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Coherent optics for pumping near the absorption edge
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The optical properties of a semiconductor pumped near the 1s exciton resonance are studied. The

equation of motion for the density matrix in the Hartree-Fock approximation is traced back to the Bloch
equation, we11 known from two-level systems. The essential difference, however, is the coupling of
different wave vectors via the Coulomb potential. Principal features of the different stationary solutions

are discussed. For a closer inspection of stability, we calculate the response to a smooth switchon of the

pump field. For pump frequencies above the 1s exciton, the system follows first adiabatically the pulse

shape, showing a blueshift and a slight increase of the oscillator strength as in the off-resonant case. The
system jumps later into a second solution characterized by optical gain below the pump frequency, relat-

ed to complete saturation (excitonic insulator). The major objective of our paper is to provide a numeri-

cal solution to the equation of motion in the Hartree-Fock approximation and to compare the results to
those obtained by stationary considerations.

I. INTRODUCTION

The recent developments of subpicosecond spectrosco-
py have allowed the observation of new coherent phe-
nomena in semiconductors. Experiments under non-
resonant excitation have revealed light-induced changes
of excitonic energies and corresponding oscillator
strengths. ' A microscopic description of this
phenomenon, known as the optical Stark effect, has been

performed by Schmitt-Rink and co-workers. ' In this
context the virtually excited carriers, i.e., coherently
driven electrons and holes which experience no real col-
lisions, play an important role; they are also responsible
for changes of the screening properties. "' Two-particle
states have to be considered if changes in the excitonic
absorption are of interest. Numerical results of the corre-
sponding theory ' have been obtained by Ell et al. ' '
and Schafer, Schuldt, and Binder. ' Analytically the op-
tical absorption of excitons in the coherent regime can be
traced back to a generalized Elliot formula. ' A possible
influence of biexcitons is considered in a series of pa-
pers 17—20

An adequate description of these nonequilibrium phe-
I

nomena is possible using the Keldysh technique. '
Most of the concepts developed in the context of the opti-
cal Stark effect have their origin in the theory of two-
level atoms. However, the inclusion of Coulomb
effects leads to an inhomogeneous gap equation. Its
homogeneous version is well known from the theory of
superconductivity. An interesting question in this con-
text is the existence and observability of an excitonic in-
sulator.

A stationary consideration of the equation of motion
for the density matrix in the pump-frequency region
above the 1s exciton position leads to different solu-
tions;' ' the physical relevance in each case, however,
has to be examined by solving the time-dependent equa-
tion.

II. INHOMOGENEOUS GAP EQUATION

We consider a two-band model semiconductor interact-
ing with a classical quasimonochromatic pump field. The
interaction between light and matter is treated within the
dipole approximation. The dynamics of the system is
thus determined by a Hamiltonian of the form '

2
H= g g E;(k)ct, (t}c,z(t) —g g p,,(k) E(t)c,.l, (t)cil,(t)+ ——g g V(q)ct, q(t)c,„+(t)c l, (t)c,k(t) .

k i=1 k ij=1 k, k'qi j =1
lWJ

Here c,l, (c,l, ) represents the creation (annihilation) opera-
tor of an electron in the Bloch state ii, k) (i= 1,2) with
energy E;(k). The pump field E(t)=E (t)exp( ito t}—
+c.c. is considered to be nearly monochromatic, i.e., the

pump-field amplitude E (t) is assumed to be a slowly
varying function of time t. The Coulomb potential
V ( q ) =e leoezq is responsible for the electron-electron
interaction, eb being the dielectric constant of the semi-
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E,(k) F(t)
F*(t) E„(k)

g V(k —q)[n(q, t) —ni '(q)],0 (4)

F(t)= —p E(t),
which is identical to that obtained by Schmitt-Rink and
co-workers. ' n' ' represents the density matrix before
excitation.

