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Magnetotransport properties of two-dimensional electron gases under a periodic magnetic field
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We have calculated electronic and transport properties of two-dimensional electron gases (2DEG’s)
under a periodic magnetic field. In the perturbation framework, the magnetoresistances are similar to
those of 2DEG’s under a spatial potential modulation, although the classical picture of cyclotron motion
differs from the EXB drift. A flat-band condition and an additional term in the Hall conductivity have
been found in the current system. We have suggested experimental avenues for the study of magnetically

modulated 2DEG’s.

Transport properties of two-dimensional electron gases
(2DEG?’s) in a perpendicular magnetic field and an in-
plane grating potential were the topic of some recent pub-
lications.' ”® The modulated 2DEG is realized in high-
mobility Al ,Ga,;_,As-GaAs heterojunctions by il-
luminating samples with interfering laser beams or by a
periodic voltage-gate array on the top of heterojunction
films. It has been observed that at magnetic fields (B)
higher than 0.5 T, Shubnikov—-de Haas—type oscillations
(SdH) appear in the resistivity tensor elements p,, and
pyy- At lower fields, a different oscillation dominates,
which has been understood from both a classical and a
quantum-mechanical point of view. But all of the works
quoted above were confined to 2DEG’s with electric
modulation. Transport properties of 2DEG’s with mag-
netic modulation, that is, in a periodic magnetic field,
have received much less attention both theoretically and
experimentally. Recently, Bending, von Klitzing, and
Ploog® performed Hall and magnetoresistance measure-
ments on a low-mobility 2DEG in a flux-lattice field of a
type-II superconductor. They observed weak localization
at extremely low B and suggested the application of the
2DEG as a detector of flux-lattice properties.’

In this paper we shall investigate theoretically a 2DEG
subject to an oscillating magnetic field. Such a system
would be achieved experimentally by depositing periodic
lines of magnetic materials (e.g., iron) onto an
Al,Ga, _, As-GaAs heterojunction, using modern lithog-
raphy. Another metallic overlayer (e.g., silver) that has a
similar work function as iron can be deposited onto the
magnetic lines. Electrically, both the magnetic and non-
magnetic metals serve as a uniform gate with no electric
potential modulation. However, when a uniform magnet-
ic field B, is applied, the magnetic lines become local mi-
cromagnets and produce a grating magnetic field. The
proposed magnetic grating structure and the calculated
oscillating field in the 2DEG are shown in Fig. 1. We
will neglect the weak-localization correction to the con-
ductivity, which is not very important in high-mobility
electron gases.

We consider a 2DEG system subject to a 1D oscillating
magnetic field centered around a uniform B, back-
ground:

B=(B,+B,cosKx)z, K=2m/a , (D

where a is the period of the field modulation. The Hamil-
tonian of the system is H=1/2m(p+eA)?* where the
vector potential A=A+ A, is chosen as

B
A,=(0,B,x,0), A= o,?lsinKx,o . 2)

Omitting higher-order terms of B,, one obtains
H=H,+H,, where Hy=1/2m(p+eA,)’ is the Hamil-
tonian of the 2DEG in a uniform field, and
H,=eB,/mK(p,+eByx)sinKx is the new perturbation
term due to field modulation. The eigenvalue problem of
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FIG. 1. Proposed 1D periodic magnetic grating structure to
generate field modulation. The magnetic lines fabricated litho-
graphically serve as local micromagnets. The lower graph is the
calculated magnetic field at a 2DEG that is Z disﬂt%nce away
from the bottom of the magnetic line (1500X 1500 A", a=3000
‘5;, material: iron). Note: for curve 1, Z=400 ;\; 2, 600 ;\; 3, 800
A;4,1000 A.
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H, is  well  known, ie, El=to.(n+1),
Y=L 2™, (x —x,), where o, =eB,/m is the cy-
clotron frequency, L is the length of the system in the y
direction, and ¢,(x —x,) is the harmonic-oscillator func-
tion centered at x,=kl% with | =(#/eB)!/? being the
magnetic length. It is justified to treat the term eByx in
H, as a perturbation even in the limit where x goes to
infinity. This is because the zeroth-order wave function is
that of a harmonic oscillator that decays exponentially
with x —x,. Treating H, as a perturbation gives rise to
the first-order wave functions

