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In Si:P a metal-semiconductor transition occurs homogeneously with randomly distributed impurities.
Neither classical percolation theory nor classical scaling theory describes this transition, but it is ex-
plained by set theory and the quantum theory of measurement. These concepts explain all aspects of the
conductivity transition as well as the absence of accompanying transitions in the specific heat and the

magnetic susceptibility.

I. INTRODUCTION

The quantum structure of electronic systems undergo-
ing metal-semiconductor transitions has been a challeng-
ing theoretical problem for more than four decades. The
pioneering papers of Mott! "* and Anderson* stimulated
many experiments and led to the recognition that ultra-
pure semiconductors (such as Si) doped with shallow im-
purities (such as P) represent the physical system best
suited for studying quantum effects. These are fully
resolved, however, only at ultralow temperatures
1073$T <1072 K, even though the equivalent Fermi
temperature at the critical concentration n, in Si:P is
T.~100 K. These conditions were finally realized in
classic experiments carried out by Thomas, Paalanen,
and Rosenbaum® (TPR) at *He temperatures using uniax-
ial strain to vary n —n, through the transition in a single
sample.

Prior to the TPR experiment there was a wide range of
theoretical opinions concerning the behavior of
or(n—n,) in the limit T—O0, as described by the ex-
ponent « in the relation

oon—n)=bog[(n—n.)/n.1*, (1

where o g, the Ioffe-Regel conductivity, is calculated® for
an electron gas with an appropriate effective mass and a
mean free path / equal to the average impurity spacing d.
(Here b is a numerical constant of order unity which in-
cludes the effects of orbital valley degeneracy.) For the
most part Mott! 3 had argued that o would be discon-
tinuous at n =n_, corresponding to a =0 and a first-order
phase transition. Very early, in the different context of
amorphous semiconductors, Cohen had suggested® that
a~1. A classical scaling argument by Abrahams et al.’
had led to a~ 1. Many other approaches, including a hy-
drodynamic mode-coupling® model (a=1) and a
“rigorous” field-theoretic’ model (a>2/3), were also
available. None of these models predicted the tempera-
ture dependence of o (n —n_) for n near n_, or the cross-
over compensation level'® K. at which a might change
rapidly as the level K of compensating acceptors is al-
tered.

One might have expected that the high level of theoret-
ical effort which preceded the TPR experiment would
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have increased further after their definitive results, but
the opposite actually seems to have been the case. Broad-
ly speaking, three approaches have subsequently been
adopted to explain the available data: (1) the interaction
description, as developed by Lee and co-workers;'!"1? the
set-theoretic method,!3™ " which is the subject of the
present paper; and numerical simulations.'®!” The latter
are generally carried out on simplified models which ap-
pear to contain the same essential features as Si:P. How-
ever, in disordered systems meaningful numerical results
can be achieved only at high temperatures or short times,
and one must then demonstrate that as T is lowered (in
this case to 7 < 10 *T}) the statistical samples remain in
equilibrium. If this procedure is not used, then certain
simplifying assumptions must be made, and the validity
of these assumptions can be tested only by comparison
with the TPR experiment. So formidable are the statisti-
cal problems at ultralow temperatures or long times that
such comparisons are usually inconclusive.

Recently I have become convinced that the set-
theoretic method'®~!° contains all the features needed to
explain the TPR experimental data. The purpose of this
paper is to provide a full discussion of these features, pre-
viously described only briefly. This discussion is neces-
sary because it involves deep problems in set theory (the
axiom of choice as discussed by Gédel and Cohen'®) as
well as the quantum theory of measurement (as discussed
by Einstein'® and Bohr?®). The set-theoretic method not
only explains the behavior of o(n,T,K), but it also en-
ables us to understand why the abrupt phase transition in
o is accompanied only by broad transitions?""?? in the
specific heat ¢ and the magnetic susceptibility .

II. SET-THEORETIC METHOD

Abrupt behavior (0, or do,/dn discontinuous) of
oo(n —n.) implies a phase transition from localized to ex-
tended states at E~FE;. The phase transition in turn is
associated with a large system of N electrons in the limit
N — o, so that we are dealing with an infinite set of elec-
tronic states which comprise a continuum. The pro-
cedures for handling sets of infinite states, and for
separating these infinite sets into infinite subsets, are de-
scribed by axiomatic set theory, and in particular by the
axiom of choice, which assumes that infinite sets can be
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separated uniquely into infinite subsets even when no ex-
plicit algorithm for doing so is known. [The best-known
mathematical example is the theorem that real numbers,
like integers, form a well-ordered (alphabetizable) set.?®]
This axiom is independent of the other axioms of set
theory, and in particular cases its applicability is an open
question. This means that the separability of localized
and extended states must be decided by experiment, and
cannot be determined a priori, for instance, by saying that
it is not possible because no explicit procedure for doing
so is known.

