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We present an exact and a Flory-type study of thermal and geometrical properties of interacting chain

polymers situated on a class of porous model systems represented by the truncated simplex lattices.
Within the exact approach, we have developed a systematic use of recursion relations for both the parti-

tion functions and their various derivatives. We have thereby been able to obtain a proper solution of
the polymer problem, demonstrating that the studied model has a finite critical temperature (0%0 K,
with well-defined critical exponents), in the eases of the truncated 4-simplex and 6-simplex lattices.

However, we show that in the 5-simplex case there is no finite 8 temperature. This finding is in contrast
with the generally accepted qualitative argument that leads to the conclusion that the more ramified lat-

tices are more likely to allow of existence of the 8 point. The same finding shows that the problem of ex-

istence of a collapse transition on regular fractals is more intricate than one could expect, and hence one

can infer that for stochastic fractals (such as the critical percolation clusters) the same problem should

be approached rather cautiously. Besides, our results for the 4-simplex case demonstrate that the model

under study is in the same class of universality as a model, studied previously, with a restricted set of in-

teractions, which should be relevant to the problem of the possible difference between the 8 and 8'
point.

I. INTRODUCTION

The equilibrium properties of a polymer chain in a
quenched random environment, such as a porous medi-
um, appear to be both potentially relevant to various ex-
perimental situations and a controversial theoretical

problem for more than a decade. Porous media are often
fractals, which means that they display a self-similar dis-
tribution of voids over three to four orders of magnitude
in length scale. ' In this paper we model the porous
media by a class of fractal lattices and study the statistics
of a polymer chain situated on such lattices. These statis-
tics can be captured by the self-avoiding random walk
model and may be related to the critical phenomena of
magnetic model systems. The relation is useful in the
case when one studies geometrical properties of the linear
polymers in a good solvent. On the other hand, it ap-
pears that in a poor solvent linear polymers exhibit at a
certain temperature (8 point) their own thermal-like crit-
ical behavior, in addition to geometrical critical proper-
ties. Indeed, at high temperatures the excluded volume
repulsion is the dominant constraint and the polymer
chain is in an extended (swollen) state. When the temper-
ature T is suKciently lowered, the attractive interactions
between the segments of the chain become important and
thereby the chain is in a compact state. These two tem-
perature regions are separated by a critical temperature
0, which appears to be a tricritical point.

In what follows we first outline a general theoretical
framework needed for the study of the polymer chain

statistics. The basic property of a polymer chain
comprised of N monomers is its mean squared end-to-end
distance (Rz ), which scales in the following way

where S is the critical amplitudean, d v is the geometri-
cal critical exponent. In general, v assumes distinct
values in different temperature regions

v, T)O
v= ve, T =O~

1/d, T &8,

where d is dimension of the space in which the chain is
embedded.

To describe linear polymers we consider the usual lat-
tice model in which the polymers are represented by the
self-avoiding random walk (SAW) paths. Within the
SAW model, relation (1) may be interpreted as the mean
squared displacement that the walker makes after N steps
on a lattice. In order to study thermal properties, we at-
tribute an attractive energy —E (E)0) to each pair of
neighboring occupied sites that are not adjacent on the
chain. All thermal properties can be deduced from the
knowledge of the number Q(N, P) of different walks of N
steps with P pairs of the neighboring sites. The corre-
sponding generating function is defined by

G(x, T)= g Q(N, P)x w

N, P
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f (T}=—T lim —lnZ& = —Tiny(T),
1

where Z& is the partition function

Z~= g Q(N, P)w (6)
P

It turns out that in most cases instead of the generating
function (3), it is sufficient to study the following generat-
ing function

go s(x, T)= g Qo+(N, P)x w (7)
N, P

where Qo„-(N, P) is the number of all difFerent chain
configurations that, having N monomers and P neighbor-
ing sites, span the points 0 and R. It has been shown
that for x (x, the function (7) decreases exponentially
for large R,

go z (x, T)-exp[ —R /g(x, T)],
where g(x, T) is the geometrical correlation length of the
polymer chain. When x —+x, the correlation length
diverges according to the power law

g(x, T)-(x, —x)

where v is given by (2).
It is important to notice that the generating (correla-

tion} function is, in fact, the grand canonical partition
function of a chain polymer that spans points 0 and R.
Thus, knowing g one can get the thermodynamical poten-
tial

4= —T lngo z(x, T), (10)

which is related to the free energy fN of the N-inonomer
chain via the Legendre transformation

f~ =T Inx +%'/N .

Investigation of the statistics of the interacting poly-
mer chains within the outlined framework has been ap-
proached in various ways, including exact enumerations
on lattices, computer simulations, renormalization
group (RG) approaches, ' and the transfer matrix calcu-
lations. ' However, there is no complete solution of the
problem on a regular lattice.

In this paper we study thermal and geometrical proper-
ties of chain polymers whose constituting monomers are
situated on a fractal lattice represented by the truncated
4-simplex. " We have been able to obtain a complete
solution of the polymer problem, demonstrating that the
studied model has a finite critical temperature (8%0),
with well-defined critical exponents. A similar problem
has been studied by Klein and Seitz, ' in the case of the
Sierpinski gasket lattice, who found that there is no finite

where w is the Boltzmann factor w =exp(e/T) with the
Boltzmann constant kz being set equal to unity, and x is

the one-step weight (fugacity). The free energy per site

f ( T) is determined by the radius of convergence

x,(T)=1/p, (4)

of the sum (3); that is,

critical temperature. The same conclusion has been
reached by Dhar and Uannimenus' in the case of the
truncated 3-simplex lattice. In both cases, absence of the
critical temperature has been attributed to low
ramifications of the underlying lattices. On the other
hand, a finite critical temperature has been found' for
the truncated 4-simplex lattice, by studying a model with
a restricted set of attractive interactions. In our model,
however, we do not impose restrictions on the attractive
interactions; furthermore, we make a complete study of
the polymer thermal properties within a wide tempera-
ture range. In addition, we analyze the relevant problem
in the cases of 5- and 6-simplex lattice, and find a surpris-
ing fact in that the 5-simplex lattice, in contrast to the 4-
and 6-simple lattice, does not allow the existence of the
collapse transition.

