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Expressions for the hole self-energies of a metal with hybridized sp and d bands have been obtained us-
ing the low-density -matrix approximation and a Hubbard Hamiltonian to treat correlation effects. The
theory provides a significant improvement with respect to previous calculations based on the Hubbard
Hamiltonian, since it takes into account the details of the single-particle band structure in the calcula-
tions of the two-hole propagator and uses a self-consistent approach for the evaluation of self-energy
corrections. The theory is applied to the evaluation of the quasiparticle density of states and dispersion
for Ni and NiSi,. The results allow elucidation of the role of many-band and hybridization effects in

determining the self-energy behavior.

I. INTRODUCTION

The role of Coulomb correlation in determining the
shape of transition-metal quasiparticle spectra has been
the subject of several theoretical investigations in the last
few years.! Most of this work has been performed using
a single-band Hubbard model? and working either in the
weak-correlation® > or in the strong-correlation®” limit.
The results obtained using the single-band model have
often been applied to describe the photoemission spectra
of realistic systems, both pure metals and compounds. In
particular, this approach has been used to explain the
spectral features of nickel,® !° a material which has been
widely studied in the past, being a sort of canonical exam-
ple of a metal whose band structure cannot be entirely ex-
plained within the single-particle approach. Only in a
few cases*® has a realistic description of the band struc-
ture been taken into account.

This situation is rather unsatisfactory: Indeed, if de-
tailed statements concerning the electronic structure of a
specific material are to be made, the single-band model is
totally inadequate; the orbital degeneracy of the highly
correlated d bands must be explicitly included, as well as
the effects of the hybridization with the large dispersive
sp bands. This may be even more important in those sys-
tems where transition-metal atoms are chemically bonded
to ligands of some sort, as in oxides or silicides.

In this paper we address the problem of the multiband
effects in the evaluation of the correlated quasiparticle
hole states, studying the cases of Ni and NiSi, as exam-
ples. Rather than using a perturbative approach, which
can be useful only under the condition of either a very
large or a very small Hubbard U parameter compared to
the total bandwidth, we adopt the z-matrix low-density
approximation, !"!2 extending it to the multiband case.
This allows us to get formal expressions that can be ap-
plied for any U value, provided that the particle density is

45

low enough. In particular, we show that the self-energy,
evaluated with full account of the spd hybridization and
of the different energy distribution of the various d orbit-
als, depends both on the lattice wave vector k and on the
band index n. Such a dependence, neglected in single-
band models, is quite significant. Moreover, we show
that the whole band structure, not only the pure d bands,
can be modified by correlation. We expect the theory to
be applicable to all situations in which both hybridization
and correlation play very important roles, as in near-
noble-metal or noble-metal compounds. 2~ !4

In the case of nickel the limitations of the f-matrix
theory in describing the quasiparticle spectra are well
known. Referring to the hole-state distribution, as
probed by valence-band photoemission, there are three
main factors of disagreement between the observed spec-
tra and band theory: (i) the exchange splitting is only half
of the theoretical value, (ii) the measured d-band width is
at least 30% smaller than the calculated one, (iii) a satel-
lite occurs at about 6 eV binding energy with practically
no dispersion.! All these effects are qualitatively ac-
counted for by a t-matrix calculation, especially if three-
body scattering is included in the theory, > !’ but a quan-
titatively consistent picture of the situation cannot be
achieved, since the U value that gives the correct satellite
position, does not allow one to obtain the right reduction
of exchange splitting and bandwidth.

We will see that, in spite of the significant differences
present in the hole self-energy when the multiband effects
are included, such a quantitative consistency cannot be
achieved even by the present theory. We will show, how-
ever, that the consequences of the self-energy dependence
upon the lattice wave vector and the band index are im-
portant and have to be included in any quantitative eval-
uation of the correlation effects in this metal.

This paper is organized as follows: in Sec. II we derive
the formalism for calculating the self-energy starting
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from the results of an accurate band-structure calcula-
tion; in Sec. IIT we describe the results for paramagnetic
nickel and for nickel disilicide; Sec. IV is devoted to a
comparison with experiments and to the conclusions.