Wy + S (mlellnk>¢ )
nk nk = E,?_E,(,)I mk

and eigenenergy

Enx0=E,?+ V, cosKx, , 4)
Vn=%ﬁ“’19_u/z[L;:(u)+L;:—1(“)] ) &)

where o, =eB,/m, u=K?1?/2, and L}(u) is the associat-
ed Laguerre polynomial. Therefore, under field modula-
tion, Landau levels (LL’s) broaden into minibands whose
widths oscillate with B, a, and band index n. Although
a similar feature is also seen in the 2DEG under electric
modulation, there are substantial differences between
magnetic and electric modulation. In particular, the
different expression for ¥V, in (5) leads to a different flat-
band condition,

LYw)+L!_(w)=0, (6)
which will manifest itself in transport properties. Using
the asymptotic expression '’

LN u) = 1/2eu/2y =3/ 1/4 g 2(nu)‘/2—3—7r 7

4

and L) (u)~L}!_(u) for large n, one obtains from Egs.
(6) and (7) that

2R,

a

=A+1, A=1,2,3,..., (8)

where R,=(2n)'"?] is the classical cyclotron radius at
Fermi energy E;. In the case of electric modulation, the
flat-band condition for large n is 2R, /a =A— 1, different
from Eq. (8) by a negative sign before +. From Egs. (5)
and (7), one observes that in the limit Ep>>%iw, (.e.,
large n), the electron bandwidth oscillates sinusoidally
and is periodic in 1 /B, when n and a are fixed. For small
n, the bandwidth still oscillates with 1/B,, but the flat-
band condition of Eq. (8) no longer holds because neither
Eq. (7) nor L}!~L}_| is valid. The oscillation in the
bandwidth and, hence, in the density of states (DOS) near
E will have profound effects on transport properties.

To calculate transport coefficients, we follow the for-
mulation of Refs. 5 and 11, which is derived from general
Liouville equation and includes dissipation explicitly.
Under the one-particle approximation, one has
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0= 2SI fITEI(Elw,16)
3
2
+Ee S f0=fWlaf—al)?,
H=x,y , 9

where B=1/kyT, Q is the volume of the system, | ) the
single electron state, 7(E g):r is the relaxation time, f is
the Fermi-Dirac function, ng, is the transition probabil-
ity due to impurity scattering, and a§=1{({[r,[{). This
formula has been successfully applied to electrically
modulated 2DEG’s (Ref. 5) and to other systems.!? The
first term in Eq. (9) describes the extended-state contribu-
tion that leads to Drude conductivity for free-electron
gases. The second term results from the localized-state
contribution that leads to SdH oscillations in a 2DEG
under a magnetic field. In magnetically modulated
2DEG, wave functions are extended in the y direction,
but are localized in the x direction. So the first term in
Eq. (9) contributes to o, and the second to o,. Substi-
tuting ¢} for [£) and E,, for E; in Eq. (9), one obtains

272 re?]? 2 af
=3V |—== 10
T hha? § "| OE |e=k, 1o
_e’BN,Uj

oxx—m§(2n+1)fo dxofre,(1=Fux)) » (1)

where we have kept only the leading term of V2, N; is the
impurity concentration, U, is the Fourier-transformed
impurity potential, and I' is the impurity broadening pa-
rameter. Ep is determined self-consistently from

