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Excitons in a parabolic quantum dot in magnetic fields
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The properties of an exciton in a parabolic quantum dot in an external magnetic field are studied
theoretically using an effective-mass Hamiltonian. The results for the energy and the optical absorption
of the ground state and the low-lying excited states are presented. The Hamiltonian is written in terms
of the center of mass and relative coordinates, and it is shown that, due to the coupling between the
center of mass and relative motion, optical-absorption energies reveal an interesting anticrossing behav-
ior. It is also shown that the ground-state properties are approximately determined by that part of the
total Hamiltonian that depends only on the relative coordinates.

I. INTRODUCTION

A system of electrons and holes moving in two dimen-
sions with their transverse motion quantized in the lowest
level and subjected to a strong perpendicular magnetic
field is known to exhibit many interesting properties. '

It should be mentioned that in the single-component case
of electrons (or holes) in a similar situation with the
lowest Landau level partially filled, a remarkable many-
electron phenomenon known as the fractional quantum
Hall effect was discovered some years ago. It is there-
fore quite natural to investigate what a two-component
(electron and hole) system has in store. In the ideal two-
dimensional case where the electron and hole wave func-
tions are considered to be identical, Lerner and Lozovik'
(and later, Rice, Paquet, and Ueda ) found that the exact
ground state is a Bose condensate of noninteracting mag-
netic excitons. Another interesting result found by Rice,
Paquet, and Ueda was that there is no plasma oscillation
in this system —a consequence of the confinement to the
lowest Landau level. The collective excitation is simply
given by the single-exciton dispersion relation which is a
result of the ideal Bose character of the ground state.

In this paper, we have added another dimension to our
present understanding of the excitons in a magnetic field
discussed above by placing an exciton in a zero-
dimensional parabolic quantum dot structure. These sys-
tems are of much current interest in order to develop an
understanding of the mesoscopic physics in reduced
dimensionality. Recent experimental work on quantum
dots in a magnetic field has demonstrated the interplay
between the competing spatial and magnetic quantization
and other subtle features due to electron correlations.
Theoretical studies ' have revealed the interesting role
of electron correlations in these quantum confined sys-
tems. Earlier work by Bryant on excitons" and biexci-
tons' in quantum boxes (in the absence of a magnetic
field) demonstrated the competing effects of quantum

confinement and Coulomb-induced electron-hole correla-
tions. Excitons and biexcitons have also been studied re-
cently in semiconductor microcrystallites by Koch
et al. ' ' It should be pointed out that the measurement
of the exciton binding energy in the presence of a mag-
netic field has been reported in quantum wells' and
quantum wires. '

In Sec. II, we briefly describe the formalism and nu-
merical techniques used to calculate the ground-state
properties of an exciton in a quantum dot subjected to an
external magnetic field. For simplicity, we have con-
sidered only the parabolic confinement of the electrons
and holes. In some of the calculations, we also left the
hole unconfined in the two-dimensional plane. Some of
the computational steps are discussed briefly in this sec-
tion. The results for the ground-state and low-lying exci-
tation energies, electron-hole separation, and normalized
intensity of the optical absorption are presented and dis-
cussed in Sec. III. A brief discussion and conclusion are
given in Sec. IV.

II. THEORY

2me

e—i fiV ——Ae e

2
l

~h
2mb

—ifiVI, +—Aq +—mphil, rp,e i 2 2

C
2

(2)

e2
~e-h

Ir, rt I—

Our model Hamiltonian for a two-dimensional hydro-
genic exciton in a parabolic confinement potential and in
a static external magnetic field is

&=A, +%„+&,t, ,

where the electron, hole, and electron-hole terms are
2
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Here e is the background dielectric constant. %e calcu-
late the eigenfunctions and eigenvalues of the system us-

ing the method of numerical diagonalization of the Ham-
iltonian. In this method the Hamiltonian of the system is
divided into two parts, &=&0+&', where %0 is the
Hamiltonian for the noninteracting system. The term &'
then includes all the interactions between the particles.
The eigenfunctions of & are expanded in terms of the
eigenfunctions of %0. The original problem of finding
eigenfunctions and eigenvalues of & is now transformed
to a problem of diagonalizing a matrix whose com-
ponents are (y; 1&lyj ), where the (p s are the eigenfunc-
tions of gfo. In the actual numerical calculations the
number of basis functions y; must be finite. Usually the
basis functions are chosen such that they are the lowest-
energy states of the Hamiltonian &o.

