and the con-
nection between the attenuation dip and the excitation
energy is established.

The analysis of the line shape allows a measure of the
radiative lifetime and of the total lifetime. The internal
structure of the polariton can be resolved and the longitu-
dinal and transverse polariton can be separated. With
the external prism reflectivity the Z polariton can also be
observed.

In the case of multiple quantum wells the effect of stan-
dard reAectivity is enhanced by multiple rejections.
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