The present paper is organized as follows. In Sec. II
we describe our model and a method of treating it exact-
ly. In Sec. III we analyze the low-temperature behavior
of the model, while in Sec. IV we present its high-
temperature properties, including the 8-point singulari-
ties. Then in Sec. V we develop the Flory-type approach
to the problem of collapse transition of linear chains on
fractal lattices. Finally, in Sec. VI we present an overall
discussion of the obtained results. In the Appendix we
elaborate the polymer problem in the case of the 5-
simplex lattice.

II. THE MODEL AND BASIC RECURSION RELATIONS

We assume that the self-interacting polymer chain is
situated on the truncated 4-simplex lattice. This is a frac-
tal lattice" (see Fig. 1), with the fractal dimension df =2
and the spectral dimension d, =2 ln4/ln6. Within the ac-
cepted model, a polymer chain can be visualized as a
SAW path. To each walk of N sites we attribute the
weight x, and if there are P neighboring sites (which are
not adjacent along the path) we add the weight w P.

Due to the finite ramification of the truncated 4-
simplex, the statistics of the polymer model can be stud-
ied exactly within a scheme of finite number of the re-
stricted partition functions. In what follows it will be
sufficient to study four restricted partition functions (gen-
erating functions). These functions are defined recursive-
ly as weighted sums over the SAW paths within a finite
stage of construction of the fractal lattice. Their

r 2

FIG. 1. The truncated 4-simplex lattice at the first (r =1}
and second (r =2 }stage of construction.
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schematic representation is depicted in Fig. 2. The gen-
erating function A'&"' is the weighted sum over all walks
that enters the rth stage fractal lattice at one vertex and
leaves it at the other vertex, without specifying whether
the walker visits the other two vertices. On the other
hand, the function A~&"' is defined quite similarly, but
with the proviso that the walker must visit at least one
extra vertex. In the case of the function A3"', it is as-
sumed that the walker obligatory visits two extra ver-

FIG. 2. The four restricted partition functions used in the
study of the interacting SAW problem in the case of the trun-
cated 4-simplex lattice. It should be noted that the sets of walks
described by A ~ and A3 are contained in the set of walks de-
scribed by A &. Similarly, the set of walks described by A2 con-
tains all walks described by A 3.

tices. Thus, one can notice that the function A'&' con-
tains both the sum A 2"' and the sum A 3"', in addition to
the term which describes the walks that pass through the
rth stage fractal lattice without visiting the two extra
corners. Finally, the function A4" represents walks that
pass twice through the rth stage fractal lattice.

In Fig. 3 we show an example of the walk within the
second stage of the fractal construction. It can also be
considered as an example of the coarse-grained SAW
path within two arbitrary successive stages (r and r + 1)
of the fractal construction. Hence, if we denote the gen-
erating functions that correspond to the (r+1)-th stage
with primes, and those that correspond to the first lower
stage without superscripts, then the walk shown in Fig. 3
contributes the term (Az) A3A~w to the function A2.
By drawing all other similar configurations one can find
the exact relation between the function A 2 and the gen-
erating functions A „Az, A 3, and A 4. In practice, due
to the very large number of all possible configurations,
one uses computer facilities to establish such a relation.
Here we present the complete system of the recursion re-
lations

A', = A, +2A3i+2A i+4A3iA4+6A fA42+2uAq[3A i+3Aq+4Ai A4+ Ai+vAq+2vA3(A, + A4)+u A3], (12)

A 2
= A, A2( A, +4A, A4+2A i +6A 4)

+uA2[4A i A3 A4+4A i A2+4A2A4+2A i A3+6A3 A 4+ A2+2uA3(2A3 A4+2A2+ A i A3+ VA 3)], (13)

A3=2A2(A i+2Ai A4+3A~}+v[6A~A3+2A2+4AqA3(Ai+2A4)+vA3(4A4A3+6A2+2uA3)] (14)

A4= A i+4A iA4+22Aq+4uAi A~(Ai+3A4)+v [2A2+4A2A3(Ai+3A4)+4vA3(Aq+A4A3)+u A3] (15)

where v =w —1. In fact, the system of equations should
be supplemented with the starting values conditions

A
&

=x +2x w+2x w

A'"=x w+2x w2

A'" =2x4w',x w

A'"=x4 4—x w

(16)

(17)

(19)

FIG. 3. A linear polymer chain situated on the second stage
of construction of the truncated 4-simplex lattice. The polymer
configuration is represented by the sequence of solid segments,
whereas the interactions between the neighboring sites (which
are not adjacent on the chain) are depicted by adding parallel
lines to the corresponding bonds. The associated SAW path
contributes the term {A2") A3"A4"w to the function A2 '. It
should be noted that in this study we assume the presence of the
interaction among all neighboring sites on all stages of the itera-
tive construction of the lattice; that is, we do not confine in-
teraction only to bonds that lie within the first stages of the con-
struction. Consequently, there appears, for instance, the in-
teraction between the K and L sites.

where x is a weight associated with each vertex that the
walk passes through. We may observe here that in the
case of chains without self-interaction (w =1, that is
v =0) our system of recursions equations [(11)—(15}]
reduces to equations originally obtained for simple SAW
on the truncated 4-simplex lattice. "'

Concerning the general framework outlined in Sec. I, it
is important to emphasize that the restricted partition
function A &"' can be identified with the correlation func-
tion (7), so that the distance ~R ~

corresponds to the ex-
tent between two vertices at the ends of an external edge
of the r-th stage of the construction of the lattice. Thus,
the analysis of the polymer statistics within the frame-
work of the partition functions defined by Eqs. (12)—(19)
is equivalent to a grand-canonical ensemble analysis. For
a given interaction parameter w, the radius of conver-
gence x, (w) of the partition function A I"' can be deter-
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mined as the maximum value of the fugacity x for which
the partition functions remain finite after many iterations
of the system of the recursion relations (12)—(19).

