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There are a number of calculations in the literature of the effect of statistical surface roughness on the
specular and diffuse scattering of neutrons and x rays which impinge on surfaces at grazing incidence.
These calculations do not agree with one another and in some cases lack internal consistency. In this pa-
per I show that these discrepancies can be resolved within the distorted-wave Born approximation. The
result I obtain for the specular reflectivity is the widely used version of Nevot and Croce, while that for
the diffuse scattering is the same as a recent calculation by Sinha, Sirota, Garoff, and Stanley. The ap-
proximations made by Nevot and Croce are clearly revealed by the distorted-wave Born approximation.
A simple numerical algorithm is proposed for the calculation of diffuse scattering from a surface whose
roughness is self-affine, and the form of the scattering is calculated for a range of parameters within this
model. The calculation of diffusion scattering is extended in this paper to the case of films with rough
surfaces. Correlation between roughness at the two film surfaces is considered and shown to be impor-
tant for the description of neutron reflectivity data obtained with a thin film of titanium deposited on a

sapphire substrate.

INTRODUCTION

The reflection of radiation by rough surfaces has been
studied since the turn of the century in many different
fields of physics. It is generally conceded that a smooth
surface may be defined as one that reflects incident radia-
tion in a single (specular) direction whereas a rough sur-
face reflects in many directions, even though the specular
direction may be privileged. With rough and smooth sur-
faces defined in this manner, a given surface may be ex-
perienced as rough or smooth depending on the wave-
length of the scattered radiation and the angle of in-
cidence. For example, “road glare” is a relatively com-
mon phenomenon for asphalt surfaces illuminated by the
evening sun but does not occur at midday when the angle
of incidence is larger. More mathematically, the Ray-
leigh criterion allows one to discriminate between a
rough surface for which ¢g,0 > 1, and a smooth surface
for which g,0 << 1. Here g, is the wave vector transfer of
the radiation perpendicular to the surface and o? is the
variance of the height distribution of the (horizontal) sur-
face.

In the past few years, x-ray and neutron reflectometry
have been developed as techniques for probing the densi-
ty of matter close to the solid and liquid surfaces or in
thin films. These methods are extremely sensitive and
provide unique information on phenomena as different as
wetting and the penetration of magnetic fields in super-
conductors. However, the analysis of results of grazing
incidence experiments of this kind requires a detailed un-
derstanding of the effect which surface roughness has on
reflectivity. Without an appropriate formalism, density
gradients close to surfaces cannot be determined properly
nor can the nature of surface roughness be probed.

There is a large body of literature, summarized in a
book by Beckmann and Spizzichino,! and inspired by
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problems such as the “sea clutter”” observed in radar im-
aging of ships, which deals with the reflection of elec-
tromagnetic waves from rough surfaces. Almost all of
this work is based on approximations in which the local
radius of curvature of a rough surface is assumed to be
much greater than the wavelength of the illuminating ra-
diation. In this case, the surface may be considered to be
composed of elemental flat surfaces, the slopes of which
match the local gradients of the real surface. Each of the
elemental surfaces is assumed to reflect specularly in a
direction which is determined entirely by the local gra-
dient of the surface. While such a model is probably
quite reasonable for a description of the sparkling surface
of the sea observed late in the day, it is not universally
applicable. In particular, it is probably not appropriate
for the problem of interest here, the reflection of neutrons
or x rays by the surfaces of solids and liquids in condi-
tions of grazing incidence. For many of the samples used
in such experiments the radius of curvature of rough sur-
face features is likely to be smaller than the radiation
wavelength.

The theory of reflection of x rays or neutrons by rough
surfaces has been discussed by several authors. For ex-
ample, there is a large body of work, extending over al-
most two decades, by Nevot and Croce®*>* and their co-
workers who have used x rays to probe surfaces and thin
films. These authors have produced a theory of reflection
which is both elegant and original. Among other results,
they assert that the specular reflection coefficient, R,, of a
surface with Gaussian roughness is related to that for an
ideal smooth surface, R;, by the relation

R,=R; exp(—q,q!0?/2) . (1

Here g, is the wave-vector transfer in air® while g/ is the
wave-vector transfer in the reflecting medium. Since the
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reflection coefficients, R, and R;, in Eq. (1) relate the am-
plitude of a reflected wave to that of an incident wave,
the quantity actually measured in an experiment is |R,|2.

Sinha et al.® applied both the Born approximation and
a form of the distorted-wave Born approximation
(DWBA) to a calculation of the specular and diffuse
scattering of neutrons from statistically rough surfaces.
Within the Born approximation, they found that the g/
which appears in Eq. (1) is replaced by g,, the wave-
vector transfer in air. This result is, in fact, the same as
that obtained in the approximation described above for
radar waves in which small elements of the surface reflect
specularly in different directions. Extension to the
DWBA allowed Sinha et al. to obtain Eq. (1) as an ap-
proximate result, valid only for small values of g, and q;.
For large values of g, and g/, the version of the DWBA
used by Sinha et al. gave results which disagreed both
with Eq. (1) and with the simple Born approximation.
The latter result should be accurate for large g, because
the scattering is weak in this limit. It is worth noting
that the Nevot-Croce result given in Eq. (1) is indistin-
guishable from the Born approximation for large values
of g, because g, and g, are almost identical in this limit.

In a 1972 paper, Steyerl’ investigated the transmission
of neutron guide tubes and approached the problem of
reflection of neutrons from a rough surface using a
Green’s function formulation which, at first sight, ought
to be equivalent to the DWBA. However, Steyerl found,
instead of Eq. (1), that roughness causes the specular
reflectivity to be reduced by an amount which is essen-
tially independent of ¢,.