II. THE LOW-DENSITY APPROXIMATION
FOR A MULTIBAND SYSTEM

A. Basic formulas

The central assumption defining the so-called low-
density approximation, originally formulated by
Kanomori'! for the single-band case, is that the number
of particles (either electrons or holes) experiencing the
Coulomb repulsion is so small as to allow reduction of
the many-body problem to a two-body one, describing the
correlation effects as the scattering between two particles
only. The Hamiltonian of the interacting system is

H=H,+H,+H,, , )

where H, and H, depend only on the coordinates of par-
ticles 1 and 2, respectively, and H,, is the interaction
term.

The solution of the single-particle Shrédinger equation

H pi=ed"¥i (2)

defines the ordinary single-particle band structure €{", ¥
being a Bloch state of wave vector k and band 1ndex n
which can be expressed as a combination of localized or-
bitals

=Stk Se N (r—R,) . 3)

Here ¢,(r—R;) is the ath atomic orbital centered on lat-
tice site R; and c (k) are the expansion coefficients, a
and n the orbital and band indexes, respectively.

We are interested in two-particles states; according to
the Hubbard model, the interaction H,, involves only
states of antiparallel spin so that we will consider the

HM—-UZ

rs kK"
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wave function of the interacting system as a single state;
moreover, since we are now interested in the paramagnet-
ic phase, we will ignore the spin dependence of the wave
function. We start by considering the case of electrons.
We can easily write the wave function of the noninteract-
ing two-particle system Wi as a symmetrized product of
the single-particle Bloch state of different k vectors and
band indices and the two-particle wave function in the
presence of the interaction as a scattering state,

k" k" r s
rs,nm Ors
X A oV . (4)
Here the summation is over unoccupied states; A3\ 1
are scattering coefficients, and &(k+k'— k” k")

guarantees the k conservation. The Schrodinger equation
for the interacting system is

Let us assume, in agreement with the Hubbard model,
that the interaction H, is to be effective only on the
same site and define

Uyps= J dr; [ drsg(r))¢3(0,)H ,¢5(r,)d5(xy) - (6)

It has been shown® that for 3d states the U ayps are
significantly differently from zero only if a=/f3 and y =$§;
moreover, the U, for the five 3d orbitals are practical-
ly identical. For this reason we will put

Ud.45,5

and neglect the integrals involving s or p atomic orbitals.
With these assumptions and definitions it is a matter of
tedious but straightforward calculations to obtain the fol-
lowing formulas:

Efp=el"+e{"+AE ™

UavaS

where

Jeg* (K )eg (K" )ep(k’™) | . (8)

The scattering coefficients 4" |\ turn out to be related to the two-particle Green function according to the following

expression:

Gopk+K,Eff)ch(K)e g (K)

8(k+k'~k”—k”’)ArSﬁnm ,cr(ku)cs (kul):_U s (9)
ZkEk Kt at™ TR 1+ UG 5k + K, EJ)
where
|C kn |2 |C klll |
Gupk+kE)=3 3 8k+k'—k"—k")—; (10
rs kK e e —Ep

By substituting (9) and (10) into expression (8), one gets

len (&) e (k)2
AEIm=UY )
S 1+ UG 5k +K,E)

(1n

Quasiparticle eigenvalues €y can be defined from these ei-
genvalues of the two-particle interacting system as

el =ed 430 (12)
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where X} are the self-energy corrections to the single-
particle eigenvalues

3= S AE[, (13)
k' m

the sum being over occupied states. It is seen from Eq.
(13) that the self-energy is written as a sum of complex
binary interactions; this form is typical of the low-density
approximation. The above expressions cannot be used
directly to calculate AEy and self-energy corrections
since just these quantities enter the definition of the two-
particle Green function. What is generally done to
bypass this difficulty is to calculate the two-particle
Green function at any energy &