In order to find explicit statistical properties of the po-
lymer system it is profitable to derive recursion relations
for derivatives of the partition functions A &, A2, A3, and
A4. For instance, the average number X'"' of monomers
that comprise a polymer chain lying within the rth stage
fractal lattice is given by the expression

~(r) aA', ")

A (r)
1

(20)

while the average number P" of neighboring pairs of
monomers that are not adjacent along the chain can be
expressed as

aA()')

g (r)
1

(21)

aa(")
g (r)

Bx
(i =1,2, 3,4),

so that the following recursion relation is valid

K(r+ i) Q(r)K(r) (23)

where Q'"' is a 4 X4 matrix. The elements of the matrix
Q'"' are given by

ax,""
(24)

J

Therefore, one can, for instance, obtain the monomer
density from formulas (20) and (22) by iterating the recur-
sion relation (23), with the initial conditions being the
first derivatives of (16)—(19) with respect to x. To study
critical properties of the system, one should approach the
thermodynamic limit by performing large numbers of the
iterations, and, at the same time one should calculate all
relevant quantities at x =x, (w). Here we can add that in
order to learn the average energy E'"' one should iterate
the recursion relation

I (r+I) Q(r)I (r)+M(r)
7 (25)

which is analogous to (23). The elements of the column
vector L'") are the partial derivatives of A,-" with respect
to m, assuming that only x is fixed, whereas the elements
of the vector column M" are the partial derivatives of

It should be noticed that the average attractive energy for
the chain is given by E'"'= —cP". Besides, the average
monomer density is determined by

p( ) ~( )/(It ( )) f (22)

where R" is the distance between two vertices at the
ends of an external edge of the rth stage of the construc-
tion of the lattice. Therefore, in what follows we need the
partial derivatives of the partition functions with respect
to x and w. Using the system of the recursion relations
(12)—(15), the requisite derivatives with respect to x can
be expressed in terms of a column vector K'") whose four
components are given by

A,-'"' with respect to w, assuming that all A " "and x are
fixed.

III. THK I.O%'-TEMPERATURE BEHAUIOR

We start our discussion of the behavior of the polymer
system introduced in the preceding section by an analysis
of its low-temperature properties. Due to the dominant
influence of the attractive interactions at very low tern-

peratures, the model being studied should be expected to
display statistical properties of the Hamiltonian walks,
that is, of the SAW that visit every site of the lattice.
Such walks comprise a subset of all possible walks de-
scribed by the four generating functions A; (see Fig. 2).
The corresponding recursion relations can be obtained,
for instance, by substituting A3 for A, and A2 in rela-
tions (14) and (15). Consequently, one obtains

A3 —2m A3+4m A3A4+6mA3A4

A4=22A4+m A3+4m A3A4
(26)

which are relevant to the interacting Hamiltonian walks
on the truncated 4-simplex. Here we want to emphasize
that in a conventional treatment of the Hamiltonian
walks one does not consider any interaction (except the
excluded-volume interaction), and in such an approach w

is equal to 1. Thus, if we set w =1 in (26) we can see that
the latter acquire the form of renormalization group
(RG) relations obtained by Bradley' in the case of nonin-
teracting Hamiltonian walks. ' These RG relations have
one nontrivial fixed point given by A 3

=0 and
A4 =(22) '~, with only one relevant eigenvalue A, =4
and with the critical exponent v being equal to —,'.

The Hamiltonian walks have certain interesting prop-
erties that deserve to be studied in their own right. For
example, in order to learn thermodynamic properties of
these walks, with an arbitrary interaction m, it is neces-
sary to determine the radius of convergence x&= 1/p, H of
the corresponding generating functions. This can be
achieved by starting with the initial conditions (18) and
(19), and by iterating the recursion relations (26). Thus
we have found 1/pH as a function of temperature (see
Fig. 4). It is not difficult to check that the closed form of
this function is xH ( T)=exp( e /T) /co; tha—t is,
xz ( T)= I /(() co, where co = l.399 710 173 is the limiting
value of the reciprocal of the radius of convergence
x&( T) when T~ 00. Knowing the function xH( T), we
can learn that the entropy of the Hamiltonian walks is
the constant o. =inca for all temperatures. Besides, it
should be observed that the low-temperature behavior of
our polymer system is properly described by the function
xH(T) for small values of T. Indeed, we can obtain the
same low-temperature values of xH(T) also by iterating
(for large values of i()) the system of Eqs. (12)—(15) with
the initial conditions (16)—(19). This observation implies,
among other things, that our polymer system has the
finite entropy o. =1nco at T =0, which is reminiscent of a
glasslike behavior.

Before leaving the subject related to the Hamiltonian
walks, we would like to point out interesting properties of
the case with a repulsive interaction (e(0; that is,
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v(")=ln2/ln(~("+ ') /~(") ) (27)

08-

0.6-

04-

0
0

I

20

FIG. 4. Radius of convergence 1/p, H of the interacting Ham-
iltonian walks-generating function. (A) The case of attractive
interactions (c&0). (R) The case of repulsive interactions
(e, (0). One can observe that, when T~0o, both curves ap-
proach the limiting value relevant to the noninteracting case.

w & 1). In this case we have found that the radius of con-
vergence xH(T) is equal to one, for T less than ~s~/lnco,
whereas for T~ ~s~/lnco the radius of convergence is
given by xH(T)=w/co (see Fig. 4). Since the radius of
convergence determines the free energy of the model sys-
tem, this peculiar behavior of xH(T) implies a first-order
phase transition at the finite temperature To=~a~/Into
(see Fig. 4), which was not observed in the case of an at-
tractive interaction. The phase transition at To can be
described as a change from the low-temperature state, be-
ing rich in configurations depicted by the function A4
(see Fig. 2), to the high-temperature state in which both
types of configurations A3 and A4 are present.