The set-theoretic method?® is different from other
methods of solving analytically intractable problems, for
instance, perturbation theory, group theory, or scaling
theory. Like scaling theory it does not rely on explicit
solutions, but unlike scaling theory (which deals with
correlation functions, i.e., classical properties) it can treat
quantum-mechanical properties associated with both
phases and amplitudes of wave functions. Here it relies
on analogies with simpler examples of finite (usually
small) systems of wave functions, or on analogies with
wave functions in ordered systems. Obviously these
analogies must be handled with care, and the ultimate
judge is experiment.

Sometimes a set-theoretic method has been adopted in-
tuitively, without explicit recognition of its distinctive
character. The classic example in the theory of conduc-
tion of random impurity bands is Mott’s celebrated solu-
tion for n <n,, that is, variable-range hopping in the in-
sulating regime.?> Previously, it was assumed that the
conduction was percolative, with nearest-neighbor hop-
ping, but Mott showed that the hopping range in d di-
mensions increases like T~ 1'/¢* V] a5 T—0. His deriva-
tion relies on optimizing this range with respect to the set
of all possible localized states within an energy range of
order W~[RIN(Er)]" ! of Ep with W~kT. His solu-
tion is inherently nonperturbative and nonclassical.

Because all states are localized for n <n, there the is-
sue of the existence of extended states and their separabil-
ity from localized states is not a problem. For n>n,
Mott cut the Gordian knot and chose an equally simple
solution, namely localized states for E < E, and extended
states for E > E,. This gives a=0 in (1), and for a long
time it appeared that such discontinuous behavior was
compatible with experiment. However, with improved
cryogenics, enabling measurements closer to T =0, and
higher quality samples, it gradually became clear that the
transition was probably continuous, a>0. The actual
value =1 was finally obtained in the TPR experiments,
and this revived the basic question of coexistence of local-
ized and extended states at the same energy, and their
separability.

III. QUANTUM THEORY OF MEASUREMENT
IN HOMOGENEOUS DISORDERED SYSTEMS

Results of quantum experiments may be paradoxical
when interpreted in classical terms,'® but the paradoxes
are resolved when the effects of the measurement process
itself are taken into account.’° The measurement process
acts as a kind of projection operator which separates all
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possible correlations of the system variables into two sets,
those statistically consistent with the measurement and
those not. In the case of only N =2 particles fifteen pa-
rameters must be measured to determine all possible
correlations, and this number rapidly grows unmanage-
able as N increases.!® For a quantum phase transition it
appears that set-theoretic methods must be employed
when the disorder in the system is so great that thermo-
dynamic parameters of the Landau type can no longer be
defined.

The first step in applying set-theoretic methods to the
metal-semiconductor transition in random impurity
bands is the recognition that the critical dimensionality
d. for the existence of extended states can be determined
by using the uncertainty principle'® to map this problem
onto the classical model of a random-field Ising system.2®
The presence of electrodes spaced a distance L apart
means that there is an energy uncertainty

SE=(d/L)E, , b))

where d is the average impurity spacing and E; is the im-
purity ionization energy. The number of states N in this
energy interval scales as

Ng~L47", 3)

while the disordering effects produce localized states
whose number N, scales as

N,~L4?% . (4)

Comparing (3) and (4) we see that the critical dimen-
sionality above which extended states can exist is d,
where

d,—1=d, /2 (5)
or
d, =2 . 6)

This derivation is mathematically isomorphous to that
used to derive d, in the random-field Ising model in a
seminal paper.?® Before the derivation of d, according to
Egs. (3)-(6), the same value had been derived heuristical-
ly (without using the uncertainty principle) by classical
scaling.’

This derivation is not only important in its own right,
but it also contains the kernel of the procedure which is
required to calculate . The energy interval (2) refers to
a set of states measured with a certain orientation of the
electric field F. The extended states which exist for
d >d, and E > E, must reduce to amplitude-modulated
but phase-coherent states similar to plane-wave states de-
scribed by wave numbers k, where

k,=k-F/F . (7

In other words, the applied field separates the extended
states from the localized states only parallel to the ap-
plied field. The total number of extended states in d di-
mensions N, from k=0 to k=k =k =k is propor-
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tional to
N (k)~k ki, ®)

but only k is defined by the measurement process. Be-
cause

E—E,~k?, 9)
this means that the conductivity o (Ez —E) is given by
oo~NrT. (10)

For E; near E, the number of extended states N,(k) is
much smaller than the number of localized states N;(Ep).
Then 7!, which describes the scattering rate of extended
states into both extended and localized states, is approxi-
mately constant and

UO~(N9)1/d(Ne+NI)(d_“/d (11

because only parallel to the field have the extended states
been separated from the localized states by the applied
field. In other words, the factor k, in (8) is replaced by
(N,+N,)"4 which is nearly constant. This leaves

0o~NYA~(Ep—Ey)'? (12)
and with

E.—E,~n—n, (13)
we obtain

a=4 (14)

in (1), in agreement with experiment.