G k+k,5)=3 ¥ O(k+k'—k"—k'’)
rns kK"

|C;(k”)|2 |C,S3(klll)|2
et

Let us consider now the case of hole states; we want, in
fact, to reproduce the photoemission spectrum where an
extra hole is created and interacts with the holes already
present in the partially filled d band of the material. To
move from electrons to holes one has to change the sign
of energies and to interchange the summation over filled
and empty states. Having done this, one gets the expres-
sion for the two-hole Green function as follows (notice
the change in the energies sign and the integration over
filled states):

(14)

no(g))ngley)

p——— (15)

0 0
G, p&)= ff:dslff:dez

where we have introduced the orbital density of states

n (e)=3 3 lcr(k)|*8(e—ed") ,
n k

the sum being over filled states. In (15) we got rid of the
momentum dependence by taking advantage of the result
of Treglia, Ducastelle, and Spanjard, who have shown
that a momentum average of this expression is the lead-
ing term (the “local” term in Ref. 3). We are now able to
write the self-energy of Eq. (13) more conveniently as fol-
lows:

Siw)=3 let(k)|’Z o), (16)
where
S w)=— %ngnB(s)ta’B(e—I—a))ds , a”n

with the scattering matrix t 5 defined as

U

TIHUG, 48 18)

topl€)
Notice that, since the Coulomb correlation is effective
only on d states, in these last formulas the indices a,f8
refer to d orbitals only. This will be true in all the follow-
ing.
Equations (15)-(18) describe the actual procedure for

calculating self-energy corrections. They allow one to
elucidate how the inclusion of many bands may affect the
hole self-energy; if we consider a hole in the d atomic
state ¢@,, it can be scattered by the Coulomb interaction
with another hole in the d orbital ¢4 through the 7,4
scattering matrix. The self-energy =, of this hole is ob-
tained by summing over all the d atomic orbitals, includ-
ed the ¢, orbital itself, weighing every scattering process
with the partial density of hole states, i.e., with the con-
tribution of every d orbital to the density of empty states
[see Eq. (17)]. To get the self-energy for a specific wave
vector and band index 2}, one has to sum the d orbital
self-energies, weighing each of them with the square
modulus of the corresponding coefficients in the expan-
sion of the single-particle Bloch wave function.

The multiband effects enter the theory in many ways.
First, through the orbital density of filled states: the filled
part of the orbital densities of states determines the ener-
gy dependence of the two-particle Green functions G, g
and, therefore, of ¢, g. The crucial characteristic of the
filled orbital densities of states in this context are their
widths and their center of gravity with respect to ES—
they determine the amplitude and the energy position of
the structures in G, g and ¢, g, respectively. This is also
true in the single-band theories, even assuming simplified
forms of the density of states; what is different here is the
fact that differences are allowed in the orbital densities of
states which may turn out in strong differences among
the various orbital components of the two-particle
Green’s functions and scattering matrices.

The relation between these two last quantities and the
orbital self-energies involves the empty part of the orbital
densities of states. This is another point where the multi-
band effects are active, making =, depend upon the orbit-
al distribution of the hole states and not only upon the to-
tal hole number, as commonly assumed in single-band
theories. As a result of these combined effects, we expect
that in strongly anisotropic systems, where significant
differences among the orbital components of the density
of states exist, G, g , t, 5, and £, may vary considerably
on passing from one orbital to another. In such a situa-
tion, we expect that the conditions for the occurrence of
a two-hole bound state, corresponding to the vanishing of
the denominator in Eq. (18), may be significantly different
for the various orbitals and many satellites may be found
in the quasiparticle spectra.!* On the other hand, if the
orbital densities of states do not vary appreciably with a,
as in highly symmetric systems, the ¢, ;=¢, , for any a
and a single-band model may be adequate.