The appearance of single-particle energies and
Hartree-Fock self-energy as a unique energy matrix E in
the equation of motion (4) gives rise to an interpretation
of the semiconductor as a system of noninteracting parti-
cles with renormalized energies. However, the presence
of nondiagonal elements and its time dependence via the
pump-field amplitude produces some complications. (i)
In the stationary case, the Hamiltonian and the Green's
function can immediately be diagonalized by a Bogo-
liubov transformation, but the resulting coherent ground
state cannot trivially be determined by a stationary con-
sideration since it still contains degrees of freedom due to
the Coulomb interaction. (ii) Apart from this fact the va-
lidity of the collision-free limit is by no means fully
clarified; of special interest in this context is the relation
between the coherent ground state postulated and the
completely relaxed state. ' ' ' (iii) The coupling of
states with different wave vectors leads to a complicated
dynamics ' even if correlations outside the Hartree-
Fock approximation are completely neglected. The be-

I

conductor. 0 denotes the crystal volume. The spin of
the electrons is not explicitly taken into account and ap-
pears occasionally as a factor of 2.

The one-particle properties are governed by a set of
Green's functions defined by the expectation value

G,,„ti(k,t, , t2)= (T„iic,(k, t, )c, (k, t2)) .
1

iA'

The indices 3 and B at the time-ordering operator T
refer to different branches of the Keldysh contour, '
taking into account that spectral and kinetic properties
cannot be traced back to one type of Green's functions as
in the equilibrium case.

For the density matrix

n,, (k, t) = i RG—+,, (k, t, t)

we obtain the equation of motion in Hartree-Fock ap-
proximation:

i' n(k, t—) = [E(k, t), n (k, t)],a

havior depends strongly on the pulse shape of the elec-
tromagnetic field. Therefore, careful numerical analyses
are necessary.

To cast Eq. (4) into a more intuitive forin we regard the
Hermitian matrices E, n and (4) as spinor representations
of four vectors E and n given by

E =E'o;, n =n'o, ,

—,'(E»+E22)
—,'(Eii —E22)

ReE)2
ImE )2

,'(n„'+—n22)

,'(n i—,
—

n22)
Ren &2

Imn &z

Introducing Eq. (8) into the definition of the energy ma-
trix (4) we obtain the inhomogeneous gap equation

where the o.; are Pauli matrices. The conservation of the
trace in (4) corresponds to the conservation of the "tem-
poral" components n in (5), the resulting equation for
the "spatial" components being

~ a
iA —n = —2EXn,

aj

which represents the Bloch equation, well known from
theory of two-level systems. The essential difference,
however, is that E itself depends on n via the Coulomb
coupling (4). In this context the terms n» —

n22 and n, 2

are usually referred to as inversion and polarization, re-
spectively. The gap function Ei2(k) as an effective field

plays an important role in the theory of superconductivi-
ty ' and is of special interest, too, for the description of
the optical Stark effect. ' '

To construct stationary solutions of Eq. (6) we have to
claim that the vectors E and n are parallel. Without loss
of generality we suppose that the state before excitation is
characterized by an empty conduction and a filled
valence band. As a consequence of conservation of the
determinant in Eq. (4) the length of n is conserved for
each k leading to

1 E(k)
2 IE(k) I

'n(k)= ——s(k), s E [
—1, 1 j .

The explicit expressions for the elements of the density
matrix are

1 1 E„(k)—E22(k)
n» (k) = ———s(k)

Q[E„(k)—E22(k)] +4IE,2(k)I

n22(k ) =1 n„(k),—
E,2(k)n„(k)=—s(k)

Q[E„(k)—E22(k)] +4IE,2(k)I

1 E12(q)
E,2(k)=F+ —g V(k —q)s(q)

q Q[E»(q) —E22(q)] +4IE,2(q) I

which, however, cannot be solved separately since the quantity E»(q) —E22(q) in the denominator of the right-hand
side has to be determined self-consistently leading to

1 1 1 E» (q) —E22(q)
E»(k) —E22(k) =E,(k) —E„(k)—fico ——g V(k —q) ———s(q)

&[Eli(q) —E22(q)]'+4IE12(q) I'
(10)
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Considering the structure of Eq. (7) one has to expect
that the physically relevant solutions are characterized by
a continuous function s (k) which leads to s(k) = 1. The
choice s(k) —= —1 would correspond to a filled conduction
and an empty valence band. On the other hand, having
in mind the case of resonant excitation but zero pump in-
tensity, one could suppose that s (k) =sgn[E»(k)
—E»(k)] leading to nii(k) &

—,
' and a kink at the reso-

nance.
Assuming stationary from the outset, the sgn function

s(k) remains undetermined, as already discussed in Ref.
10. By solving the differential equation (6) numerically
we will clarify this point in the present paper. As shown
below we find that s (k)—:1 holds already in the Hartree-
Fock approximation without taking into account scatter-
ing or relaxation.