The presence of monomer-monomer repulsive interac-
tions (w & 1), in addition to the excluded-volume effect, is
relevant to the case of a "super-good" solvent in which
the nearest-neighbor contacts of nonconsecutive elements
of the polymer must not occur (w =0; that is, v = —1).
Thus, if we let v = —1 (w =0) in our recursion relations
(12}—(14}, we obtain a system of RG equations that de-
scribes a polymer chain in a "super-good" solvent. For
this RG system of equations, with the initial conditions
(15)—(19), it can be verified that only one nontrivial fixed
point can be reached. The fixed point is given by
A ] =0.429 44 A 2 =0 A 3

=0 and A 4 =0.049 98. An
analysis of this fixed point reveals that the corresponding
critical exponent v is equal to 0.674022, which coincides
with the value pertinent to the case of noninteracting
SAW on the same lattice. " Therefore, increasing the
self-avoiding constraint in the described way does not
change the SAW class of universality. Of course, the
same conclusion can be corroborated under the weaker
constraint m ( 1.

Now we turn to the case of attractive interactions
(w ) 1). The critical exponent v for the entire low-
temperature region can be obtained by using the general
(valid for any temperature) formula

p"-2 " (5=1/vo —d/) . (28)

I3Tl TOn the other hand, using the power law p-gr and
the finite-size scaling argument fr =2" we obtain

(29)

Combining (28) and (29) we finally obtain

Pr =vz-(dI —1/vo) . (30)

We shall see later that our results for the critical ex-
ponents do confirm this relation.

which follows from the scaling law (1) and from the fact
that within the rth stage of the fractal lattice the polymer
chain's end-to-end distance is given by R"=2'. The
average number of monomers N" can be calculated by
an iterative application of formula (20), so that (27) pro-
vides a sequence of values v'"'. It turns out that the latter
sequence converges quite rapidly to —,

' in the entire low-

temperature region.
The foregoing result (v= —,

'
) can be related to the fact

that the average monomer density is finite in the entire
low-temperature region, that is to say, for all ternpera-
tures below the 8 point. This fact can be checked by cal-
culating the monomer-density p'"' limiting values, when
r~ oo, via an iterative application of formula (22). Be-
sides, an analysis of (22), together with the basic recur-
sion relations (12)—(19), reveals the asymptotic form

p(P) p( co )+P/2P

valid for sufficiently large r. In this formula C is a con-
stant independent of r. Besides, henceforth we are going
to denote without the superscript ( ~ ) all quantities that
are relevant to the thermodynamic limit r~~. When
temperature increases the average monomer density de-
creases and vanishes, at the 8 point, according to the

Pz.
power law p-t, where t is the reduced temperature
t =(8—T)/T and Pz is the thermal critical exponent.
Within our analysis we have found the value of 8/e with
22 correct digits, and here we quote the first few digits
8/a=0. 785 89. . . . The preceding accuracy allowed us
to determine the critical exponent Pz (by plotting lnp
versus lnt) with the five correct digits Pi.=0.09638. This
result coincides with the value found by Dhar and Van-
nirnenus' in the case of a model system in which the at-
tractive interactions are restricted to bonds within only
the first-order 4-simplex lattice, whereas the correspond-
ing critical temperatures are found to be di6'erent, as
should have been expected.

The critical exponent Pr can be related to the geome-
trical critical exponent vo and to the thermal critical ex-
ponent vz that appears in the scaling law of the thermal—vTcorrelation length gz-(8 —T) . Specifically, using
formulas (1), (22), and the expression R (') =2" for the po-
lyrner end-to-end distance within the rth stage of the frac-
tal lattice, we can obtain the result
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IV. THE 0" POINT AND HIGH
TEMPERATURE BEHAVIOR

BE
N

x

BE BN
Bx r BT

BN
(31;

In the preceding section we determined the 8-point
temperature, 8/s=0. 785 89, as a temperature at which
the average monomer density vanishes. As was men-
tioned in the Introduction, at the 0 point the fractal di-
mension (D = 1/v) of the polymer chain changes abrupt-
ly from the compact-phase value 2 to the new value 1/ve.
Above the 8 point, it again changes (abruptly} to a value
that is the characteristic of the swollen phase. We have
determined ve by successive application of formula (27),
together with the basic iterative relations (12)—(19), for
the critical value of the Boltzmann factor w, =exp(e/8).
Thereby we have found ve=0. 52939, which coincides
with the value found by Dhar and Vannimenus. ' For all
w (w, (that is, T )8) we have obtained, by using a simi-
lar procedure, the expected" value v=0. 674022. Thus,
we have learned the entire scaling behavior (2} of the
average end-to-end distance.

In order to achieve a complete picture about the criti-
cal behavior of the polymer system, we should determine
the thermal correlation length exponent vz. . The latter
can be found by studying the polymer heat capacity and
the corresponding critical exponent az-, since the follow-
ing scaling relation vr =(2—ar }vo can be established. '
The heat capacity can be determined by calculating the
second derivative of the free energy (5} with respect to
temperature. However, this direct approach cannot be
sufficiently precise as it implies a numerical
di8'erentiation. For this reason, we have applied the
framework of the grand-canonical ensemble. Thus we
start with the thermodynamic relation

&N'& —(»'=
Bx

BA) ~2 8 A(
'2 2

A) Bx A)
+

2

(33)

where the first two terms on the right-hand side of (33}
can be calculated by applying the recursion relation (23},
while for the third term we need the recursion relation

4 (~)
M'"+"= ~ ~'")M"+ ~ M'"'M'"'.

i m~ijjmBg()jkj=1 j,k k

(34)

Here M,'"' is the second derivative of the generating func-
tion A 'with respect tox.