Finally, band effects are explicitly present in Eq. (16):
notice that the wave vector and band index dependence
are a consequence of the presence of the square modulus
of ¢ (k) in this equation. This allows one to understand
how the hybridization between the nearly free sp bands
and the localized d bands affects the self-energy. Since no
direct Coulomb repulsion exists in sp orbitals or as a
consequence of the interaction between electrons in these
states and electrons in d orbitals, the influence of the hy-
bridization can only be indirect, i.e., connected with its
effects on the density of d states and on the composition
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of a specific Bloch orbitals. In particular, if we consider a
band arising from the coupling between a d orbital and
free-electron states, the self-energy turns out to be re-
duced compared to the value determined from the partial
d density of states by a factor |c¢” (k)|

The fact that the self-energy may depend upon k and
the band index has been previously pointed out.'? The
contribution of the present work is that we calculate the
two-hole propagator without introducing any averaging
over the orbital indices. As a consequence, the f-matrix
is not diagonal in the orbital indices as was previously as-
sumed.

The present approach also allows one to overcome one
of the difficulties found in the application of the Hubbard
model within a single-band theory, i.e., the choice of the
actual width of the d band to be considered in the calcu-
lation. A common approximation® is to start from a
single-particle density of states obtained, neglecting any
hybridization effect, and to consider pure d bands only,
this leads to an unrealistic description of the electronic
distribution. Our approach does not rely on this or simi-
lar assumptions; rather, it treats consistently both the sp
and the d bands.

The effects of the correlation on the filled part of the
single-particle spectrum can be described in terms of the
hole spectral function

, 1 1

Ap(@)=—Im—————— (19
T o—e)'—3(0)

which defines the total density of quasiparticle states

N(w)= 3 N (o) (20)
k
with
Ny(w)=3 A, 21

n

and the local density of quasiparticle states

Ny@)=3 3 le (k,n)* A (w) . (22)
k n

B. Self-consistency

The theory we have considered up to now does not in-
clude any self-consistent procedure. This point has been
explicitly addressed in recent studies.>!¢"!® With refer-
ence to the satellite structure, it is generally agreed that
its intensity turns out to be considerably smaller in a
self-consistent calculation than in a non-self-consistent
one. The problem of self-consistency has to do with the
definition of the Fermi level after the inclusion of self-
energy corrections. The single-particle Fermi level Eg, in
the same way as the single-particle eigenvalues, should in
fact be self-energy corrected to give rise to the Fermi lev-
el for the interacting system

Er=EQ+Re[Z}E[)] . (23)

A difficulty is implicit in this expression, that is the viola-
tion of the important requirement that the imaginary
part of 2{(w) would vanish for w=Ep: the self-energy is,
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in fact, equal to zero by construction at the one-electron
Fermi level EQ causing quasiparticles at the true Ej to
have finite lifetimes. This requirement can be artificially
restored*!® by adjusting the origin of energy in the self-
energy

SHw)=2w—A) (24)
with
A=E.—E? (25)

and substituting ={(w) with 2[(w) in all the preceding
formulas and, in particular, in expression (19) of the spec-
tra function and in the calculation of the related quanti-
ties (20)-(22).

This method is, however, empirical and does not tackle
the problem of a consistent determination of the Fermi
energy and of the occupancy of the d band; the normali-
zation of the quasi-particle density of states is, in fact,
another important requirement and its fulfillment can
define a self-consistent loop which ends up with the
correct determination of E.!” Calculations for a single
band with model rectangular or semielliptical density of
states have shown unambiguously that self-consistency
reduces the intensity of the satellite structures consider-
ably compared with the results of a non-self-consistent
theory, the effect being larger when a perturbative expan-
sion is used'® than for a z-matrix approach.!” The re-
quirement of self-consistency is, therefore, important in
order to achieve realistic results.

Unfortunately, this self-consistent procedure, while
easy in the case of simplified models (single-band and
simplified density of states), is not practical in our multi-
band theory. We have, therefore, adopted an alternative
approach which amounts to adjusting the origin of the
energy scale in 2{(w) as in (24) defining the quantity A in
such a way that

EV+A
Lim [ ! =N, 26)
T —e  w—gg —2w—A)

N being the number of occupied states. In the following,
we will show that this shift in the energy scale turns out
to be not too different from the one defined in Eq. (25); in
this way it is possible to fulfill both requirements at the
same time.

