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Phenomenological electrodynamics of two-dimensional Coulomb systems
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We construct a phenomenologica1 electrodynamics for plane monolayer plasmas at the interface of
dielectric materials. The presence of externally applied dc magnetic fields can be assumed. The Maxwell
equations and fluctuation-dissipation relations are formulated exclusively in terms of surface quantities.
The conceptual notion of the surface dielectric-response tensor and its relation to the customary suscep-
tibility and current-current correlation tensors in the presence of a dielectric environment is clarified.

I. INTRODUCTION

The concepts of the frequency- and wave-vector-
dependent dielectric-response function e(kco) and of its
generalization, the dielectric response tensor, are among
the most fruitful and widely used ideas of many-body
physics. They have also been used, ' although more
sporadically, in the analysis and description of two-
dimensional (2D) and quasi-two-dimensional periodic
electronic structures (monolayers and superlattices).
Nevertheless, the concept of the dielectric-response ten-
sor as related to the behavior of 2D (as opposed to 3D)
structures has never been erected from the precise foun-
dations of phenomenological plasma electrodynamics.
The principal thrust of theoretical works in this area has
been directed at the understanding of the collective mode
structure of these two-dimensional plasmas. Models of
increasing complexity have been considered over the past
two decades. Stern found the plasmon dispersion rela-
tion in the nonretarded limit. Chiu, Quinn, Lee, and
Eguiluz studied the effect of the dielectric environment
on the dynamics of the plasma layer. The effect of an
external magnetic field was considered by Chiu and
Quinn, whose dispersion relation in the random-phase
approximation is the most general to date. Bonsall and
Maradudin analyzed the dispersion properties of a two-
dimensional Wigner lattice in a magnetic field and ar-
rived at a result formally analogous to that of Chiu and
Quinn.

Central to the description of the plasma layer are its
dielectric susceptibility g(kco) or the density and current
response functions yt (kco) and yT(kco), defined below, in

terms of which the dispersion relation can be expressed.
In many-body theory the dispersion relation is con-
veniently determined from the zeros of the determinant
of the dispersion tensor b, (kto), which is constructed out
of the dielectric tensor e(kco). For three-dimensional
Coulomb systems the relationship between e(kto) and
g(kco) is trivially simple. This is, however, not the case
for two-dimensional plasma systems: the difference is due
to (i) the "retardation effect, " which manifests itself as a

frequency-dependent effective potential, and (ii) to the
influence of the dielectric properties of the surrounding
medium. Thus, the knowledge of g(kco) in these systems
is not automatically equivalent to the knowledge of
e(kco); neither is the information provided by the disper-
sion relation sufticient to reconstruct the structure of
b(kco). Yet, the identification of the surface dielectric
tensor and the derivation of the dispersion relations
through the use of this quantity have a number of advan-
tages. First and the most immediate is the possibility of
adopting a formalism that is completely analogous to the
formalism of the three-dimensional phenom enological
electrodynamics and to describe the surface layer in
terms of physical quantities dined on the surface only.
Second, and more importantly, 7(kco) contains, in addi-
tion to the dispersion relation, significant further physical
information; in particular, via the fluctuation-dissipation
theorem, it determines the density and current-density
fluctuation spectra of the system.

Thus the purpose of the present paper is to provide a
foundation anchored in two-dimensional phenomenologi-
cal electrodynamics, for the construction of the surface
dielectric tensor V(kco). There are several advantages to
this approach: (1) The Maxwell equations can be formu-
lated exclusively in terms of surface quantities even in the
presence of dielectric media in which the layer is embed-
ded; (2) the effects of the surrounding media on the
dielectric response can be identified; (3) the 'retardation
effect" can be described in terms of a frequency-
dependent effective interaction potential; (4) the disper-
sion relation, both for longitudinal and transverse modes,
can be expressed in a form analogous to the 3D disper-
sion relation; and (5) one can derive the relationship be-
tween "total" and "external" response functions, and re-
late density and current fluctuation spectra via the
fluctuation-dissipation theorem to the latter.