In the further treatment all quantities are expressed in
excitonic units Rydberg energy R and Bohr radius aft,
respectively. Solutions for different detunings are shown
in Fig. 1. The pulse switchon is modeled by using, for the
field amplitude F(t), the error function with rise time r
For slowly increasing amplitudes (large values of r) the

0.008

density follows adiabatically the pump intensity whereas
for small values of ~ Rabi oscillations appear which van-
ish with time for Ace —Eg (—1 as a result of interfer-
ence of states with different wave vectors. For pump fre-
quencies above the exciton resonance ( —1 & ttico

E—&0) the density follows at first the pulse shape, but
occurring Rabi oscillations will be amplified. Therefore,
we will apply the term "metastable solution" to this
phenomenon. Finally, the system will turn into a stable
regime, characterized by a drastic Coulomb-enhanced

gap function E,2(k). Even if the pump field is switched
off again (not shown here) a final density and polarization
remain. This phenomenon is closely related to the exci-
tonic insulator at T=0 with a chemical potential
/J, =fico . In each case we have found that s(k) =—1, aston-
ishing in that in the nominal off-resonant situation with
—1(%co —E &0 the bands may already overlap, i.e.,
E»(0)—E22(0) &0. However, the choice of the function
s(k) is of no infiuence on the principal features of the
solution. The same is true for the approximate treat-
ment of the gap equation (9) by neglecting the Coulomb
contribution in the diagonal elements of the energy ma-
trix (10). The energy of the excitonic insulator can be de-
rived from Eq. (1) using Eqs. (4) and (8). We obtain
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if the total energy before excitation is scaled to zero.
This result can be simply understood: The first term
represents the energy of the virtually excited electron-
hole pairs, the second term results from the renormaliza-
tion of the (occupied) valence band.

The density of excited electron-hole pairs versus detun-
ing ' is plotted in Fig. 2. For excitations above the 1s
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FIG. 1. (a) Density of electron-hole pairs d vs time t for non-
resonant (fico~ —Eg = —1.2, dashed line) and resonant excitation
(Scop —Eg= —0.6, solid line) and dilerent pulse shapes:
=16.7, 33.3, 66.7, A, =0.02; (b) transition from the metastable
into a stable regime, v =16.7, A, =0.02.

'

hdp Eg (llQlCS Of Ry)

FICx. 2. Density d vs detuning 'Scop Eg for different intensi-
ties corresponding to F=O (solid line), F=0.02 (dashed line),
and F=0.06 (dotted line).
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nal field and retains a residual density and polarization if
the external field is switched off again. It corresponds
thus to a saturated state. It is worth mentioning that for
both the metastable and the unstable solution the exter-
nal and internal fields partially compensate each other,
i.e., arg(F)=arg[n&z(k)] for each k, whereas the stable
solution is characterized by arg(F)= —arg[ni2(k)]. A
possible additional pair of solutions above the 2s exciton
resonance could not clearly be stated here because of nu-
merical difficulties in this region.

Figure 3 shows the distribution function n»(k) for
zero and nonzero pump field amplitude and pump fre-
quencies below and above the 1s exciton energy. The
stable solution is characterized by a k region where
n»(k )~ —,', which is equivalent to Ez2(k) & E»(k).