One possible approach within the diagonalization
scheme is to expand the wave functions of the system in
terms of the eigenfunctions of the noninteracting

I
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X(a r ) L„[(a r )],
where a denotes the electron or hole,
a = [(co~+co, /4)' rn /A]', L„I'I are the associated
Laguerre polynomials, co, is the cyclotron frequency, and
I and n are the angular and radial quantum numbers, re-
spectively. The advantage of this method is that the in-
teraction matrix elements between the noninteracting
electron-hole pair states can be expressed in a closed
form:

electron-hole pair, i.e., we select &o=&,+&h and
&'=%, k. The eigenfunctions of &, and &k are

(n,'1,'n/, 1/, I&, k ln, l, n(1) )

e 2 n, .If nh.I t ne'Jt ~a ~

a,5; (ll'I+n')' (ll'I+n')' (ll,'I+n,')' (ll),'I+n&)!

' 1/2

II n l1/

X g g g g [a+p+ —,'(ll,'I+ Il jl —k)]![y+5+—,'(llk 1+11)1—k)]!
a=OP=Oy=05=0

(
—1) +'

a)p)

1 )r+s
y'fg'f

( ll,'I+ n,')!(ll jl+ n, )!

( I 1,
'

I
+a )!(n,' —a )!( I

1jl +P)!(n,~ P)!—
(141+nh' )'( I V I+ n)l )'

(lll I+»'«l »'(I')ll+&)'«& —&)'

p=0

a+A+)/2(l)'I+ I) 'I —k) [a+p+ ( Ili
1 +11 1

+k)])e e

[a+P+—'( ll,
' I+ I l/~I

—k) —p]!(k +p)!
r+ s+ ) /2( l)i,'I +

I )1 I
k)—

s=0

[y+~+ ,'(I l' I+ I 1 )-1+k)])

[y+&+ —,'(141+ Il)t I

—k) —s]'(k +s)'

X
1)p+~ (a, /a„) '+"I (k+p+s+ —,')

pIs) [1+(a /a )2]k+p+s+)/2 (4)

where k = Il,' —1jl. Unfortunately this approach leads to
a poor convergence of the eigenvalues as a function of the
number of basis states. A better way is to introduce the
center of mass (c.m. ) and relative coordinates
R=(1/M)(m, r, +m&r& ), r=r, —r&, where we have
adopted the usual notations: M =m, +m&,
p=m, m„/M, and y=(m„—m, )/M. We also choose the
symmetric gauge vector potentials for the electrons and
holes as A, =

—,'BX(r, —rh) and Ah = —
—,'BX(r, —r&).

The Hamiltonian (1) can then be written in the form

fi
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+&„)+&„,
where the c.m. , relative, and the cross term of the Hamil-
tonian are

In Eq. (6), &, , which depends only on the c.m. coor-
dinate, is the Hamiltonian of a well-known two-
dimensional harmonic oscillator with energy spectrum
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and

1
CO& ~ — (Pk CO +Pli Cvp )I

1/2

E, =(2n, +
i l, i

+ 1)fico,

(8)

cal integration. In order to compare with the results ob-
tained in Ref. 12 for a confined exciton (in the absence of
a magnetic field) we have also calculated the quantity
( ( r })'~ . The normalized intensity of optical absorption
is calculated as an expectation value,

with n, ~0. Also, &„& is a Hamiltonian of a two-
dimensional charged particle in a magnetic field and in
parabolic and Coulomb potentials. It can be further
separated into radial and angular parts. The radial part
of the Schrodinger equation

)21, 2p 1

r r2

(5(r)}=+ c,"c,R;,; (0)A, » (0)
rel rel rel rel

Iw J

x6, , „6, , 6, ,
rel' re} c.rn. ' c.m. c.m. ' c.m.

which gives the probability of finding the electron and
hole at the same position.