The model analyzed in this paper is that of a 2D layer
of electrons in a compensating background, sandwiched
between two —in general, different —dielectric materials.
In Sec. II we formulate the 2D phenomenological electro-
dynamics. In Sec. III we construct the dielectric-
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response tensor; we make contact with other works by
showing that the ensuring dispersion relation, albeit
seemingly different, is identical to that existing in the
literature; it also contains the dispersion relation for sur-
face waves on the interface of two dielectric media. In
Sec. IV we identify the external response functions and
establish the fluctuation-dissipation theorem.

sities already satisfy these conditions; out of the family of
field components, Ei(0,kco) =C(kco ) and 8,(0,kco )—:%(kco) are the appropriate choices. For the characteri-
zation of the plasma, one can use the density and current
response function yL (kco) and yT(kco), defined through
the constitutive relations

II. 2D FIELD EQUATIONS

n (kco) = —gl (kco)e4(kco),

j(kco) = —yT(kco)ec A(kco);
(8)

p(z, kco) =p(kco)5(z ),
J(z, kco) =J(kco)5(z ), (2)

cop(kco) =k J(kco) .

The average charge- and current-density responses of the
monolayer plasma particles are given by p(kco)5(z) and
J(kco)5(z). The Fourier-transformed Maxwell equations
relating the various field quantities to the free charge and
current density can then be stated as follows:

ik+e, X [Bi(z,kco)+e,8,(z, kco)]'dz

J (kco)5(z ) — D(z, kco), (3)
c c

i k+ e, X [Ei(z,kco)+ e,E,(z, kco)] = B(z,kco),
dz c

ik 8 (z, kico)+ 8,(z, k )c=o0,
d
dz

ik Di(z, kco.)+ D, (z, kco)=4npf(kco)5(z),
d
dz

(4)

Let the plasma particles occupy the large but bounded
area S in the plane z =0 of a Cartesian coordinate system.
The electric displacement and total electric field are
linked through the usual constitutive relation

D(z, kco) = [ei8(z )+e28( —z ) ]E(z,kco),

where e&=1+a, and e2=1+a2 are the dielectric con-
stants of the surrounding media, 8(z) and 8( —z ) are
unit step functions, and k is the 2D wave vector conju-
gate to the 2D position vector r~=e x+e„y.

Let the system be perturbed by weak external charge
and current-density sources p(z, kco) and J(z, kco) which,
for the sake of mathematical convenience, are to be
confined to the plane z =0, viz. ,

n(kco) and j(kco) are the particle density and particle
current density, respectively; 4(kco) and A(kco) are the
total scalar and vector potentials, respectively, evaluated
at z =0. Or, one can use the susceptibility tensor g(kco)
defined through

J(kco) = —icog(kco) C(kco),

where J(kco) = —e j(kco). This latter has the advantage of
being gauge invariant, an especially useful feature in the
presence of an external magnetic field: for this reason we
use g(kco) in the following.

The 2D total susceptibility tensor g(kco), by definition,
portrays the linear response of the monolayer plasma to
the total field perturbation C(kco). Of the three response
tensors to be discussed in this paper, g(kco) is the only
one that, in the absence of particle correlations, is deter-
mined by the properties of the plasma, unaffected by the
environment —be it dielectric or vacuum —above and
below the monolayer; it is the customary response tensor
frequently encountered in the literature. For example, it
was calculated by Chiu and Quinn in the random-phase
approximation (RPA) for the two-dimensional electron
gas, and by Bonsall and Maradudin in the harmonic ap-
proximation for the 2D hexagonal Wigner crystal.

There are equation-of-motion approximation schemes
[e.g., the quasilocalized-charge (QLC) model of Kalman
and Golden' ], which, for the sake of clarity in presenta-
tion of the physical concepts, are structured so as to ex-
plicitly display not the total field C(kco), but rather the
external field Ei(0,kco)—= C(kco) as the driving perturba-
tion. This latter is understood to be the electric field at
the interface of the two dielectrics in the absence of the
plasma layer [but in the presence of the surrounding
dielectric media; see Eqs. (33) and (27)]. Within the
framework of such approximation schemes, one therefore
calculates the so-called 2D external susceptibility tensor
g(kco) defined through the constitutive relation

where J(kco) = icog(kco) —C(kco) . (l0)

pf(kco) =p(kco)+p(kco),

J (kco) =J(kco)+ J(kco) .
(7)

More will be said about this latter response tensor in Sec.
IV.