These conflicting results leave experimentalists in a
quandary: which theory should be used to deduce sur-
face roughness from measurements of neutron or x-ray
reflectivity? Most recent work with which I am familiar
has used Eq. (1) which is, I believe, a good approxima-
tion. In this paper, I will demonstrate that Eq. (1) can be
obtained from the DWBA provided a suitable approxi-
mation is used for the matrix elements involved in the
calculation. Sinha et al.® evaluated these matrix ele-
ments between states which correspond to wave functions
appropriate to the Fresnel solution of the “ideal surface”
problem. This is an approximation to the DWBA. In
fact, the matrix elements should be evaluated using the
Fresnel state and the “exact” wave function for the rough
surface. When this is done, the DWBA becomes
equivalent to the expressions derived by Nevot and
Croce,? and is valid providing the refractive index of the
reflecting medium is close to unity and the amplitude of
the surface roughness is not too large. Since the ampli-

expli(k . x +ky,»)][ exp( —ik,,z)+R;(k,,) explik,z)]
for z<0. (3)

(+)(p)=
Wy (r) expli (ki x +kyp)]T;(ky,) exp(—ik}.z)

In Egs. (2) and (3), ki, is the z component of the wave
vector of the transmitted beam. The positive z direction
is token to be away from the reflecting medium, while x
and y are contained in the reflecting surface, defined by

the condition z=0. R; and T; are the reflection and

tude of surface roughness permitted by the calculation is
unlikely to be exceeded in practical situations, Eq. (1) can
be used with impunity in most cases.

I find that the result obtained by Steyerl’ is not a useful
approximation for the interpretation of neutron
reflectivity data, especially when small values of the
reflectivity are measured. Steyerl’s formulation of the
surface scattering problem is correct and equivalent to
the DWBA used by Sinha et al.® However, Steyerl as-
sumes that there is a coherent addition of waves scattered
from the “peaks” and “troughs” of the rough surface and
calculates the phases of all such waves as if they were
reflected by an average surface. Steyerl’s approximation
for the diffuse (nonspecular) scattering is valid for
q,0 <<1, a case which is of little practical interest to
those wishing to use reflectivity to investigate surface
roughness. Steyerl’s approximation is, however, useful in
the area to which he applied it—reflection from neutron
guide tubes at angles less than the critical angle. In that
case, the approximation g,0 <<1 is justified and one can
calculate the effect of roughness on the specular
reflectivity below the critical angle from a unitarity argu-
ment.

The same DWBA which gives Eq. (1) provides an ex-
pression for the diffuse scattering from a rough surface
that is essentially the same as that obtained by Sinha
et al.® The theory can be extended to permit evaluation
of the diffuse scattering from a thin film with rough sur-
faces. It is worth noting that this paper, like its predeces-
sors, ignores shadowing effects due to surface protrusions
as well as contributions from multiple diffuse scattering.

THE GENERALIZED BORN APPROXIMATION

The generalized, or distorted-wave Born approxima-
tion is described in detail in textbooks on quantum
mechanics such as that by Messiah.® Part of this descrip-
tion is repeated here in order to introduce appropriate
notation. The Schrddinger equation for a neutron in-
teracting with a rough surface involves a Hamiltonian H
which is the sum of the free-particle Hamiltonian H, and
an interaction potential V,(r)+V,(r). Here V(r)
represents the interaction of neutrons with a reflecting
medium with a smooth surface and V,(r) is the perturba-
tion due to surface roughness. Let us suppose that the
exact eigenstate of the Schrodinger equation for the
smooth surface is denoted W{; (r), where the notation is
chosen to indicate that the wave function refers to neu-
trons (or x rays) of wave vector k; incident on an ideal
surface. According to the Fresnel formalism, ¥{; (r) can
be written as

for z>0, (2)

-
transmission coefficients for the “ideal,” smooth surface
given by

R.= k 1z —k tlz

=l iz @)
klz+kiz
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T,=1+R, . (5)

The transfer matrix for the reflection of a neutron from a
state k, to a state k, by the smooth surface is given by the
matrix element of V| evaluated between W{!’(r) and an
eigenfunction of H,), that is, a plane wave. Thus

t,il_,kz = explik,0)|V,| W), (6)
where the matrix element in Eq. (6) is defined by
(expliky D)V, W) = [ exp(—ik,r)

XV, (o)W dr . 7)
Note that Eq. (6) is not the Born approximation because

the matrix element is not evaluated between two plane
|

expli(ky,x +ky,p) ][ explik,,z)+ R} (kY, ) exp( —ik,,z)]

W (r)=

expli(k,,x +k,,») T (k),) expliky,z)

where the star indicates complex conjugation and R, and
T, are the reflection and transmission coefficients for the
rough surface. In the generalized Born approximation
the transfer matrix for the rough surface is given by

i, =th g, OV (10

where the first term in Eq. (10) comes from Eq. (6).
Equation (10) differs in one important respect from the
DWBA used by Sinha et al.:* W}, )(r) is defined here in
terms of reflection from a rough surface whereas Sinha
et al. define it as a time-reversed eigenfunction of the
smooth surface problem. There is no doubt that Eq. (10)
is correct.? In many cases, of course, it makes little

hk?

WP ==t
8m°m

— T —ik 2z ik 22 —ik .2 , ik .
fdxfdyfz>0dze Ple "R (ke e TR (k))e =]

waves.

To include surface roughness we need to carry the cal-
culation one step further and include the perturbation
V,(r) within the generalized Born approximation. We
first define an approximate time-reversed solution for the
rough surface problem, which we denote W) '(r), with
the superscript denoting time reversal. This solution
represents neutrons of wave vector k,=(k,.,k,,,k,,),
specularly reflected with wave vector k,=(k,.,k,,,
—k,,): K} is the wave vector of neutrons in the medium
which come towards the surface and combine with neu-
trons of wave vector kj to produce neutrons of wave vec-
tor k,. At this level of approximation, the diffusely scat-
tered waves which should be included in the exact wave
function for the rough surface problem are omitted from
WS )(r) which is then defined by

for z>0, (8)

for z <0, 9)

f

difference if the second term of Eq. (10) is evaiuated be-
tween eigenfunctions of the ‘“ideal” problem because
these eigenfunctions are close to those for the ‘“real”
problem. For the scattering of neutrons by surface, how-
ever, reflection becomes weak as g, increases and the
Fresnel eigenfunctions for the “ideal” problem may no
longer be good representations of the “real” eigenfunc-
tions. For large enough values of g,, the simple Born ap-
proximation evaluated between plane waves gives an ade-
quate description of the scattering for precisely this
reason.