In applying the previous theory to specific cases, one is
faced with the difficulty that the single-particle energies
)" are usually obtained from a density-functional calcu-
lation of the band structure, where correlation effects are
already treated in a statistical approach through a local
self-consistent potential. While this has the advantage
that the effects of all the interactions not covered by our
model Hamiltonian are taken into account, it also implies
that the interactions present in H,, have been partially
accounted for in the band-structure calculation. To
avoid a double counting of these interactions, one should
derive a renormalized spectrum, i.e., a distribution of
single-particle energies where the effects due to H, have
been subtracted.

The procedure that has been commonly used in previ-
ous studies, based on a perturbation expansion to second
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order in U, consists of introducing an additional parame-
ter A into the self-energy, i.e., defining a self-energy for
the renormalized band structure as

3 @) =UA’+3(w) .

Since the real and imaginary parts of the self-energy are
related by a Hilbert transformation, A® has to be energy
independent. Its value is determined empirically by
fitting the theoretical one-hole spectra with the experi-
mental energy distribution curves.!°

One easily recognizes that this empirical correction
cannot be applied to the results of a self-consistent calcu-
lation since it may lead to a substantial deviation from
the self-consistency requirement [Eq. (26)]. A better
prescription to derive renormalized bands can be
achieved within a tight-biding description of single-
particle states. If one regards the intra-atomic parame-
ters as mean-field values resulting from the approximate
treatment of correlation provided by band theory, then it
would be appropriate to calculate the hole self-energy
with the bare intra-atomic parameters obtained by sub-
tracting Coulomb effects from the one-particle Hamil-
tonian. Expressions for these corrections are given else-
where.?%?! Inserting our hole values for Ni and NiSi,
into such expressions lead to small displacements of the
intra-atomic parameters. However, the self-energy calcu-
lated in a self-consistent way from this renormalized band
structure is not significantly different from the one ob-
tained, starting from the original band structure. This
suggests that in our cases the need for a renormalized
band structure may be overcome by the self-consistency
of the calculation.

III. RESULTS FOR NICKEL AND
NICKEL DISILICIDE

The calculation of self-energy corrections requires as a
first step the determination of the single-particle eigenval-
ues and eigenfunctions. We have performed a tight-
binding parametrization of the band structure of
paramagnetic Ni and of NiSi, obtained from first princi-
ples in the linear-muffin-tin-orbital (LMTO) scheme.?*
The tight-binding parameters obtained for the two sys-
tems via least-squares fitting are shown in Tables I and II.

Since our purpose is not to achieve an accurate
description of the Ni band structure, which would be im-
possible within the low-density approximation,'>?° but,
rather, to discuss the effects of a realistic band descrip-
tion, particularly of the hybridization, on the self-energy
corrections, we have limited our interest to the paramag-
netic phase of nickel. For this reason, we have extended
our study to NiSi,, where the effects of hybridization are
even stronger, involving both Ni and Si sp states. 3

The total densities of states n(e) of Ni and NiSi, and
the Ni d-orbital contributions n,(¢) to them are shown in
Figs. 1 and 2. Notice that the two systems exhibit a
different degree of anisotropy, the width and center of
gravity of the orbital components of the d density of
states being almost identical for Ni and significantly
different in the case of the disilicide. The total Ni d-
orbital occupancies turn out to be very similar in the two
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TABLE 1. Tight-binding parameters in eV of nickel.

E, 2.536

E, 15.860

E, —3.008

First neighbor  Second neighbor  Third neighbor
(sso) —1.563 0.176 0.184
(ppo) 4.359 0.099 —0.142
(ppm) 0.143 0.220 —0.143
(ddo) —0.501 —0.098
(ddw) 0.332 0.033
(ddb) —0.062 0.002
(spo) 1.665 —0.594 —0.251
(sdo) 0.618 0.245 0.023
(pdo) 0.824 0.230 0.098
(pd) —0.086 0.052 0.098