Using the method presented in the preceding para-
graph we have calculated the specific heat per monomer
Cz/N of the model under study (a similar method can be
applied to calculate other response functions). The ob-
tained results are shown in Fig. 5. One can notice a pro-
nounced divergence of the polymer system specific heat
at the critical temperature 8/a =0.785 89. . ., which was
previously located as a point where the order parameter
(monomer density) vanishes. The method we have ap-
plied allows us to approach the critical point with a very
high accuracy (of order 1 part in 10'6, and, if necessary,
even better). Thus we have been able to determine the
specific-heat critical-point exponent a& with five correct
digits az. =0.360 27. As we mentioned before, the
knowledge of az, together with the scaling relation
vr =(2—az )vo, renders it possible to learn the thermal-
correlation-length critical exponent vz =0.868 05. With
this result we have completed the picture about the criti-
cal behavior of the polymer system. Consequently, after
inserting our findings for Pr, ve, and vr in relation (30),

and N that appear in (32) can be expressed in terms of
first and second derivatives of the generating functions A
introduced in Sec. II. For instance, the following relation
is valid:

which we are going to use for calculating the specific heat
Cz of our model system for a given number N of mono-
mers (at a constant volume V). Within the framework of
the grand canonical ensemble, the derivatives on the
right-hand side of (31) can be expressed in terms of fluc-
tuations of the number of contacts P and the number of
monomers N, with the result

(&PN }—&P &(N })'
(N2}—(N }2

Here the bracketed quantities are the corresponding
grand-canonical averages. For example, (P }is given by

g PQO „-(N,P)x w

g Qo„-(N, P)x w
N, P

where Qz&(N, P) is the number of all different chain
configurations having N monomers and I' contacts and
span the points 0 and R. The standard deviations of P

0
0

I I I
1 I I I I

02 04 06 08 1.0 I I I

12 14 16

FIG. 5. The specific heat per monomer C =C&/N as a func-
tion of temperature. It should be emphasized that a log-log plot
of the specific-heat data (taken from the region very close to the
0 point) vs the reduced temperature t reveals a well-defined

straight line, with the slope az =0.36027.
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FIG. 6. The phase diagram depicted in the fugacity-
temperature plane. The solid part of the x, (T) curve represents
points of the second-order phase transitions, whereas the dashed
part corresponds to points of the first-order phase transitions.
Points that lie in the region below the x, (T) curve represent the
swollen polymer states. In this phase the pressure of the poly-
mer system is negative, which can be related to the exponential
decreasing of the type (8) of the correlation function A&(x, T).
Above the x, ( T) curve the correlation function A, (x, T) in-
creases exponentially with the system volume, implying densed
polymer states with positive pressure.

we can now see that this relation (which was obtained
after certain scaling assumptions) is satisfied. Besides, we
would like to mention two additional relevant results.
First, we have found that the specific-heat critical ex-
ponent nz has the same value below and above the 8
point. Second, we have found that the ratio A /A+ of
the specific-heat critical amplitudes below and above the
8 point (which is a universal quantity in the case of the
Euclidean lattices) for the truncated 4-simplex lattice has
the value 0.514 45.

It is interesting to examine the place of the 8 point in
relation to the phase diagram in the (x, T) plane. Within
this plane the phase diagram is determined by a line of
the critical values x, (T) that represent radii of conver-
gence of the generating function A, (x, T). Our results
are shown in Fig. 6. The 8 point divides the x, (T) curve
into two parts. The low-temperature part (T &8) corre-
sponds to the first-order phase transitions, which means
that a crossing of the x, (T) curve below the 8 point cor-
responds to a discontinuous change of the polymer densi-
ty p(x) (see Fig. 7). On the other hand, a crossing of the
x, ( T} curve above the 8 point corresponds to a continu-
ous vanishing of p(x} [when x(T) tends to x, (T) from
higher values], which can be related to a second-order
phase transition. Thus, the 0 point itself represents
merging of the first- and second-order phase-transition
lines, and for this reason it is a tricritical point.

General behavior of the order parameter p as a func-
tion of the fugacity x is shown in Fig. 7. There are
several curves for several di6'erent temperatures. For
T ~ 8 one can see that the corresponding curves continu-
ously vanish at x, (T), whereas for T &8 there is a
discontinuous vanishing of p(x). The continuous vanish-

'(d}

Q2-

0
0 Q2

I

08

FIG. 7. The order parameter p as a function of the fugacity.
The curves have been obtained by using expression {22) for
different values of T. The (a) and (b) curves correspond to
T/c= ~ and T/c, =1.S, respectively. The 8 temperature case
corresponds to the (c) curve (8/a=0. 786). Finally, the (d)
curve represents a case that corresponds to temperatures lower
than 8, when p(x) has a steplike behavior.

ing of p can be described as a power law of the type

p(x) -(x —x, )~, (35)

where x, and P take different values for different temper-
atures, and x approaches x, from higher values. The
critical exponent P can be related to the geometrical criti-
cal exponent (2) via the scaling relation

f3=df v —1, (36)

which can be obtained by using arguments that are simi-
lar to those presented in the last paragraph of Sec. EEI.
On the other hand, by a numerical analysis of the curves
depicted in Fig. 7, we have been able to determine pre-
cisely the values P=0.34804 and P=0.05878 for T )8
and T =8, respectively. These values of P, together with
the previously obtained values of v, are in agreement with
the scaling relation (36). In the low-temperature region
(T & 8, when v= 1/df ), the scaling relation (36) implies
P=O, which is in accord with the steplike behavior of the
function p(x) (see Fig. 7).

VA'thin this section we would like to present also a
short discussion of the case of interacting ring polymers
situated on the truncated 4-simplex lattice. The ap-
propriate generating function P(x, T) for these types of
polymers may be expressed in terms of the generating
functions 3

&
and 3&, whose recursion relation are given

by {12)and {13),respectively. We have found the explicit
expression

P(x, T)= g 4 '[4(A'(')'+3(A)"')
r=0

+6U(A'"') (A'"') +3U (A'"') ]

where v =w —l. It is expected that P (x, T) has a singu-
lar behavior of the power-law type P(x, T) —(x —x, }2

where x, is the same function of T that is depicted in Fig.
6. Thus, the thermal properties of these types of poly-
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mers, in the thermodynamic limit, are the same as prop-
erties of the open chain polymers discussed above. As re-
gards the critical exponent a, it should be related to the
geometrical critical exponent (2) via the scaling relation

df v=2 —a. Indeed, by studying the exact second deriva-
tive of P (x, T), with respect to x, we have determined nu-
merical values of u, which, together with previously
found values of v, are in accord with the latter scaling re-
lation in all regions of temperature.

V. FLORY THEORY OF THE 0" POINT BEHAVIOR

Having developed an exact theory of interacting linear
polymers on a fractal lattice, it is interesting to compare
the obtained results with the corresponding Flory-type
theory. Recently many attempts have been made to es-
tablish a proper Flory-type theory for the problem of
SAW on fractals (see, for instance, Ref. 17 and references
quoted therein). Here we shall first make a similar at-
tempt in the case of the interacting SAW at the 8 point,
and afterwards we shall compare the consequent findings
with the available exact results.