Our first objective is to reformulate the Maxwell equa-
tions solely in terms of quantities unambiguously defined
in the plasma plane. The surface current and charge den-

III. SURFACE DIELECTRIC-RESPONSE TENSOR

Consider now the domain z%0. Eliminating B be-
tween (3) and (4), one readily obtains
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ik ik E~(z, kco)+ E,(z, kco)
d
dz

P, (kco)Pz(kco)

P, (kco)+Pz(kco)
kco =2 (21)

d'+ P — Ei(z, kco) =0,
dz2

E,(z, kco)= — ik Ej(z,kco),
1

(12)

where P =k —e co /c (m=1, 2) is the familiar at-
tenuation constant that shows up in the following solu-
tions to (11)and (12):

Note that in a 2D space, the k X 4' vector product is a
(pseudo)scalar and the k X% vector multiplication with a
(pseudo)scalar is a vector.

The full surface dielectric tensor V(kco) now incor-
porating the e6'ect of the plasma sources is

V(kco) = I[1+a(kco) ]+a(kco),
(22)

a(kco) =2nP(kco)g(kco) .

e
—pz

Ei(z, kco) = C(kco) X ' p,2
z)0

z&0,

—P,z
e ', z)0

(13)

The dielectric-response tensor V(kco) of the plasma mono-
layer, in contrast to the susceptibility g(kco), exhibits a
marked dependence on the dielectric constants (of the
materials in which the monolayer is embedded) in the
effective propagation constant. With the aid of V(kco),
(17) and (19) can be recast in the form resembling the
standard 3D formulation:

E,(z, kco)=ik C(kco) X '

2 )0
pz

(14) ikXS(kco)+ V(kco) C(kco)= P(kco)J(kco),
C C

ik V(kco) 4'(kco) =2mP(kco)p(kco) .

(23)

(24)

Bj(z )O, kco)

l E')CO

p Z

2 2

q
T(k) —L(k) C(kco) e

6')co

Equations (13) and (14), when substituted into (4), give

Z(kco) C(kco) = P(kco)J(kco), (25)

Equations (23) and (18) can be combined into the wave
equation. This latter can be derived, along with the Pois-
son equation (24), more directly by integrating (4) and (6)
through the plasma layer only, i.e., from z =0 to z =0+.
One obtains

Bi(z &O, kco)

162CO

p
Z

c
T(k) —L(k) C(kco) e '

62N

(15) with

Z(kco)=n T(k) —V(kco) (26)

e,B,(z, kco) =—kXEj(z,kco);
c

L(k)=kk/k and T(k):—I—L(k) are notationally con-
venient longitudinal and transverse projection tensors.

In order to arrive at the desired 2D formulation, we in-
tegrate Eqs. (3) and (6) over all z values, making use of
(13), (15), and (16). The resulting relationships are

(n =kc /co is the 2D index of refraction).
The equivalent of (26) for the dielectric media (in the

absence of the plasma layer) is

b, (kco)=n T(k) —7[1+a(kco)] . (27)

The surface dielectric-response tensor V(kco) contains
information about the dispersion and damping of the col-
lective modes, i.e., about the complex eigenfrequencies
co(k) of the plasma monolayer. The formulation of the
dispersion relation for the calculation of co(k) is straight-
forward

ik XS( kc)o+ [I+a(kco)]C(kco) = P(kco)J/(kco),
c c DetZ(kco) =0 (28)

(17)

k X C(kco) ——X(kco) =0,
C

i [1+a(kco)]k C(kco) =2mP(kco)p/(kco) .