For neutron reflection, the final term in Eq. (10) can be
written explicitly as

z

o , —i(k! k! )z
+ [dx [dy [ dze T 0T,k y)e e ke | (1)

where K is the component of the neutron scattering vec-
tor parallel to the surface and p'is a vector that describes
the position of a point in the surface, i.e.,

F'ﬁ=(k2x_klx)x+(k2y_k1y)y .

The first integral in Eq. (11) is evaluated over those parts
of the rough surface which are above the average surface,
while the second integral refers to parts of the rough sur-
face below the z =0 plane. Equation (11) includes an ex-
plicit expression for the perturbation V,(r) which is zero
above the actual rough surface and equal to
h*k,X(1—n?)/8w*m =Nbh /(2mm) below (m is the neu-
tron mass, n and Nb are, respectively, the refractive index

r

and the coherent scattering length density of the
reflecting medium). By changing the form used for
V,(r), equation (11) may be applied to x ray reflection
from surfaces.

THE NEVOT-CROCE RESULT

To evaluate Eq. (11) in a self-consistent manner and to
make contact with the work of Nevot and Croce,? we
note that the wave functions W{}'(r) and W¥$, (r) and
their derivatives are continuous across the average sur-
face at z =0. This means, for example, that it is a good
approximation to replace the solution above the surface
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given by Eq. (2) by an analytic continuation of Eq. (3) to
positive values of z. The error made by this replacement,
to lowest nonvanishing order in z is
(k1,z)*[2R;/(1+R;)], a quantity which is largest close
to the critical angle and which achieves a limiting value
for large k,, that is proportional to the difference be-
tween the refractive indices of the media separated by the
reflecting surface. Thus the approximation of replacing
Eq. (2) by an analytic continuation of Eq. (3) close to the
surface will give the greatest error for values of g, in the
neighborhood of critical reflection. However, even in this
case and for materials such as nickel which have large re-
fractive indices for neutrons, the error in the amplitude
of the wave function is less than 5% for values of z up to

|

_ hk?
(W, IVL W)y =(1—n?) 21
mm

[ [ax [ay [ dze 000 e e a4 R k™) ||

25 A.

When ¥}, (z > 0) from Eq. (8) is replaced by an analyt-
ic continuation of W, (z <0) from Eq. (9), the error in-
troduced in the integrand of Eq. (11) is linear in z to lead-
ing order, tending to iz(k,,—k{,) at large values of k.
The numerical value of the error is similar to that which
pertains when ¥{/)(z>0) is replaced by Wi/ )z <0),
however. Thus, the approximation of replacing wave
functions defined for z >0 by analytic continuations of
functions defined with z <0 is a good one in most practi-
cal situations. This approximation is used implicitly by
Nevot and Croce.?

With the approximations introduced in the previous
paragraphs, Eq. (11) may be rewritten as

(11a)

where the integral over z now extends both above and below the average surface. Combining Eqs. (10) and (11a) at the

specular condition (k,, =k,,) one finds that

R,(k)=Ry(k))—ilky,—k',) [ dz[e ™=+ R (K )e 15 i (12)

Equation (12) is the neutron version of an equation de-
rived by an entirely different method for electromagnetic
radiation by Nevot and Croce.? From the derivation
given here, the approximations inherent in the formalism
of Nevot and Croce are clear. In particular, as these au-
thors themselves state without explanation, their formal-
ism is valid when the spatial roughness is of high frequen-
cy and when there is a small difference between the re-
fractive indices of the media separated by the reflecting
surface. The first condition guarantees that there are no
perfectly reflecting surface elements such as those in the
calculations described by Beckmann and Spizzichino! for
radar waves. The second condition implies that only a
small error is made when wave functions defined for z <0
are replaced by analytic continuation of functions defined
for z > 0 and vice versa. A further condition for the valid-
ity of the Nevot-Croce result is that the amplitude of the
surface roughness be small enough to permit this replace-
ment of wave functions. In practice, this condition re-
stricts the validity of the Nevot-Croce result to roughness
whose standard deviation is less than about (10V'Nb )™,
where Nb is the scattering length density of the medium.
Not surprisingly, since Eq. (12) is the same as that
given by Nevot and Croce, the result it gives for R, is
also the same. The advantage of this solution is that it
calculates the quantity R, introduced in Egs. (8) and (9)
in a self-consistent manner. Carrying out the integral in
Eq. (12) and assuming that the height of the surface with
respect to the plane z =0 is a Gaussian variable of vari-
ance o2, the specular reflection coefficient is found to be

R,=R;+R,{ exp[ —(ky, +k},o?]—1]

—R,{exp[ — Lk, — ki, 0?]—1} . (13)

f

Simple manipulation of this equation yields the result
given in Eq. (1).

There are other ways in which one could choose to re-
place wave functions in Eq. (11). To derive the Nevot-
Croce result, the ideal-surface term in the first integral in
Eq. (11) was replaced by an analytic continuation of the
transmitted wave function for the ideal case, and the
rough-surface wave function in the second integral was
replaced by a continuation of the wave function for a
beam reflected by a rough surface. These replacements,
which give Eq. (11a), have the advantage that errors
made in the two integrals in Eq. (11) tend to cancel. Nev-
ertheless, one could equally well imagine, for example, re-
placing both of the wave functions in the first integral of
Eq. (11) with continuations of transmitted wave func-
tions. If this is done, the resulting expression for the
reflection coefficients is not as compact as the Nevot-
Croce result, nor does it approach the Born approxima-
tion in the limit of large g,. On the other hand, the nu-
merical values obtained are identical for reflection
coefficients greater than about 107°. The advantage of
Eq. (11a) is that it yields a result for R, that approaches
the correct Born limit at large wave-vector transfers, as
well as being accurate close to the critical edge. It is for
this reason that the Nevot-Croce result is to be preferred
to any other form that can be derived from the DWBA.