In the spirit of the standard Flory theory, ' we con-
struct the free energy Fof a polymer chain in a solvent as
the sum of two parts F =Fi+F2 The fi.rst part (some-
times called energetic term) can be written in the form

F, =N [b2(T)p+b3(T)p + ], (37)

d
where p is the monomer density (p=N/R f ), and bi and

b3 are the virial coefficients. In the extended state of the
polymer chain the first term in the expression (37) dom-
inates, while at the 8 point the second virial coefficient
b2(T) vanishes and the energetic part of the total free en-

2d
ergy acquires the simple form Fi =b&(T)Ns/R f. Qn
the other hand, the second part of the total free energy
(the entropic term) F2 can be written' in the form

wBF2 =c ( T)(R ' /N)', where d„ ii is the fractal dimension
of the random walk path made on the backbone of the
fractal under study, and ~ is a random walk exponent.
Aharony and Harris' have shown that v. can be ex-
pressed in terms of two other scaling exponents
r=d;„/(d s —d;„), where 1;„is the fractal dimen-
sion of the shortest (chemical) path on the fractal under
study. Minimization with respect to R of the total free
energy F yields the following expression for the geornetri-
cal critical exponent vz at the 8 point

3+'7
df ~(2+2rld, s)

(38)

where df g and d, z are the fractal and spectral dirnen-
sions of the backbone, respectively. The obtained formu-
la can be applied to the case of the critical percolation
cluster, as well as to the case of a deterministic fractal.
Besides, in the case of the Euclidean lattices, formula (38)
reduces to the result found in Ref. 19. Furthermore, by
imposing on v~ that it be equal to d, ii /2df ii in (38) one
neglects the excluded-volume effects, and thereby one can
find that the spectral dimension value d, z =3 determines
the upper critical dimension for the 8-point behavior on
fraetals.

Now we are going to compare predictions that follow
from (38) with the exact results found in the case of deter-
ministic fractals. In particular, we are concerned here
with the class of fractal objects that are their own back-
bone, which means that df ~ =df and d, ~ =d, . Thus, for
the truncated 4-simplex lattice, formula (38) implies
v+=0. 64482, whereas the exact result is vp=0. 52939.
The second exact result can be obtained in the case of the
truncated 6-simplex lattice, " which is characterized by
df =ln6/ln2 and d, =21n6/in8. It turns out that a
description of an appropriate model system. , in which the
attractive interactions are lirn. ited to bonds within only
the first-order 6-simplex lattice, can be achieved by using
only three restricted partition functions. ' An analysis of
the corresponding recursion relations reveals the ex-
istence of three relevant fixed points. Two of these fixed
points describe low- and high-temperature behavior (with
the respective geometrical critical index v being equal to
ln2/ln6 and 0.550 18), while the third one describes a 8-
point behavior with the following exact critical exponent
vp=0. 401 38. This finding should be compared with the
value 0.52474 which follows from (38). Therefore, one
can see that in the case of the truncated 4-simplex, as well
as in the case of the truncated 6-simplex, the Flory-type
formula (38) overestimates the critical exponent vo. The
case of the truncated 5-simplex lattice is not discussed
here since this lattice does not allow the existence of the
8 point (see Sec. VI and the Appendix).

The observed discrepancy between the exact values for
vp and the corresponding Flory-type predictions, in the
case of fractal lattices, could have been anticipated be-
cause the same type of discrepancy appears in the case of
regular lattices. ' ' One may try to lessen the discrepan-
cy (in a phenomenological manner) by relaxing the choice
of the exponent ~ for the problem of interacting linear
polymers on fractals at the 8 point. Accordingly, by tak-
ing a value of r that satisfies the inequality r ) I/(d —1)
one ean bring about a better agreement with the available
exact results. Of course, there are many other phenome-
nological ways to achieve various closed-form expressions
for vo. For instance, by using a correspondence (in two
dimensions) between the percolation hull and the poly-
mer conformation at the 8 point, it has been learned
that vs=5/(df ~+7), which fits the exact results reason-
ably well (although it cannot be expected that the latter
formula works well for higher dimensional systems).
Therefore, it appears that in the case of the 8-point be-
havior on fractals, similarly to the SAW problem on frac-
tals, it is hardly possible to find the critical exponents
closed-form expressions that are both simple and accu-
rate.

VI. SUMMARY

In this paper we have presented results of our study of
thermal and geometrical properties of interacting chain
polymers situated on a class of fractal lattices represented
by the truncated 4-simplex. In order to achieve a com-
plete picture of the corresponding thermodynamical be-
havior (including the critical behavior), we have
developed a systematic use of the recursion relations for
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both the partition functions and their various derivatives,
which makes possible the avoiding of diSculties related
to numerical differentiation. We have thereby been able
to obtain a proper solution of the polymer problem,
demonstrating that the studied model has a finite critical
temperature (0%0), with well-defined critical exponents.
A finite critical temperature has been found' also for the
truncated 4-simplex lattice, by studying a model with a
restricted set of attractive interactions. In our model,
however, we do not impose restrictions on the attractive
interactions. The critical temperatures found in the two
cases (the restricted set' of interactions and the entire set
of possible interactions) are different, as could have been
expected. On the other hand, the set of exponents calcu-
lated in Ref. 13, as well as those exponents whose values
follow from the scaling relations, agree with our results,
which indicates that the models (with two different sets of
interactions) belong to the same universality class. This
finding should be a relevant piece of information within
the context of the problem of equivalence of the 8 and 8'
point. '

The method developed in the case of the truncated 4-
simplex lattice can be applied to any fractal lattice with a
finite order of ramification. In this manner, we have
studied the polymer-chain problem on a lattice with a
higher order of ramification, that is, on the truncated 5-
simplex lattice (see Appendix) and found no collapse
transition. This finding is in contrast with the generally
accepted qualitative argument' that leads to the con-
clusion that the more ramified lattices are more likely to
allow the appearance of a polymer phase with a finite. -
monomer density. On the other hand, a study of the
available recursion relations for the truncated 6-simplex
lattice, ' ' obtained for a restricted set of the attractive

A, A, A,

A. A,

FIG. 8. The six restricted partition functions used in the
study of the interacting SAW problem in the case of the trun-
cated 5-simplex lattice.
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interactions, reveals the existence of a finite-temperature
collapse transition. This fact demonstrates that the prob-
lem of existence of collapse transition is more intricate
than one could have expected. Consequently, keeping in
mind that the fractals under study are more regular ob-
jects than stochastic fractals (like the critical percolation
clusters), one can infer that for the latter the same prob-
lem should be approached rather cautiously.