What is the physical meaning of a percolative path
which is described by extended (phase-coherent) states
with a density N,(k )~k parallel to the field and a near-
ly constant density perpendicular to the field? Since this
nearly constant density consists almost entirely of local-
ized states, we can imagine that these states are localized
on a scale of order a, where a is the average impurity
spacing, and that the percolation threshold, N,(Ep)—0
as Ep—E,, arises entirely because k;—0 as Ep—E,,
i.e., only increasingly long-wavelength states which oscil-
late parallel to the applied field F are extended as
Er—E,. This model can be described as quantum per-
colation; it is qualitatively completely different from clas-
sical percolation, which sees fewer classical paths cross-
ing planes transverse to F as Ep—E,; and which pre-
dicts?” @~ 1.6 for d =3. It seems to me that this model
represents the natural generalization of Mott’s set-
theoretic derivation of variable-range hopping for the
semiconductive regime n <n, to the metallic regime
n>n., but augmented by the state selectivity implicit in
the quantum theory of measurement.

Let us revert now to the set-theoretic issues discussed
in Sec. II. One could interpret the factor
(N, +N;)¥ "D/ in Eq. (11) as evidence for inertial drag
of localized and extended states transverse to F by the
phase-coherent motion of the extended states parallel to
F. Alternatively, the set-theoretic interpretation is that
the projective effect of the measurement process has en-
abled us to implement separability via the axion of choice
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parallel to F, but that it has had no effect transverse to F.
This lack of effectiveness transverse to F was not dis-
cussed explicitly by me in earlier papers'® and it is the
central point emphasized here. In other words, in the
present context we have partial separability with respect
to establishing the longitudinal but not transverse phases
of quasiparticle states.

IV. THERMAL ACTIVATION

With increasing temperature T the localized states
N,(Ep) increasingly contribute® to o (n —n,), as shown
for the reader’s convenience in Fig. 1. These states are
activated by thermal number fluctuations which enhance
N(Ef) above the value

N,={N,(Ep)[N,(Ep)+N/(Ep)}¢"1}1/4 (15)

appropriate to 7'=0. Physically we imagine that in addi-
tion to the phase-coherent states at T =0 there are many
other states which would be extended but whose phase
coherence is broken at a few weak links.!* These states
are made conductive by thermal fluctuations which local-
ly increase N(Eg). The general relation®® for such num-
ber fluctuations is

aN

(AN?=kT
du

) (16)

T,V

where p is the chemical potential; for hydrogenic impuri-
ties (ON /du)r y =E; ', where E; is the impurity binding
energy (540 K for Si:P, compared to T;~100 K). Be-
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FIG. 1. Electrical conductivity o(n,T) for Si:P for a range of
values of 0<(n—n.)/n. $1072, as measured in Ref. 5. The
solid lines are fits over regions where Ao < T''/2,
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cause o < N, we need

(AN)Y=[(AN?]"2=(kT/E;)'?, (17)
which means that

do=0r—0y=g(n)oR(kT/E;)'?, (18)

where g (n) is a geometrical factor describing the relative
lengths of insulating and conductive regions. The
relevant length scales for fluctuations are a and /,, [the
mean free path for exchange scattering with states local-
ized on background (electrically inactive) impurities, such
as deep donors]. Comparison with the experimental data,
shown in Fig. 1, confirms the T'/2 behavior of (17) up to
T'~0.1 K and shows that g(n,)~10, while
g(1.01n.)~1, which suggests that /., ~ 10a.

We may note that we know little about the geometry of
the thermally excited states, but at the same time Eq. (17)
contains no length scales. This relation is valid so long as
kT <<E,, which is the case here. With increasing tem-
perature the fluctuations in N may overlap in such a way
that their contributions to 8¢ are redundant. This would
explain the leveling off of 8¢ for T2 0.1 K.