In at least one case the Nevot-Croce result is remark-
ably accurate. When the probability of a particular sur-
face height, z, is proportional to cosh%(z/2d), where d
is a constant, the density distribution around the mean
interface at z =0 yields a graded index of refraction for
which the reflection coefficient can be calculated exact-
ly.'° This exact result differs from that obtained from Eq.
(12) only by a phase factor. The phase is very small and
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scales as the cube of the interface thickness, d, and as the
difference in the scattering length densities of the media
separated by the interface. Detailed numerical calcula-
tions!! have shown that this phase will be very difficult to
observe, even in carefully chosen thin films with large
amplitude roughness. Obviously the phase cannot be ob-
served by measuring reflection from a single rough sur-
face because the quantity obtained experimentally is |R |2.

One may ask why the Green’s function method of Stey-
erl’ fails to find any exponential damping of reflection
due to surface roughness. Steyerl’s expression for the
diffuse scattering from a rough surface is essentially
equivalent to Eq. (11) of this paper with R, and 7T, re-
placed by the corresponding quantities for a smooth sur-
face. However, to evaluate this equation, Steyerl set all
the phase factors in the integrand to unity (as they are at
z=0) so that the integral given by Eq. (11) becomes
linear in the distance between the actual surface and the
smooth surface at z =0. Although this approximation is
justified when k,o is sufficiently small, it is irrelevant for
most reflectometry experiments.

DIFFUSE SCATTERING FROM A ROUGH SURFACE

For off-specular conditions, Eq. (11) is the 7 matrix
which describes diffuse scattering from a rough surface.
In terms of the ¢ matrix, the cross section for diffuse
scattering is given by®

do _ 2mm)?

E:T“kl_’kzlz' (14)
Thus, evaluation of Eq. (11) in the off-specular condition
gives directly the diffuse scattering cross section for a
rough surface. To evaluate Eq. (11), we again make use
of the continuity of Wi} (r) and W}, '(r) and their deriva-
tives at the reflecting surface. This calculation differs
from that of the specular reflectivity in that each of the
possible transformations of Eq. (11) gives an expression
for the diffuse scattering that approaches the Born ap-
proximation at large ¢,, essentially because R tends to
zero and T tends to unity in this limit. The most com-
pact result is obtained by approximating each of the
terms in the first integral of Eq. (11) by analytic continua-
tions of the corresponding wave functions evaluated
below the average surface. Straightforward algebraic ma-
nipulations then yield

do

10 =N22L,L,|T,(k)*|T,(ky)I’S(x), (15)

diffuse

where L, and L, are the dimensions of the surface, and
Nb is the coherent scattering length density of the
reflecting medium. The structure factor S(«) which ap-
pears in Eq. (15) is defined by

1 2. %2 2 s 2
e (a*+a™* o /2fdxfdyemp(ela| C(x,y)_l) ,

S(k)=

|al?
(16)
where «a is given by
a=ki,+k}, . (17)

The wave vector of the incident neutrons is k; while that
of the diffusely scattered neutrons is k,. In this case, of
course, k; and k, are not related by the specular condi-
tion. The height-height correlation function C(x,y)
which appears in Eq. (16) is the same as that introduced
by Sinha et al.:®

C(x,y)=(z(x,y)z(0,0)) , (18)

where ( - - - ) denotes a configurational average.

Equations (15) and (16) are almost identical to these
obtained by Sinha et al.® The only difference is the ap-
pearance of the term T,(k,) in Eq. (15) in place of the
T;(k,) found in Ref. 6. This can be traced directly to the
wave functions used in evaluating the DWBA. Because
of the form of the DWBA used here, Eq. (15) is not ex-
plicitly symmetric in k; and k, whereas the result of
Sinha e al.® is symmetric. However, microscopic rever-
sibility,® manifested by the equation

(W TV [ ) = (w1, |9 ) (19)

implies that interchange of k, and k, in Eq. (11) should
not change the value of the matrix element. Thus, the
diffuse scattering cross section should be symmetric in k
and k,. Because T=1+R and R —0 as g, increases, the
difference between T; and T, is very small except for
wave vectors very close to the critical wave vector and
for large-amplitude roughness. For this reason Eq. (16)
usually gives results that are numerically indistinguish-
able from those given by the expression obtained by
Sinha et al.® Nevertheless, it may be preferable to use
the result given in Ref. 6 because it explicitly displays the
correct symmetry with respect to interchange of k, and
k.

Several authors®!? have pointed out that the roughness
of some surfaces might be described by a self-affine corre-
lation function, C{p), of the form

([z(x",y" ) —z(x,»)?) =2[02—C(p)]=g(p)= Ap*" ,

(20)
where p>=(x —x')>+(y —y')%, 4 is a constant, and the
exponent h takes values between zero and one. For
h <0.5, the changes in surface height that occur over
neighboring increments of the surface are negatively
correlated while for 2 > 0.5 changes over neighboring in-
crements are positively correlated. The boundary value,
h =0.5, corresponds to an uncorrelated sequence of
height changes, and is akin to Brownian motion."
Values of 4 that apply to many natural phenomena, from
sunspot numbers to river discharges, have been calculat-
ed by Hurst:'%15 a value of about 0.7 seems to be typical.
The correlation function given in Eq. (20) cannot be used
directly to evaluate diffuse scattering from a rough sur-
face because it does not describe a surface which has a
well-defined mean position when averaged over a large
area. To overcome this problem, Sinha et al. introduced
a “cut-off’ length, &, into the definitions of C(p) and

glp):

Clp)=og2e p/t7" (21a)

), (21b)

)Zh

glp)=20%1—e P/t
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In fact, the quantity { in the above equations plays the
role of a length scale within the rough surface as well as
providing a cutoff. Figure 1 compares the correlation
functions given by Egs. (20) and (21b) in terms of the
scaled distance p /& between two points on a surface. As
one moves away from a point in the surface, the height
“escapes” more rapidly from its initial value for large
values of h while small values of & correspond to surfaces
whose heights remain within a small interval over large
areas. Thus both h and the scale length, £, control how
far a point wandering on the surface must move before it
loses memory of the initial value of its z coordinate.