APPENDIX: THE 5-SIMPLEX CASK

The following remarks concern the existence of the 8 point in the case of the truncated 5-simplex lattice. This is a
self-similar (fractal) lattice, with the fractal and spectral dimension being equal to ln5/ln2 and 21n2/ln7, respective-
ly." The problem of the interacting SAW on this lattice can be studied by introducing the six restricted generating
functions represented in Fig. 8, whose meaning is similar to the meaning given to the functions (see Fig. 2) used in the
4-simplex case. These functions satisfy the following set of the recursion relations:

A ) =132A5(A, + A5)+ A f(1+18A5+96A )+ A, (3+12As+78A5)+6At(1+ A, +5A5)
+v[528A 5A6(A2+ A6)+ A, Az A6(384A ~+216A, A5+48A f )+ A

&
A2(3+24A~+198A ~ )

+ A fAq(18+126A~+36A) }+AqA5(18+96A5)+24A )A6

+v(384AzA5A6(A3A~+ A2A6)+ A2A3A6(72A I+288A, A~)+ A3A ~(528A6+162A&)

+ A, A2A3(12+ 156A~+54A, )+ A q(216A, A 6+12A3 A~ }+A 2A6(216A5+120A, )

+6A~(1+6A~+8A5)+u [96A2A3A6(A~+3A5)+24AI(A3Aq+ A~A4A6)

+ A2(60A, A 3+360A3 A6+72A~ A~ A6+6A 3+108A23A5)

+12A2(AIA4+14A3A6+2A4A~)+6A3(A f+7A5)+384A3A5A6

+42A2A3+u[6A2 A 3(2A ~ A4+4vA3 A~+6A4A5+20A3 A6)

+6A 3( A, A 3+uA5 A4+8vA3 A~ A6+vA 3 )

+6A2A3(vA4+12A4A6+8A 3+4A2A4)

+6A3(v A3A4+12A4A5A6+28A3A6+3A3A5}]I)],
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A ~
= A ~~(6A ~+6A 5+4A, A5+54A ) A ~+2A, +26A, A ~)+ A, A ~A6(128 A 2+176A6)

+SA, A2A6(6A5+ A, }+A ~(176A2A6+32A~+528A6)

+2u[A~(7A)+11A~+1)+ A2A6(28A (+60Aq)+352AqA6(AqA~+ A~A6)+ A) A qA~(21A5+6A))

+ A q( A ) +3A 5+16A 5 )+ A qA6(60A )+128Aq)+ A qA~(2A ) +36A ) Aq+4A5+10A f +42A ~5)

+ A5A6(128A, A~+1056A6)+ A~A~ A6}(96A, A~+128A~+16A, }

+u(A2A)Ag(12A) A5+2A )+30A5)+A2ApA6(256A6+168A2)+A)A~A5A6(24A)+64A5)

+ A2Aq(64A6+13A~)+352A6(A~AS+ Aq A6)+ A qA q(3+24A t+48Aq)

+ Aq A qA6(180Aq+60A ) )+ A5 A6(128A2 A~+192A q )+ A q(12A ) Aq+2A5+2A f +15A 5 )

+ A2AgA6(12A (+48A5)+ Aq~Ag(4A )+10A5)+84A) A~qA q~

+u[ Aq(1+5A)+10Aq)+ A2Aq(A )+4A5)+ AqAq(216A2A6+72A2~A6+16Aq+256A6)

+ A5 A4(2A i As+9A3 As+24A2A6)+ A &A4(12A
&
A2+42A& A&+24A, A6+108A5 A6)

+ A2 A q(SSA6+26A2)+ A 6(64A ~A5+108A ) )

+v [AqA~(6vA2A~+52A~A6+28vA~A6+10A +~3v A~+132A6)+ AgA~(2A~+vA~+12A6}

+ A2~A2q(3A )+15A5)+ A ~(28A~Aq+12vA q+64AqA6+4A g)] j )]

A p
= 8 A ) A2 A6(16A 5+6A, A 5+ A, )+ 176A ~A 6( A2+3 A 6)

+ A ~(2A f +4A, A ~+54A, A ~+26A f A5+6A i +6A 5+32 A 5 )+176A i A 5A 6

+u[2A2(1+7A, +11A5)+ A2A6(56A )+120A5)+ A qA 6(120A, +256A5)

+ A q(12A f A~+2A )+6A5+32A5+42A) Aq)+704AqA6(AqA5+ A2A6+3A6)

+4A2Aq(A, +18A, A5+2A5+5A, +21A5)+32AqAq A6(A, +6A) A5+8A5)+256A, AqA~A6

+ u (4A q A q A q( A t +6 A, A ~ + 10A ~ ) + 128 A q A q A 6 ( A 2 +4 A 6 ) +704 A 6 ( A q A 6 + A ~ A q )

+48A~A5A6(A) Aq+2A2)+4Aq(4A5+4A )+24A, Aq+30A~ )+ A~Aq(SA )+20A5)

+120A qA2 A6( A, +3A5)+6A 2A q(1+SA, )+24A 2A6( A, A ~+ 14A g A6)

+96AqA5(A2+4A6)+128AqA5A6(AqAq+2A2A6)+26AqAq+168A, AqA6

+ u {144A2 A q Aq A6( A2+2A6)+2A q(1+ 5 A )+10A5 )+2A ~A ~( A (+4A5)