Here

P, (kco)az+Pz(kco)a,
a(kco) =

P, (kco)+P~(kco)

(18)

(19)

(20)

is the effective polarizability of the dielectric 1 —dielectric
2 interface and

ec (kco) = 1+a(kco) —g(kco)yr (kco),

eT(kco) = 1+a(kco)+ n g(kco)yr(kco),

(29)

(30)

and is a consequence of setting J(kco) =0 for C(kco)&0 in
Eq. (25).

In the absence of an external magnetic field, the system
is isotropic and the response tensor are diagonal with a
longitudinal (L) and a transverse (T) diagonal element.
In this case it is profitable to trade the susceptibility g for
the density and current response functions yz and gT, ez
and eT can then be expressed as
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through the effective potential

(31)

In this situation, for the study of the transverse disper-
sion relation, the form of the dispersion tensor,

fluctuation-dissipation theorem

g,"„(kco)=—,
' [f' „(kto)—g„„(kco)]

ie n price
2 tanh C„,(kco),

'Aco
(37)

Z(kco) = [(n —e&)' (n e—2}'

—n P(kco)yr(kto)]T(k)

—[I+a(kco) —g(kco)yL (kco)]L(k), (32)

C„(kto)= 1 dte' '([j„(t),j l (0)]), (38)

which can be derived from straightforward statistical-
mechanical linear-response theory n =N/S is the aver-
age areal density,

is more useful: it clearly exhibits the coupling caused by
the plasma monolayer between the two electromagnetic
waves propagating in medium 1 and 2.

IV. FLUCTUATION-DISSIPATION RELATION

In this section we establish the fluctuation-dissipation
theorem for the fluctuations of the surface current densi-
ties. To this end, we consider first the relationship be-
tween the total and external susceptibility tensors defined

by Eqs. (9) and (10). The straightforward derivation is
carried out first by combining (25) with the dielectric elec-
trodynamic equation

le
J(kco) = — h(kco) C(kco) .

28
(33)

We obtain

C(kco)=Z '(kto) Z(kco) 8(kco) . (34)

The desired relation

g(kto)=g'(kto) Z '(kto) Z(kco) (35)

=2trP(kco } T(k)
n —1 —a(kto)

L(k)
1+a(kco)

(36)

The principal usefulness of g lies in the fact that its anti-
Hermitian part can be directly related to the surface
current-current fluctuations in the layer through the 2D

then follows from (13), (9), and (10). In the absence of the
dielectrics (i.e., e, =1, ez= 1, P& =Pe, P2=Po), (35) is iden-
tical to its three-dimensional counterpart, " as it should
be.

A more useful version of (35) that does not involve
E(kro) is

'(kco) —
g '(kco)

N
'] (39)

is the local particle current density operator in the equi-
librium (unperturbed) system, and ( ) denotes ensemble
averaging over the equilibrium system. [Note that some
definitions of the current correlation tensor in the litera-
ture differ from definition (38) by a factor of 2n. ] Equa-
tions (37) and (35) provide a simple way to calculate the
important surface current-current correlations in terms
of the accessible dielectric susceptibility tensor ((kco).
Note, however, that the role of the surrounding dielectric
media enters in this relationship in a nontrivial way.

V. CONCLUSIONS

The purpose of this paper has been to establish a two-
dimensional phenomenological electrodynamics, in terms
of surface quantities only, for a two-dimensional electron
layer embedded between two dielectric media. The
correct construction of the dielectric-response tensor
Qekto) with the aid of the surface susceptibility tensor
g(kco) and the dielectric constants of the surrounding
dielectrics has been established: this formalizes and gen-
eralizes the work of Refs. 7 and 8: these latter papers
correctly derive the dispersion relation both in the isotro-
pic and anisotropic situations, but do not attempt to
identify V in terms of g, a„and a2 [of Eqs. (20-(22)] and
the related external response functions, which are instru-
mental in establishing the fluctuation-dissipation
theorem. Having established this theorem, one can deter-
mine the effect of the surrounding dielectric media on the
correlations of the surface current densities (or on the im-
portant dynamical-structure function) as expressed in
terms of the susceptibility tensor of the layer.
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