The scattering vector « that appears in Eq. (16) has two
components in the average (z=0) surface: ¢,
[=(k,>—k,,%)/2]k,|] in the scattering plane defined by
the wave vectors of the incident and scattered beams and
g, perpendicular to the scattering plane. In most
reflectometry experiments, the spectrometer resolution in
the g, direction is relaxed, while that in the g, direction
is very good. This means that diffuse scattering is usually
measured as a function of g, and integrated over g,.
Since the quantity a in Eq. (16) does not depend on g, in-
tegration over the latter variable singles out the y =0
value of the integrand. Even so, evaluation of the diffuse
scattering from a surface in terms of the self-affine corre-
lation function is computationally costly unless some ap-
proximations are made. The Fourier transform in Eq.
(16) takes the form

1 _ 2h
fe’q"x[ exp(|al?o?e ~*/97)—1)dx . (22a)
/
& (a) n=o.s 7~
/
ap) 6 7
7/
4 v/ h=0.5
7
5 et
e h=0.3
o2
i 2 3 1
p
1 - —
(b) n=0.8 ~ - R0
0.84 L eemmmTT
o -
g(g) Z-- h=0.3
0.6 .
2 .
20 Ry
0.4 /7
"‘ /
0.2}
./ /
1 2 3 4
p/g

FIG. 1. (a) The correlation function g(p) defined by Eq. (20)
for a self-affine surface with the constant A set to unity. (b) The
correlation function g(p/¢)/20? defined by Eq. (21b) as a func-
tion of p/¢.

To evaluate this equation by fast Fourier methods re-
quires that calculations be done with a kept constant as
q, varies. While this can clearly be done, the values of
k,, and k,, that result do not correspond necessarily to
those that would be used in an experiment. For example,
on the reflectometer SPEAR!® at the Manuel Lujan Jr.
Neutron Scattering Center, measurements of diffuse
scattering are performed by varying the angle that the
reflected neutron beam makes with the sample surface.
An apparently worse computational problem arises if one
attempts to evaluate the scattering at g, =0 rather than
integrating over g,. In this case the term in square
brackets in Eq. (22a) is replaced by an integral over the y
coordinate of the surface to give

fdx eiq"xfdy[ exp(|al?oe ~ MM 11 (221)

Fortunately, however, one finds (cf. Fig. 2) for a large
range of values of «, and for h greater than ~0.3, that
the quantities to be Fourier transformed in Egs. (22a) and
(22b) may be approximated adequately by simple quadra-
tic forms over the range of values of x that contributes
significantly to the Fourier transform. Thus one may
write

In[ exp(|a|202e_("/§)2h)—-I]Eco—clx—c2x2 (23a)
or
—(oyeth
lnlfdy[e‘“lz"ze *70 —1]|=cy—c;x —c,x? (23b)
x/g
2 2 3 3 10

(b) h=0.8\

FIG. 2. (a) The left-hand side of Eq. (23a) plotted as a func-
tion of x /£. (b) The left-hand side of Eq. (23b) plotted as a func-
tion of x /£. |a|?*02=0.1 in both parts of the figure.
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In both cases, the positive constants ¢, and ¢, depend
only weakly on a but strongly on h, whereas ¢, depends
weakly on & but strongly on a. Equation (23b) is a some-
what better approximation that Eq. (23a), especially at
small values of x and A, but both are adequate. The pa-
rameters can be evaluated easily by using a computation-
al program package such as Mathematica.'®

Equations (23a) and (23b) imply that the entire expres-
sion in either Eq. (22a) or Eq. (22b) can be represented as
a Voight function (the convolution of a Gaussian and a
Lorentzian), for which simple numerical approximations
exist.!” Thus, the problem of evaluating the diffuse
scattering from a surface is reduced to finding suitable
values of the coefficients ¢; and using these values to com-
pute simple functions.

Figures 3, 4, and 5 show how the diffuse neutron
scattering at ¢g,=0 from a rough nickel surface varies
with different parameters in the problem. Several general
features are clear. There is a maximum in the diffuse
scattering when the incident and reflection angles are
equal, that is, at the specular condition. The sharpness of
this maximum depends on the value of the self-affine in-
dex, h: small values of A, corresponding to surfaces that
subjectively appear more “jagged,” give sharper peaks in
the diffuse scattering. Larger values of § also tend to give
sharper diffuse scattering: indeed the widths of both the
Lorentzian and Gaussian contributions to the Voight
profile of the scattering scale as 1/¢.

The sharp cusp in the diffuse scattering that occurs for
values of 6, less than 1.5° in each of the figures corre-
sponds to the peak in the transmission function, T'(k,,),
of the surface that arises when 6, is equal to the critical
angle for nickel.’ For a given material, the critical angle
is proportional to neutron wavelength, as Fig. 4 shows.

DIFFUSE SCATTERING BY THIN FILMS

One of the motivations for this study was to explain
data like that displayed in Fig. 6, taken with the neutron
reflectometer SPEAR!® at the Manual Lujan Jr. Neutron
Scattering Center (LANSCE) using a sample composed of
a thin titanium film on a sapphire substrate. Figure 6 is a
grey-scale plot of scattered neutron intensity as a func-
tion of neutron wavelength, A, and the grazing angle of
reflection, 6,. A is the abscissa and 8, the ordinate. The
bright modulated stripe running from right to left at
6,~25 units corresponds to the specular condition
6,=6,=1°. Because the neutron source provides many
more neutrons of short wavelength, the intensity of the
specular reflection does not vary strongly with wave-
length and several interference maxima are visible even
though the grey scale does not have a particularly large
dynamic range. The widths of the wavelength channels
used in Fig. 6 are not constant across the figure. For
wavelengths less than 1.6 A (channel 50 ino the figure),
each channel has a constant width of =0.03 A. At larger
wavelengths, the width of each channel is 2% of the
wavelength at the center of the channel. This binning al-
gorithm, which is chosen for experimental convenience,
means that the horizontal axis of Fig. 6 corresponds to
In(A) for most of the interesting range of data. The in-

teresting range, of course, corresponds to the diagonal
fringes observed between wavelength channels 60 and
120. It is these fringes that we shall attempt to explain in
the remainder of this paper.