V. COMPENSATION AND CROSSOVER
TO CLASSICAL PERCOLATION

Because the exponent a=0.5 in Si:P depends on the
phase coherence of extended states formed as linear com-
binations of states in the energy range Ep+8FE, where OE
is given by Eq. (2), it seems very likely that exchange be-
tween electrons in localized states associated with other
impurities (acceptors or deep donors, for example) can
destroy this coherence, causing the transition to revert to
a classical form with ¢ 1. Unfortunately few data are
available for Si:P, and the closest approximation (in terms
of shallow donors) is Ge:Sb. These data'® lie in a different
range than those shown in Fig. 1. Using Mott’s o, for
the conductivity scale,'® with o,,;,=20 (Qcm)” ' in Si:P
and 7 (Qcm) ™! in Ge:Sb, all the data in Fig. 1 lie below
O min» While the data for Ge:Sb lie between o,;, and
150 ;.- Moreover, the data shown in Fig. 1 correspond
to n/n,—1< 1072, while the Ge:Sb data span the range
0.2<n/n,—1<4. Thus the Ge:Sb data are not in the
critical range where quantum effects are dominant. How-
ever, the Ge:Sb data do give an indication of a crossover
in a for a compensation level K, $0.05 with « ~0.7, and
we wish to interpret this indication in the context of the
crossover from classical to quantum percolation.

Classical percolation is pictured in the context of
nearest-neighbor hopping and on lattices with coordina-
tion numbers Z and with sites occupied with a probabili-
ty p, the percolation threshold p, (or critical density n,)
typically corresponds to an average number N of occu-
pied nearest sites with N, =p_Z between 2 and 3.2’ For
Si:P with n near n, we can imagine in three dimensions
that Z ~ 10 (as one would have for random sphere pack-
ing). A coherent wave packet for n —n, R 0.1n, should
then involve a superposition of P(1s,2s,2p) states along a
path uninterrupted by exchange. Such a path should in-
volve only P donors which contain no acceptor atoms in
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their near neighbor sphere; these donors can be called
“pure”” donors, as distinguished from compensated
donors which contain one or more acceptor atoms as
near neighbors. The fraction f, of pure donors is given
by Poisson statistics?® as
-N,K

fo=e 1, (19)
where the compensation level is

K=n,/np . (20)

Next we calculate the number of pure donors N in the
near-neighbor shell of a pure donor,

No=Zf, , 2n
and near the crossover compensation level K,

Ny=2.5(5), (22)
which with Z =10 gives

K,=0.14(2) . (23)

By interpolating linearly on (K,a) between (0,0.5) and
(0.14,1), we obtain a crossover near

(K,,a,)=(0.06(1),0.7) , (24)

in excellent agreement with the sparse experimental
data'® with K, $0.05.

VI. SPECIFIC HEAT
AND MAGNETIC SUSCEPTIBILITY

The specific heat and its magnetic-field dependence, as
well as the magnetic susceptibility, have been studied?
down to 7'% 30 mK in both compensated and uncompen-
sated Si:P. There are two central results that emerge
from the measurements. First, even for n > n,, there are
isolated clusters of impurities which contain localized
states, some of which are magnetic. This is to be expect-
ed on purely statistical grounds, and it is consistent with
the notion of coexisting localized and extended states.
The separation of the two is quantitatively more difficult
in the magnetic case, because of the range of size avail-
able to the clusters, which is T dependent because the
critical size is defined by the cluster energy-level spacing
being of order kT. Since the level spacing decreases like
N ! for clusters containing N impurities, and (N ) in-
creases for n increasing in the neighborhood of n, this is
a complex question which requires analysis beyond the
limits of the usually adopted pair approximation.

There is a second feature of the data which is more im-
portant because it transcends the numerical details of
curve fitting. This second feature of the data is the ab-
sence of critical behavior in the specific heat*>*° of un-
compensated samples for n near n,. Classical scaling
models predict that some kind of analytic singularities in
the specific heat and magnetic susceptibility must occur
when a transition occurs in the conductivity (see, for ex-
ample, Ref. 12), but none are observed. Instead only a
gradual formation of Schottky anomalies associated with
localized states appears as # decreases through n,.

This second feature is perfectly understandable in the
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context of the quantum theory of measurement. The
T =0 limit of the conductivity measured with an electric
field depends on extended states which are separated
from the localized states only when such a field is applied.
In the absence of such a field, the localized and extended
states remains mixed and so no singularity appears in the
specific heat or the magnetic susceptibility. This is a
characteristically quantum-mechanical effect, and so it is
not surprising that classical scaling theories”!'""!? cannot
explain it.
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VII. CONCLUSIONS

The present analysis differs from previous work!!!?
primarily in its emphasis on the quantum nature of the
TPR transition and its significance in the context of the
quantum theory of measurement. 1920 The present pomt
of view, which is fully consistent with experlment 2 is
that the TPR transition is not a classical phase transition,
and that it cannot be interpreted consistently by using
classical scaling methods.’
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