systems, 8.86 and 8.88 electrons for Ni and NiSi,, respec-
tively, but they arise from different distributions: the or-
bital occupancies, in fact, are 1.71 (1.88) and 1.67 (1.94)
electrons per orbital for 7,, (e,) symmetry of Ni and
NiSi,, respectively. In order to calculate the self-energy
SHw) it is necessary (a) to fix a value for the parameter U
describing the correlation between d electrons, and (b) to
determine the shift in the self-energy scale defined by ex-
pression (26). In agreement with what is given in the
literature®® we have chosen a value U=2.5 for both Ni
and NiSi,. This shift A has been determined to be
—0.804 and —0.275 for Ni and NiSi,, respectively; these
numbers turn out to be practically coincident with the
values of the self-energy near the unperturbed Fermi level
in the two cases, also satisfying, in this way [see definition
(25)], the requirement of a vanishing quasiparticle life-
time at Eg.

In Figs. 3 and 4 we show the orbital components of the
self-energy 3,(w). It appears that significant differences
can occur in the shape of the self-energy curves for
different symmetries. This is particularly evident in
NiSi,, where the structures in the curve for the e, sym-
metry are less pronounced than for f,, and occur at

TABLE II. Tight-binding parameters in eV of NiSi,.

Ni Si

E; 11.722 —6.756

E, 44.119 3.344

E,; —2.860 12.115

Ni-Ni Si-Si Si-Ni Ni-Si

(sso) —0.213 —1.180 —0.306 —0.306
(ppo) 9.159 3.506 4.064 4.064
(ppm) 1.240 —1.008 1.204 1.204
(ddo) —0.148 —0.119 —0.526 —0.526
(ddr) —0.079 2.317 0.733 0.733
(ddd) 0.033 —0.179 —0.233 —0.233
(spo) 0.006 1.552 —1.098 0.855
(sdo) —0.873 0.570 —1.260 —1.441
(pdo) —0.545 2.224 —2.021 —4.961
(pdr) 0.243 1.319 —0.323 —0.174
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FIG. 1. Density of single-particle states of Ni. The lower FIG. 3. Real and imaginary part of the calculated self-energy

panel shows the total density of states, while the upper ones the
contributions from xy,yz,zx (1,,) and x>—y?3z>—r? (¢,). En-
ergies are in eV and are referred to as EJ.

different energies. This is a consequence of the anisotro-
py in the orbital densities of states for NiSi,, as discussed
above. Notice, moreover, that the mixing between
different orbital occupancies involved by the definition of
=, [see Eq. (17)] is responsible for comparable =, values,
in spite of the large differences between the orbital occu-
pancies. >

The differences between the two orbital symmetries in
NiSi, and between NiSi, and Ni can be understood when
considering how the characteristics of the partial densi-
ties of states affect the definition of the orbital self-energy.

04 | o ' ' '
02 |
0.0
02 —
5 o Jy vy
8
F) Total
5 04l
02 |
0.0 ;
—15 ~10 5 0

E-E°(eV)

FIG. 2. Density of single-particle states of NiSi,. Total
(lower panel) and d-orbital (upper panels) contributions are
shown. Energies are in eV and are referred to as E}.

3.(®) of Ni. Energies are in eV and are referred to as E}..

As pointed out above, the energy positions of the struc-
tures in 2, and their absolute values are determined (i) by
the filled part of the d orbital density of states entering
the definition of G, g and ¢, 5, and (ii) by the empty parts
of such densities of states (number of holes) which appear
as a multiplying factor in expression (17). The strong hy-
bridization with silicon sp orbitals present in the disilicide
is responsible for the self-energy reduction in that case
compared with Ni, since it causes a broadening of the en-
ergy range where the Ni d character is present. This is
true of states of 7, symmetry, which give the dominant
contribution to 2, for NiSi,, since only in this symmetry
do empty d states exist.