FIG. 3. Distribution function n»(k) for Ace~ = —1.2 (dashed
line) and —0.6 (metastable solution, dotted line) for F=0.02.
The distribution for the excitonic insulator (no excitation, F=O)
is shown as solid line.

exciton energy we found three solutions. As deduced
from the time-dependent calculation, a metastable (lowest
density), unstable (medium density), and stable (highest
density) solution are observed. The unstable solution is
of no physical relevance but could be found by iterating
Eq. (7). The stable solution depends weakly on the exter-

III. OPTICAL ABSORPTION

The dielectric function describes the linear response of
a system to a weak test beam. In the Hartree-Fock ap-
proximation the test-field-induced polarization 5n„(k)
can be immediately derived from the equation of motion
(4) imposing a weak perturbation 5E oscillating with fre-
quency co on the pump field E . ' ' In the stationary
case an alternate way is to solve the Bethe-Salpeter equa-
tion for the polarization function. ' Application of a
Bogoliubov transformation leads to

y(co)= —2lpl —g 4(k, ) H '(k„k2,co —co +iE) 4(k, ),
k), k~

H(k, k', z ) =5t,q.fi
CO~ N2 Z

0 CO
~

—C02+ Z

aa'+PP +2r)"* 2mr" aP' —Pa'———V(k —k')0 2yy'* —aP' —Pa' aa'+PP'+2yy"

a(k)
4(k)= p(k)

1 1 E„(k)—E2~(k)a(k)= —+-
Q [E,i(k) —E2p(k)]~+4lEi2(k) l~

(12)

E,2(k)
P(k) =1—a(k), y(k) =

Q[E„(k)—E„(k)]'+4lE„(k)I'

%co, q2= —,
' [E„(k)—E~2(k)]+—,'Q[E„(k)—E~2(k)] +4lE,2(k) l

for s(k)—:1. For further details see Ref. 16. Equation
(12) can be looked upon as a generalization of the well-
known Elliot formula. The energy difference %co&

—Aco2

corresponds to the renormalized band structure, and the
modifications of the Coulomb potential result from Pauli
blocking due to virtually excited carriers.

The imaginary part of the interband dielectric func-

I

tion, responsible for the optical absorption, is displayed
in Fig. 4 for zero and nonzero intensity and different
values of detuning. A final line width v=0. 1 is intro-
duced artificially. For Ace —E & —1 the well-known re-
sults' ' ' are reproduced: The coherent excitation pro-
duces a blueshift and a slightly increasing oscillator
strength. In the case —1 &Ace —E &0 we have calcu-
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(a)
three-photon processes. '

We emphasize that the order of magnitude of the
linewidth introduced corresponds to experimental data.
This seems to be contradictory to the complete neglecting
of dephasing and relaxation. This assumption, however,
is not crucial. As further investigations have shown,
both metastable and stable solution (cf. Fig. 1) may occur
at a realistic time scale (a few picoseconds for GaAs).

10-

c0

0-

—1.5 —1.0 —0.5 0.0

hu —E~ (units of Ry)

FIG. 4. Optical absorption A vs frequency co for nonresonant
(a) and resonant (b) excitation corresponding to the distribution
functions in Fig. 3.

lated curves corresponding to the different stationary
states (cf. Figs. 2 and 3). The metastable solution behaves
like the off-resonant case (blueshift for increasing pump
intensity). The corresponding Stark shift has been calcu-
lated already in Ref. 47. The excitonic insulator is
characterized by a pole just at the pump frequency co,
being equivalent to the Mahan exciton. As in the off-
resonant case the existence of a gain region is a result of

IV. SUMMARY

The equation of motion in Hartree-Fock approxima-
tion (4) could be rewritten into the optical Bloch equation
(5) which can be in a simple way interpreted geometrical-
ly. The structure is just the same as for the two-level sys-
tem; however the "axis" E itself depends on n. The nu-
merical solution showed that, in any case, the s(k) intro-
duced in Eq. (7) comes out to be s(k)—:l even in the case
of resonant excitation where the distribution function
n»(k) exceeds the value —,'. This is in accordance with
the argument that physical situations should be charac-
terized by continuous functions (density and polarization
over k). Although the excitonic insulator is stable, i.e. ,

occurring Rabi oscillations disappear, it cannot be
reached adiabatically.

The optical spectrum of the excitonic insulator is
characterized by a pole at the position of the pump fre-
quency. At 6nite intensities oscillator strength is shifted
away from the pump frequency (opening of the laser-
induced gap). The gain region in the optical spectrum
has the same origin as the three-photon process at nega-
tive detuning.
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