The formalism developed here can be applied without
great difficulty to calculating the diffuse scattering from a
film deposited on a substrate. The simplest case to con-
sider is that of a film with a rough film-air interface and a
perfectly smooth film-substrate interface. When neutrons
or x rays are scattering from such a film, the experiment
is very similar to one first performed by Newton'® when
he reflected light from a dusty, silvered mirror. In that
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FIG. 3. Diffuse neutron scattering from a nickel surface with
a roughness of standard deviation o =10 .3;, calculated for a
neutron wavelength of 8 A, a correlation range {=7000 A and
an incident angle 8, =1.5°. The values of the self-affine index A
are given in each part of the figure.
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case, Newton observed a series of interference fringes  particle and its image in the mirror interfere to produce
that were later explained as the result of interference of  the observed fringes.

two light rays scattered by each dust particle. One ray is To calculate the diffuse neutron scattering from a film
reflected from the silvered surface and is then scattered  with a rough air-film interface we again make use of Eq.
by the dust particle, while the other is first scattered by  (11), this time with the wave functions below the air-film
the dust particle and then reflected by the silvered back  interface replaced by analytic continuations of the wave
of the mirror. In essence, light emanating from a dust functions above the surface. This gives

J

h2k? S ; —i i
— )\ 1 i ik, z ik, z ik, z iky,z
(W51, | ’)—(1—n2)8ﬂ2m Jax [dy [dze ™ Ple "+ Rpky)e™ e "= +Rplky)e 7 (24)
N
10'°: i : ; i where Ry is the reflectivity of the film-substrate combina-
E () ' tion evaluated for a perfectly smooth air-film interface?
n C ] and n is the refractive index of the film. Although the
E r evaluation of the scattering cross section from Eq. (24) is
z 5 somewhat tedious, it is straightforward. The result is
g do/dQ= A fdx fdye_i?‘_”
2 n=6 n+l 24 .2),2
2 — —(f2+g2)0%/2
E —: X 2 ( 1) Fne fate)o
£ 3 n=1 fngn
X {exp[(—1)"*'f,g,C(p)]—1},
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FIG. 4. Diffuse neutron scattering from a nickel surface with FIG. 5. The effect of the magnitude of the correlation range,
a self-affine index h =0.8, for various values of the neutron &, on the diffuse neutron scattering from a rough nickel surface.

wavelength. The other parameters are the same as those used The neutron wavelength is 8 A and h =0.8. Other parameters
for Fig. 3. have the same values as those used for Fig. 3.
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FIG. 6. Grey-scale representation of a result obtained with
the neutron reflectometer SPEAR at the Manuel Lujan Jr. Neu-
tron §cattering Center (LANSCE) using a sample composed of a
400-A titanium film deposited on a sapphire substrate. Lighter
shades represent greater intensity of scattered neutrons. The
vertical axis represents angle of reflection from the surface while
the horizontal axis is neutron wavelength binned in a nonlinear
manner described in the text. The bright vertical stripe between
wavelength channels =30 and =~ 50 is background that is an ar-
tifact of the conditions under which the data were recorded.
Both specular and diffuse scattering are included in this figure.

where
A =(NFbF)2LXLy with Npbp as the scattering length
density of the film,

f1=5=fs=fc=81=8, k. Tk, , (26a)
f3=f1=8:=84=85=8¢= k1.~ k2, (26b)
and
F,=1+|Rp(k )} Rp(ky)|*, (27a)
F,=2Re[Rp(k,)Rp(k,,)], (27b)
Fy=|Rp(k)|>+IRplky,)|*, 27¢)
F,=2Re[Rz(k,,)Rp(k,,)], (27d)
Fs=2Re[RE(k,, )+ Rp(ky, ) |Rp(k )], (27e)
Fe=2Re[RE(k,)+Rpk,)|Rp(ky,)I?] . @70

In Eq. (27), Re indicates that the real part of an expres-
sion is to be taken. Figure 7(a) shows the result of
evaluating Egs. (25)-(27) for neutrons incident at a 1°
grazing angle on a 400 A film of titanium deposited on a
sapphire substrate. The results have been multiplied by
the wavelength-spectrum of neutrons used on SPEAR
and are binned in the same way as the experimental data
displayed in Fig. 6. To facilitate comparison with experi-
mental data, the calculation includes an integration of the
scattering over g,. This does not change Fig. 7 qualita-
tively, however, because, for each neutron wavelength,
the diffuse scattering takes the form of fringes parallel to

|

h2%3

(W17, Wy =(1—n?)—;
8m°m

[dx [dy [dze ®PTp(k)Tp(ky)e

30
0,(deg) 25
21%eal
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FIG. 7. Calculated diffuse scattering from a 400-A titanium
film on a sapphire substrate. The air-film interface is assumed
to have a roughness described in terms of a self-affine correla-
tion function [Eq. (21)] with # =0.5, 0 =20 A, and £=20,000
A. (a) smooth film-substrate interface: (b) film-substrate inter-
face with a roughness amplitude o =20 A, with no correlation
between the roughness of the two film surfaces: (c) perfect corre-
lation between the roughness of the two film surfaces.

g, whose intensity decays with increasing values of g, .
Figure 7(a) clearly shows the interference fringes that one
might have expected from the phenomenon first seen by
Newton. Although the visibility of the fringes changes as
o, h, £, and the refractive index contrast of the film are
varied, the spacing between the fringes depends only on
the film thickness. The crescent-shaped feature rising
from left to right at the bottom of the figure is the locus
of critical angles for the sapphire substrate. Because ti-
tanium has a negative scattering length for neutrons, the
critical angle for the film is imaginary and has no mani-
festation in Fig. 7(a). As a comparison of Fig. 6 and 7(a)
makes clear, the shape of the calculated fringes is
different from that observed in an actual experiment us-
ing SPEAR.