stzzfnk ’ (12)
nk

where N, is the total number of electrons. Taking a
high-mobility Al ,Ga,_,As-GaAs heterojunction as an
example (m_=~0.07m,), numerical results for
Prx 2ayyB(z,/ezns2 and pyy:orxxB(z)/ean2 (ng is area car-
rier density) are given in Fig. 2. The beating behavior
reflects the resonance of three characteristic lengths, i.e.,
the Fermi wavelength Ap =2 /kj, the magnetic length /,
and the modulation period a. In the following, we use
the term SdH-type oscillation to refer to those resistivity
oscillations stemming from oscillatory DOS’s. The SdH-
type oscillations overlap on a slowly oscillating envelope,
and the former is a resonance between / and A, whereas
the latter is between / and a. At B <0.3 T, SdH-type os-
cillations are too fine to resolve, and p,,, p,, are out of
phase, since V, and the DOS are out of phase. But at
B 20.3 T, SdH oscillations manifest themselves dramati-
cally and p,, and p,, are in phase; this is better under-
stood when we express Eqgs. (10) and (11) in terms of DOS
D,(E),

> f dE

n

[V:—(E—E??ID,(E), (13)

_9f
3E
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FIG. 2. Calculated pyy, p,y as a functions of magnetic field
Byat T= 1K, a=3000 A, and B,=0.07T for a 2DEG sample
with mobility p=1.3X10® cm?/Vs, area carrier density
n,=3.16X 10" cm?, impurity concentration N,=1X10°

cm ™%, and '=0.01 meV.

of

0~ 2n+1)[dE Y

n

At low T, (—93f /OE)~8(E —E/). If E lies in the gap
of adjacent LL’s, both o,, and o, are zero. This
guarantees that o,, and o,, have the same minimum po-
sitions and thus are in phase as far as SdH-type oscilla-
tions are concerned.

In Fig. 2, the oscillations in p,, and p,, result from
changing the electron population in different LL’s by
varying the LL spacing (i.e., varying B). The population
in different levels may also be varied by changing n;
through a gate voltage while fixing the magnetic field.
This approach may have certain advantages over chang-
ing By. In particular, if the field modulation is provided
by a flux-lattice of a type-II superconductor overlayer,

D,(E) . (14)
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FIG. 3. Calculated p,, as a function of carrier concentration
n, controlled by a gate voltage (B,=0.5 T). Parameters are the
same as those in Fig. 2.

the variation in B, also changes the periodicity of the
field modulation. This complicates data analysis, even
though the problem is interesting in its own right. Figure
3 displays a typical result of p,, as a function of n,. The
beating behavior occurs again: the oscillations with a
short period are caused by sweeping E through subse-
quent LL’s, in other words, by resonance between A and
I; the slowly varying envelope reflects the variation of
bandwidth, i.e., the resonance between A and a.

The magnetoresistance oscillation is at low By in Fig. 2
has a semiclassical explanation. In the case of an electri-
cally modulated 2DEG, Beenakker'® pointed out that a
similar oscillation in p,, results from a resonance be-
tween the periodic cyclotron motion and the oscillating
E X B drift of the orbit center. There, the electric field E
is due to the potential modulation. In a magnetically
modulated 2DEG, the drift of the orbit center is not
caused by EXB, since E=0. Instead, it is due to the spa-
tial variation of the cyclotron frequency in a nonuniform
field. Following Beenakker’s guiding-center-drift ap-
proach, we show here the semiclassical picture of p,, 0s-
cillation. Under a modulating magnetic field of Eq. (1),
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FIG. 5. Deviation of Hall resistivity of a field-modulated
2DEG from that of an unmodulated 2DEG,
Apy =py(B,)—py(B,=0), as a function of magnetic field with
the same parameters in Fig. 2.
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the angular velocity is §=w,+ o, cosKx. The guiding
center (X, Y) of an electron with velocxty (vx,v ) and posi-
tion (x,y) is X=x—y, /$, Y= =y +v /¢ The velocny of
the guiding center is X = (,bv /() Y=—¢v, /()*. The
time-averaged drift velocity of the center (vy* and v’) is
obtained by integrating X and Y along the orbit, v'=0
and vy’ =R, sin(Kx)J (KR,) (J; is the Bessel functlon
of first order). In the calculation, we have kept only the
lowest order in w; and have made use of the relations
v = —vp sing, v, =vp cosg. The drift motion is along the
y direction perpendicular to the direction of the field
modulation. The square average of v}’ over X is
2
(4