Im(ztzg) Im(zgg)
10 1.0
05 0.5
~ 0.0 L L 0.0 . L L
>° -20 -10 0 —-20 -10 0
e
12
Re(Z. Re(Z
ok e tag) ol o °g)
-1} -1 \/\
-2 1 1 1 -2 1 1 1
-20 -10 /] -20 -10 0
E-E°(eV)

FIG. 4. Real and imaginary parts of the calculated self-
energy 2. (w) of NiSi,. Energies are in eV and are referred to as
E.
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oors | M
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g o050 |
g
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FIG. 5. d-orbital contribution to the density of quasiparticle
states of Ni. Energies are in eV and are referred to as Ef.

The resulting 2/ (w) for each k and band index are a
linear combination of the different 2 () weighted by the
d-orbital composition of that particular eigenstate [see
(16)]. This gives rise to the k dependence of the self-
energy. In our cases this dependence is almost entirely
due to the hybridization. To illustrate this point we con-
sider the self-energy of the A, bands of Ni, which are
strongly affected by the hybridization. With reference to
the calculated band structure along the A direction (see
Fig. 7), we notice that at the Brillouin zone center the I',
state is pure s, while d3zz_r2 and dxz—yz are degenerate at

I'j,. On moving from T'|, towards X the dxz_yz orbitals
give rise to the A, band, while the d, ,_, orbitals get

mixed with s and p, states along the A, band. This band
shows an increasing sp character and, starting from the
midpoint of the A direction, it has the concave upwards
dispersion characteristic of a free-electron band. On the
basis of these considerations one would expect the self-
energy appropriate to A; bands to be strongly dependent
upon Kk, in particular, it should be reduced on moving
away from I'}, in the upper band and on going from X,
toward I in the lower one. This behavior can be repro-
duced only by a multiband theory like the present one.

Such a pronounced k dependence is not found for the
other bands in nickel. This is a consequence of the high
symmetry of the Ni structure, which does not allow for
significant variations in the shape of X, curves for
different d orbitals.

Figs. 5 and 6 show the local d density of quasiparticle

Nisip
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FIG. 6. d-orbital contribution to the density of quasiparticle
states of NiSi,. Energies are in eV and are referred to as E.
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FIG. 7. k-resolved quasiparticle density of states at high-
symmetry points of the Brillouin zone of Ni. Vertical bars indi-
cate single-particle eigenvalues, referred to as E.

states N, (w) for Ni and NiSi,. Let us start by consider-
ing the case of Ni. It is well known that the density of
quasiparticle states of Ni is dominated by a satellite struc-
ture which is experimentally found at about 6 eV below
the Fermi level. In the f-matrix approach this structure
is interpreted as the excitation of bound-hole pairs; its
binding energy is overestimated by the present calcula-
tion by about 1 eV as in previous single-band theories;
this fact has been attributed to the neglect of additional
contributions to the self-energy due to electron-hole in-
teractions.!®?* The inclusion of both multiband effects
and three-body interactions is, however, quite complicat-
ed and has not been considered here. The density of
quasiparticle states of NiSi, does not present such satel-
lite structure; this is a consequence of the smaller value of
self-energy corrections in this case. By comparing the
single-particle and the quasiparticle density of states of
NiSi,, the most relevant effect associated with the in-
clusion of correlation is the shift of the main peak around
4 eV toward higher binding energies.

As previously stated, the most important results of the
present multiband theory is to include the wave-vector
and band-index dependence in the self-energy; for this
reason we have considered a k-resolved density of quasi-
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FIG. 8. k-resolved quasiparticle density of states at high-
symmetry points of the Brillouin zone of NiSi,. Vertical bars
indicate single-particle eigenvalues, referred to as E2.
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FIG. 9. Quasiparticle band structure of Ni (open diamonds),
referred to as Er, compared with single-particle states (dots), re-
ferred to as EP. The symmetry labeling of bands at I" and along
the A direction is reported.

particle state defined in (21). Assuming negligible matrix
element effects these quantities can be directly compared
with the outcomes of angular dependent photoemission
experiments. Figures 7 and 8 show the k-resolved density
of quasiparticle states at the high-symmetry points of the
Brillouin Zone of Ni and NiSi,. In these figures the
effects of both the real and imaginary part of 2}(w) are
present, determining a shift of the single-particle eigen-
values and their broadening. Both these effects are small-
er in the case of NiSi, due to the smaller absolute value of
the self-energy.