Since there is no reason to suppose that the titanium
film used to obtain the results in Fig. 6 had only one
rough surface, we consider next the effect of roughness at
the film-substrate interface. To include this roughness in
the calculation of diffuse scattering, one must include
terms in Eq. (11) that represent this interface. The term
that needs to be added to the matrix element is

Sort t
—I(klz+k22)z

(28)

evaluated over the film-substrate interface. Here T is the transmission coefficient of the film-substrate combination®
and n is the difference between the refractive indices of the substrate and the film. When both surfaces of the film are
included, the squared z-matrix in Eq. (14) introduces contributions to the scattering that depend on the correlations be-
tween the roughness of the two film surfaces, as well as terms that involve each surface separately. The new terms that
must be added to Eq. (25) are
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do/d0= [dx [dye 7

A —(y2 4 *202
X W[TF(k1)|2|Tp(kz)|ze Ty ”z(eW(n(p)n(on_l)
A (=t —(f 02470212, (=1 H1f y(qp)E0)) .
+B Re TG,,Q nol 2" (e " —1e' |, (29)
n=1 n

where A =(Ngbs—Ngpbp)*L,L, and B =(Ngbs
—Ngbp)NpbpL,L,. (Ngbg) is the scattering length den-
sity of the substrate, o, and o, are, respectively, the stan-
dard deviations of roughness at the air-film and film-
substrate interfaces whose height coordinates are given
by £ and 7, and ¢ is the thickness of the film. The quanti-
ty v is defined as

y=ki, +ki, (30)

in terms of wave vectors evaluated in the substrate ma-
terial, and the G,, are given by

G,=Tplk,,)Tr(ksy,) , (31a)
G,=Tplk ) Tplky )RE(kRE(Ky,) (31b)
Gy =R} (ky, )ik, Telksy) s (31c)
Gy =R2(k)Telk,)Te(ky,) . (31d)

The term in Eq. (29) involving the constant A represents
the contribution to the scattering from the roughness of
the film-substrate interface and is the only term that
needs to be added to Eq. (25) if there is no correlation be-
tween the roughnesses of the two film surfaces. One
might guess the effect of this term from Newton’s experi-
ment described earlier: it corresponds to reducing the
reflectivity of the silvering on the mirror and should
therefore decrease the visibility of interference fringes.
This result is confirmed by Fig. 7(b), which is calculated
assuming roughness of equal amplitude at the two film
surfaces and the same values for 4 and { at the two sur-
faces.

To include the effect of correlations between the two
rough surfaces of the film, one must include the term in-
volving the constant B in Eq. (29). When correlation be-
tween the two surfaces is perfect, that is when the sur-
faces are conformal, n=¢, and Eq. (29) can be evaluated
straightforwardly without introducing a further correla-
tion function. In this case, the calculation [cf. Fig. 7(c)]
shows that there is a qualitative change in the shape of
the interference fringes which makes them look much
more like the experimental results displayed in Fig. 6.
The shape of the diffuse fringes thus appears to be a qual-
itative signature of a thin film with correlated rough sur-
faces. Although it is not obvious from Fig. 7, the overall
intensity of the diffuse scattering in Figs. 7(b) and 7(c) is
about a factor of 10 greater than in Fig. 7(a).

One might ask why the fringes in Fig. 7(a) and 7(c)
have the same spacing. In the first case—analogous to
Newton’s experiment with the dusty mirror—the fringes
result from interference between waves emitted in phase

r

from two sources: the rough film-air interface and its im-
age in the smooth film-substrate interface. The phase fac-
tor governing the spacing of the fringes is thus
exp(2ik,t)= explig,t). When the two rough surfaces of
the film are perfectly correlated, the fringes result from
interference between waves scattered by two planes—the
rough film surfaces—separated by a distance ¢. In this
case the phase factor that determines the fringe separa-
tion is exp(ig,t). Thus the interference fringes have the
same separation in Figs. 7(a) and 7(c), even though the
physics that produces them is somewhat different in the
two cases.

It has been asserted?' that, when the two rough sur-
faces of a film are perfectly correlated, the oscillations of
the diffuse x-ray scattering at g, =0 are in phase with os-
cillations in the specular reflectivity. This result is true
provided the dominant oscillatory contribution arises
from the final term in Eq. (29), that is, provided the con-
trast between the film and the substrate is large enough.
In this case, the leading-order oscillatory contribution to
the diffuse scattering involves G; [Eq. 31(a)], a function
that tends to unity as g, increases. The oscillatory behav-
ior results from the exp(iyt) phase factor in Eq. (29).
For x-ray scattering this term has the same period and
phase as the film reflectivity in the high-g, limit. For neu-
trons, however, the situation can be different. If the ma-
terial of the film has a negative scattering length density,
the parameter B that appears in Eq. (29) may be negative
so that the diffuse scattering from correlated roughness is
exactly out of phase with the film reflectivity.”” Thus
neutrons may provide a very sensitive method of investi-
gating correlations between the rough surfaces of a film if
the film has a negative scattering length density. In prac-
tice, this situation can be achieved with many hydro-
genated materials.