+ A g(176A2A6+52A q+216A 6)+4A qA~(6A ) A2+21A2A5+12A ) A6+54A q A6)

+128A~A 6( AqAq+4Aq A6)+4A) Aq(A ) A~A5+8A2 }+A~AS(18A) A5+48A2A6)

+u[A2AqAq(104A6+20A2)+vAq A~(12A2+56A6+6vA~)+4A~A5(A~+6A6)

+6A ~A~( A, +5A5)+ A qA~(56A~+24A~+128A6)+264Aq A qA 6+2vA qA5+8 A q ]])],
A ~ =6A2(4A, A5+ A, +7A ~ )+528A5A6(A~+2A6)+12A ~A6(A, +6A, A5+16A 5)

+6u[ A2 Aq Aq(128A 6+6A, Aq)+ A2 A q( A f +15A 5)+352A 6(2A6+ Aq A5)+12A ~Aq A6( A ~+4A5)

+ A~A5 A6(12A, +32A5)+ A2A~(4A, +10A5)+ A~( A2+6A2A6+28A6)

+u( A2A q(SA2+36A6)+ A ~A~( A2+8A6)+ Aq A~ Aq A6(48A~+128A6)+4A
~

A q( A2+2A6)

+2A2Aq A~(A ~+4A5)+ AqA5(14A2+36A6)+ A qA~Aq(2A, +9Aq)

+ A ~A 6(108A2+128A6)+352A~A6

+u [ A q(7A2+ 16A6)+2A qAq( A ) + 5 A 5)+6Aq A qA5( A2+6A6)

+ AqAq(52A~A6+10Aq+132A6)+ Aq(Aq+ AqAq+128A6)

+v [6AqAq+ AqA~q(9A2+42A6)+ Aq(4AqA5+6uA~+52A6)+10uAqA6+v A~]J )],
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A q
=22A q(1+ 10A, )+4A i A5(1+ 8 Aq)+ A ~i(1+13A ~ }+2A i +SSA i A q+186A q

+v[ A|AqAqA6(528Aq+128A i)+24AqA6(A i+44Aq)+ A i A q(4+66Aq)+12Ai AqA5(1+8Aq)

+ Aq(14A i+SSA5)+ A qA6(528Ai+1488Aq)

+v[ Aq Aq Aq A6(256A i+528Aq)+ A q A q A s(352 A i+1584A5)+ A5 A 6(2112Aq+2976A6)

+4A, A ~qAq(1+27Aq)+ A~q(2+27Aq+16A i)+ A qA6(72A i+128A~)

+ A~A6(128A, +704A5)+12A ~As A5(1+SA5)+ A, A~Aq(48A, A6+26A, }

+v( A, A qAs(96A~+128A6)+352A~A s( A~A5+2Aq A6}+256A, Aq As(Ap A, + A~ A6)

+28A5(A, Aq+ AqA~)+704As(AgAg+3ApA6)+ ApAgA6(24A i+128A5)

+ A ~ A q (4+ 36A, +84 A ~ )

+8A q(A, A~+15As As)+4A sAs(As+176A6)+4A s(A i+SA5)+22A qAs

+v{128AsAs(A~As+ As As)+ As(1+15As)+24A qAs(Ai A~+5AqAs)

+32A~As(A~s+3AgA6)+ApAsAg(12Ai As+256A6)

+20AqAs A~(A~~+3AsAs)+6A, As+704AsAqA6

+v[24As AqAs(uA~+2Aq)+ A qAq(28Aq+72A6)+2A sAq( A i+5uAs)

+vAq(A5+2uAq)+8AqAs(A~+16A6)+4A)+4vA~As A~+18AsAqAq]})]}

As = A, (A~+ A6)+44Ai A~(A~+2A6)+ A5(66A~+186As)+ A, AqA5(6A, +16As)

+u [ A~As As(32A, A~+44A, +12A, )+SSAs A sA6(A, +3A5)+16A ~A ~(A~+11A6)

+ A, A~(5A, +18A~)+A~A6(792A~+1488As)+ A, A~As(18Ai+64A~}+2A, A~Aq

+ u [ A q A q A 5 (24 A, A q+ 528 A 6+32 A q A s+ 128 A ~ A 6+ 30 A ~ ) + A ~ A ~( A, +6 A ) A ~+ 16A 5 )

+SSAqAs As(AqA~+3A5A6)+ AsAs A6(64A, +176As)+ A, A~Aq(14A~+60As)

+ A ~As(15A+64As)+2112As As A s+2976A6+4A f Aq A q+2A~

+v( Ai As(IOAqAs+6A~Aq+28As As)+352A6(As+5AqAs}+16AsA5(AqAq+4Aq A6)

+ As A~A ~(24A q+128A~ As+528A s)+ A~ A s As(84A~+192As)+ A q(28Ag As+ 16A p )

+3 A ~Aq( A q+2A i A~)+30Aq As Aq

+ v [12A~ As A~( A~A5+9Aq As)+11A~ A q+4A i A qAq+64A q A qA q A6

+ 18A PA 3A4+2A ~A 4+ 192A 3A4A 6+ 18A 3A4A5+27A 3A6+352A 4A 6

+u[13A~ A ~A~+13vA ~A6+7uA ~A ~+6A~ A4A~+v Ag+66A pA4A6

+SA', A, +64A', A', ]})]}.

A [,
i) =x~+6x5w6+»3W+6x4w3,

Az"=x w+4X w +6x w

A ',"=2x'w'+6X'w',

4
—X W

A '"=x4w4+2x'w'

A'" =x'w'—x w

(A2)

This system of equations should be supplemented by
the initial conditions

l

which make the definition of the polymer chain model
complete.

An analysis of (A1), by applying the method described
in Sec. II, reveals that the corresponding model system
cannot reach a phase characterized by a finite monomer
density starting with the initial conditions (A2). In addi-
tion, within the same analysis we have shown that, in the
5-simplex case, the geometrical critical exponent v has
the single value 0.600 32 in the entire temperature region,
which, among other things, means that the model under
study does not display the 0 point at a finite temperature.
This finding should be contrasted with the results ob-

tained for the 4-simplex and 6-simplex lattices.
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