As in angle-resolved photoemission experiments, we
can proceed to the determination of the quasiparticle
eigenstates and satellite energy dispersion by looking for
the energy position of maxima in N, (). The result of
this procedure is the quasiparticle band structure shown
in Figs. 9 and 10 for Ni and NiSi,, respectively. The en-
ergy position of the relevant structures in Ny (w) are here
referred to as Ep while the single-particle eigenstates
drawn for comparison are referred to as EP. Therefore,
the differences between quasiparticle and single-particle
results take into account both the self-energy corrections
and the Fermi-level redefinition.

In the case of Ni the most evident structure is the one
at about 7 eV associated with the above-mentioned satel-

K x r A X2zZW Q L A T

FIG. 10. Quasiparticle band structure of NiSi, (open dia-
monds) compared with single-particle states (dots). The refer-
ence level for quasiparticle (single-particle) states is Ep (EQ).
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lite. Its disappearance at some k vectors is due to an in-
creased broadening of the corresponding structure in
Ny (o). The large shift of the bottom of the valence band
with respect to the single-particle result is entirely due to
the Fermi-level redefinition since, for a pure sp state,
self-energy corrections are zero. The net correction to
the single-particle eigenvalues does not amount, in gen-
eral, to a rigid shift; in particular the dispersion of the hy-
bridized d bands is significantly modified with respect to
the original band structure.

For NiSi, the quasiparticle band structure is quite simi-
lar to the single-particle one, the only relevant effect be-
ing the shift of the quasi-particle band around 4 eV, asso-
ciated with d states, toward higher binding energies.
This again reflects the small value of self-energy for this
material. Notice again that the net shift from single-
particle to quasiparticle states is negative for d states and
positive for the sp states at the bottom of the valence
band. This is a consequence of both self-energy correc-
tions and the redefinition of the reference Fermi level.

IV. CONCLUDING REMARKS

The present work differs from other theoretical studies
in the inclusion of the full hybridized band structure of
Ni and NiSi, in the calculation of quasiparticle eigen-
states. As has been extensively described, the most im-
portant consequence of the inclusion of these multiband
effects is the restored orbital-index dependence of the
two-particle propagator and of the ¢t matrix. In strongly
anisotropic systems, the differences between the orbital
components of the density of states can lead to significant
differences in the various components of G5 and ¢,4; in
particular, the energy position of the t-matrix divergence
may be quite different for different orbital components.
This fact has been proven to be responsible, in the case of
high-T, superconductors, for the occurrence of various
satellite structures at different energies.'* In the present
instances of Ni and NiSi,, these effects are less pro-
nounced in the case of nickel, the cubic symmetry makes
the orbital components of the densities of states rather
similar; in the case of NiSi,, where the anisotropy in the
orbital densities of states gives rise to differences in the
energy position of the structures in G g, t,3, and X, the
small number of holes in one of the symmetries reduces
the absolute value of the self-energy corrections and the
net effects are small. We have derived self-energy correc-
tions which are k- and band-index dependent; this
characteristic is particularly important when one is in-
terested in k-resolved quantities, such as the dispersion of
the quasiparticle eigenstates. The resulting quasiparticle
band dispersion presents self-energy corrections which
vary on going from pure d to pure sp states, introducing a
shift with respect to single-particle states, which is far
from being rigid.

We can draw the following conclusions from our
analysis of the results for Ni and NiSi, concerning the
role of the hybridization.

(i) Holes in d orbitals that are strongly hybridized are
less effective in determining the self-energy corrections.
This is partly a consequence of the lower density of states
of the hybridized bands compared to the pure d ones
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(smaller X ), and partly comes from the reduced d orbital
composition of a particular hybridized band (smaller =}).

(i) The hybridization can affect significantly the self-
energy corrections, giving rise to a band dispersion
different from the one obtained by single-particle calcula-
tions.
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