X-ray experiments to probe the effect of surface rough-
ness on a wetting film have recently been published by
Tidswell et al.® The equation used to fit the data ob-
tained in these experiments was somewhat simpler than
the full results presented here. Nevertheless, many of the
important features of the complete results are captured in
Ref. 23, at least to leading order in the surface roughness.
For sufficiently small values of o, the exponential terms
involving C(p) and Egs. (25) and (29) may be expanded to
leading order to give a linear approximation similar in
spirit to that used by Tidswell et al. However, applica-
tion of this expression to data taken over a range in
which the maximum value of g,o is much greater than
~0.5 can only be justified phenomenologically. In Ref.
23 this form was used to represent data out of values of
q,0 of about 2.
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CONCLUSION

The theory presented in this paper resolves a number
of inconsistencies in previously published studies of the
effect of surface roughness on the reflection of neutrons
and x rays at grazing incidence. Furthermore, it extends
those studies to the case of thin films whose rough sur-
faces may be correlated. With the advent of powerful
neutron and x-ray reflectometers, these theories can now
be checked and used to obtain information about surface
roughness in a number of interesting systems. In particu-
lar, it appears that diffuse neutron scattering from thin
films may contain important clues about the correlations
between roughness of the film’s surfaces that could con-
tribute to studies of the wetting of rough surfaces.'”
From the results presented here it is clear that a map of
the diffuse scattering as a function of both g, and q, is re-
quired for a complete picture of correlations between the
rough interfaces of a film. Simply recording the diffuse

scattering for small values of g, can be misleading. In
this respect, reflectometers based at spallation neutron
sources have an important advantage, because a complete
map of diffuse scattering can easily be collected at the
same time as measurements are made of the specular
reflectivity.

ACKNOWLEDGMENTS

I am grateful to the Institute for Theoretical Physics at
UCSB, where this work was started. I thank Sunhil
Sinha for being critical of an earlier version of this
manuscript, thereby exposing a crucial error. This work
benefitted from discussions with Michael Fitzsimmons,
Bill Hamilton, and Greg Smith, to whom I am grateful.
Work at UCSB was supported by the NSF under Grant
No. PHY82-17853. At Los Alamos, support was provid-
ed by the U. S. Department of Energy under Contract
No. W-7405-ENG-36 with the University of California.

IP. Beckmann and A. Spizzichino, The Scattering of Elec-
tromagnetic Waves from Rough Surfaces (Artech House, Nor-
wood, MA, 1987).

2L.. Nevot and P. Croce, Rev. Phys. Appl., 15, 761 (1980).

3P. Croce and L. Prod’homme, Nouvo. Rev. Opt. 7, 121 (1976).

4P. Croce, Nouvo. Rev. Opt. 8, 127 (1977).

Except for values of g, close to the critical value, the difference
between g, and g," is very small for both x rays and neutrons,
because the refractive index only differs from unity by an
amount of order 107°.

6S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys.
Rev. B 38, 2297 (1988).

7A. Steyerl, Z. Phys. 254, 169 (1972).

8A. Messiah, Mecanique Quantique, Tome II (Dunod, Paris,
1960).

9Y. Yoneda, Phys. Rev. 131, 2010 (1963); O. J. Guentert, J.
Appl. Phys. 30, 1361 (1965); A. N. Nigam, Phys. Rev. 4, 1189
(1965).

103, Lekner, Theory of the Reflection of Electromagnetic and Par-
ticle Waves (Martinez Nijof, Dordrecht, Holland).

1'W. A. Hamilton and R. Pynn, Physica B 173, 71 (1991).

12M. O. Robbins, D. Andelman, and J. -F. Joanny, Phys. Rev. A
43, 4344 (1991).

3R. F. Voss, in Scaling Phenomena in Disordered Systems, edit-
ed by R. Pynn and A. T. Skjeltorp (Plenum, New York, 1985).

14H. E. Hurst, Trans. Am. Soc. Civ. Eng. 116, 770 (1951).

155, Feder, Fractals (Plenum, New York, 1988).

16Mathematica is a program published by Wolfram Research
Inc. See S. Wolfram, Mathematica: A System for Doing
Mathematics by Computer (Addison-Wesley, Reading, MA,
1988).

7P, Thompson, D. E. Cox, and J. B. Hastings, J. Appl. Cryst.
20, 79 (1987).

18W. A. Hamilton, G. S. Smith, and R. Pynn (unpublished).

198ir Isaac Newton, Opticks (originally published in London,
1704; new edition by Dover, New York, 1952), p. 289 ff.

20M. Born and E. Wolf, Principles of Optics (Pergamon, New
York, 1980).

21§, Garoff, E. B. Sirota, S. K. Sinha, and H. B. Stanley, J.
Chem. Phys. 90, 7505 (1989).

22The fact that Fig. 6 shows the measured specular and diffuse
scattering to be in phase for a “titanium” film on sapphire
confirms the expectation that such a thin film oxydizes almost
completely when exposed to air.

231. M. Tidswell, T. A. Rabedeau, P. S. Pershan, and S. D. Ko-
sowsky, Phys. Rev. Lett. 66,2108 (1991).



40 60 80 100 120 140 160
A (A)

FIG. 6. Grey-scale representation of a result obtained with
the neutron reflectometer SPEAR at the Manuel Lujan Jr. Neu-
tron Scattering Center (LANSCE) using a sample composed of a
400-A titanium film deposited on a sapphire substrate. Lighter
shades represent greater intensity of scattered neutrons. The
vertical axis represents angle of reflection from the surface while
the horizontal axis is neutron wavelength binned in a nonlinear
manner described in the text. The bright vertical stripe between
wavelength channels =30 and =~ 50 is background that is an ar-
tifact of the conditions under which the data were recorded.
Both specular and diffuse scattering are included in this figure.
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FIG. 7. Calculated diffuse scattering from a 400-A titanium
film on a sapphire substrate. The air-film interface is assumed
to have a roughness described in terms of a self-affine correla-
tion function [Eq. (21)] with A =0.5, =20 13&, and £=20,000
A. (a) smooth film-substrate interface: (b) film-substrate inter-
face with a roughness amplitude o =20 A, with no correlation
between the roughness of the two film surfaces: (c) perfect corre-
lation between the roughness of the two film surfaces.