III. RESULTS

2+2 2

+ (mha), +m, coh ) r R =0 (9)
4A c

e8E„)=E—y I„) .
2pc

(10)

Finally, all interactions between c.m. and relative
motions are included in the cross term &„. Eigenfunc-
tions and eigenvalues of the system can now be calculated
accurately using the eigenfunctions of %, +%„& as

basis functions for the numerical diagonalization of the
total Hamiltonian &. Because the contribution of in-

teraction &„was found to be relatively small only a

small number of basis states was needed in the actual cal-
culations. One final note about &„~. here the harmonic
term is —,

' [co, +( I /M)(mh co, +m, col, ) ]r, where

(1/M)(mh co, +m, coh ) is diferent from co,
=(1/M)(m, co, +mhcuh). One cannot therefore simply
replace co, in the two-dimensional calculations of Ref. 5

by (co, +co, )'~ to obtain our results described below.
In addition to the ground-state and low-lying excita-

tion energies we also present the numerical results for the
electron-hole separation and the intensity of the optical
absorption. The electron-hole separation can be calculat-
ed as an expectation value of the relative coordinate:

(r }=pc,*c,& n,'„1,'„'riant'„, 1'„,}

x5,-, 5, ,
-

c.m. ' c.m. c.m. ' c.rn.

where the c,-'s are the expansion coefficient of the ground
state. Because the eigenfunctions ~n,',&1,', &

}of the Hamil-
tonian &„&can be obtained only numerically, the matrix
elements ( n '„,I,',

& ~
r

~
n ~„&i~„, ) are calculated using numeri-

can be solved numerically using a standard method called
shooting to a Ptting point 'Bri.efiy, the method is to guess
the value of E and to integrate the differential equation
from zero to some point rf (called the fitting point) and
from infinity (i.e., from a point which is far enough from
the origin) to the same point rf For th.e correct E we re-

quire that both the solution R and its first derivative are
continuous at the fitting point rf. The eigenfunctions are
labeled by the angular momentum l„~ and by the princi-
pal quantum number n„~. The contribution of the rela-
tive motion Hamiltonian &„,, to the total energy is
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FIG. 1. The ground-state energy of a heavy-hole

(m h
=0.377m) exciton as a function of a single-particle

confinement potential energy (Ace, =%co&). The solid curve is

calculated using c.m. and relative motion separation and the

dot-dashed curve is calculated using the noninteracting

electron-hole pair state basis (500 basis states). The energy of a

noninteracting electron-hole pair (dashed curve) and the

Coulomb-interaction energy (dotted curve) are also shown.

In this section we present the numerical results for the
parameters appropriate to GaAs, i.e., dielectric constant
@=13.1, electron effective mass m, =0.067m, and hole
effective mass mz =0.090m for light holes and

m& =0.377m for heavy holes. ' We should point out that
by a light (heavy) hole we mean a hole that has light
(heavy) in-plane mass. In Ref. 12, the opposite conven-
tion was employed. Let us first compare the results of the
two approaches described in the preceding section. The
ground-state energy of a heavy-hole exciton as a function
of confinement potential energy (co, =co& ) in the absence
of the magnetic field is shown in Fig. 1. As the interac-
tion between c.m. and relative motions %, in this case is

equal to zero, the c.m. and relative motion separation ap-
proach is exact within the numerical accuracy of the
shooting method that was used to calculate the eigenval-
ues of &„&. It is seen from Fig. 1 that at low confinement

energies when the electron-hole pair is strongly correlat-
ed due to the Coulomb force, the noninteracting
electron-hole pair state basis approach needs a very large
number of basis states to converge. When the
confinement energy is increased the noninteracting
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FIG. 2. The ground-state energy of a heavy-hole
(mz =0.377m) exciton as a function of the magnetic field B (T).
Confinement potential energy for both electron and hole is (a)
15.0 meV and (b) 25.0 meV. Solid curves are calculated using
c.m. and relative motion separation and dashed curves are cal-
culated using the noninteracting electron-hole pair state basis
(500 basis states) as explained in the text.

electron-hole pair states give a better description of the
system, although the magnitude of the Coulomb interac-
tion &, h is also increased. Another comparison between
our numerical approaches is given in Fig. 2, where we
have plotted the ground-state energy of a heavy-hole ex-
citon as a function of the external magnetic field. It is
quite apparent that both approaches give the same
magnetic-field dependence. This indicates that the corre-
lations do not change as a function of the magnetic field.