(2 =w1R _ 37
((wPh?) e KR,

1
ek (15)

where the asymptotic expansion of J; is used. Equation

(15) contributes 8D =7/2((v{")*) to the element D, of

the two-dimensional diffusion matrix. Using Einstein’s

relation p=h 2/47rme*D ", we obtain
2
ox 27R 37
o =Po KR, cos 4 £ —T , (16)

(fnxo fn+1xo)[n+1+(B1/B0)e——u/zL,}(u)COSKxO]
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with p,=h /kpvpe*r. Equation (16) accounts for the
low-field p,, oscillation in Fig. 2 and predicts the same
position of the p,, minima (i.e., the flat-band condition)
as obtained from the quantum-mechanical calculation
[see Eq. (8)]. The calculated classical trajectories are
shown in Fig. 4 for a resonating case (2R./a =10.75)
where the drift is large and for an off-resonating case
(2R./a=10.25) where the average drift vanishes. As
mentioned earlier, the flat-band condition differs between
electric and magnetic modulation. Such a difference can
be confirmed by measuring the positions of p,, minima.
Hall conductivity can be expressed’ as

" ’ﬁ"’ S F0—f el g
#¢

~BE;~E,)
X (&', |§>—— .ooan

—E.")?
(E;—E/')

In a magnetically modulated 2DEG system, we obtain
0, to the leading order in B;:

d
Tyx = ha 2 S [ dxo [1+(Fw,) NV, 4, —

The above o, differs substantially from that of an elec-
trically modulated 2DEG system due to the addition of
an extra term (B,/Bgle “/?L’,(u)cosKx,. Using

u=1/0,,, we have calculated Apy=py(B,)—py(B,
=0), i.e., the difference in py between field-modulated
and non-modulated 2DEG. The result of Ap, is present-
ed in Fig. 5 as a function of B,. The general features of
Apy are similar to p,, with in-phase oscillations. The
slowly varying envelope is due to the bandwidth oscilla-
tion, while the short-period oscillation is SdH-type. Apy
can be best determined by taking the derivative dpy /dB,
during measurement.

Our results are valid for small B,, which enabled us to
proceed analytically. There do exist linear effects with B,
in o, and o,,, as can be seen from Egs. (11) and (18).
The linear effect in o, is smaller, implying that a better
treatment on the full Hamiltonian is needed. It needs to
be pointed out that a similar perturbation approach has
been applied to 2DEG with electric modulation (Refs.
1-6), and results obtained are consistent with experi-
ment. This lends validity to our calculation of the mag-
netic modulation effect, which in the perturbation limit is

V,)cosKx,]?

f

a generalization of electric modulation.

In conclusion, we have studied the electron energy
spectra in magnetically modulated 2DEG’s and have cal-
culated the resistivity tensor. In the low-field limit
(B <1T), py, and p,, behave similarly to their counter-
parts in the electrically modulated 2DEG, exhibiting
beating both as a function of B and n;. This behavior is
the result of the resonance of the cyclotron diameter with
the modulation period and with the Fermi wavelength.
The classical picture of electron motion is different from
the electrically modulated case; the guiding-center drift is
caused by the spatial variation in cyclotron frequency.
Consequently, the flat-band condition or the positions of
the p,, minima differ from those in the electrically modu-
lated system. In addition, the Hall conductivity acquires
a new term that is absent in the electric modulation case.
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FIG. 1. Proposed 1D periodic magnetic grating structure to
generate field modulation. The magnetic lines fabricated litho-
graphically serve as local micromagnets. The lower graph is the
calculated magnetic field at a 2DEG that is Z disﬂt;%nce away
from the bottom of the magnetic line (1500X 1500 A", a=3000
A, material: iron). Note: for curve 1, Z=400 A; 2, 600 A; 3, 800
A;4,1000 A.