In the numerical results presented in Figs. 1 and 2 we
have used the same confinement potential energy for both
electron and hole. One other possibility is to leave the
hole unconfined within the two-dimensional plane. In
that case the hole is moving freely in the plane and it feels
only the electrostatic potential of the electron and the
external magnetic field. In Fig. 3 we have plotted the

ground-state energies of heavy- and light-hole excitons as
a function of the confinement potential energy of the elec-
tron when the hole is not confined within the plane.
Comparing Figs. 1 and 3 it is evident that the ground-
state energy as a function of the confinement energy is
not increasing as rapidly as in the case of equal
confinement potential energy for both particles. The
main contribution for this comes from the behavior of

and &„,. In Fig. 3 we have also plotted the
ground-state energy calculated without the cross term

Interaction between c.m. and relative motions is at-
tractive for both light- and heavy-hole excitons, thereby
lowering the ground-state energy.

%e have calculated the ground-state energy, the
electron-hole separation, and the relative intensity of the
optical absorption as a function of the magnetic field with
various confinement potential energies (Figs. 4—6). In all
these calculations we have left the hole unconfined within
the plane. In Fig. 4 the ground-state energies with and
without the cross term between c.m. and relative motions
are shown. As a comparison, the result for a purely two-
dimensional exciton is also shown. For a two-
dimensional exciton (fico, =fico& =0) our numerical calcu-
lations reproduce the results of Shinada and Tanaka.
The effect of the cross term 8„ to the ground-state ener-

gy is relatively small. Therefore, as a first approximation,
we can explain the ground-state properties of the exciton
using the Hamiltonian &, +&„&. At low confinement
potential energies the ground-state energy is increasing
approximately quadratically as a function of the magnet-
ic field. This is due to the 8 coefficient in the harmonic
term in gf„i. But because the harmonic term is propor-
tional to the sum of the squares of the magnetic field and
of the confinement potential energy, the effect of the mag-
netic field is decreased when the confinement potential
energy is increased. Another interesting feature seen
from Fig. 4 is that the effect of the cross term %„ to the
ground-state energy is nearly independent of the magnet-
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FIG. 3. The ground-state energy of a heavy-hole
(mq =0.377m) and a light-hole (mI, =0.09m) exciton as a func-
tion of confinement potential energy of the electron with (solid
curve) and without (dashed curve) the cross term between c.m.
and relative motion. The hole is unconfined in the two-
dimensional plane.
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FIG. 4. The ground-state energy of a heavy-hole
(mz =0.377m) exciton as a function of the magnetic field (T).
Confinement potential energy for the electron is (a) Ace, =5.0
meU, (b) fico, =15.0 meU, and (c) %co, =25.0 meV. The hole is
unconfined within the two-dimensional plane. The lowest curve
is the result for a two-dimensional exciton. Energies without
the cross term between c.m. and relative motion are also plotted
(dashed curves).
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FIG. 8. Optical-absorption energies and intensities of a
light-hole (mz =0.09m) exciton as a function of the magnetic
field (T). Confinement potential energy is 15 meV for both parti-
cles. Diameters of the filled points are proportional to the cal-
culated intensity of the absorption.

seen that when the magnetic field is increased some of the
energy levels begin to form the first and second Landau
levels.

We have also calculated the intensity of the optical ab-
sorption for all of the energy levels shown in Fig. 7(b).
The results of these calculations are plotted in Fig. 8,
where a rich anticrossing structure of the optically active
energy levels is still present. Because we have used an
effective-mass approximation, the effects of the valence-
band mixing have not been taken into account in our cal-

culations. In reality the energy levels of light- and
heavy-hole excitons are coupled leading to an even more
complicated structure of the magneto-optical energy
spectrum than we have in our calculations. Nevertheless,
our results predict that it should be possible to evaluate
from magneto-optical measurements the binding energy
of the exciton and the strength of the confinement poten-
tial.

IV. DISCUSSION AND CONCLUSIONS

We have presented results for a single exciton in a par-
abolic quantum dot in the presence of a magnetic field.
We have discused in detail different numerical ap-
proaches employed in obtaining the results. The numeri-
cal results for the ground-state and low-lying excitation
energies are presented. We have also presented the re-
sults for the electron-hole separation and the intensity for
optical absorption for an exciton where the electron is
confined in a parabolic potential and the hole is left
unconfined within the two-dimensional plane. Magneto-
optical measurements in quasi-zero-dimensional exciton
systems have just begun. ' It is expected that the theoret-
ical results presented here might provide useful insights
on the experimental investigations of excitons in a quan-
tum dot in magnetic fields.
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