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An analysis of resistance data for crystalline YBay;Cu3zO7—,/PrBa;CusO7—, superlattices that
reveals a new fine structure is presented. This fine structure, which is directly related to the
two-dimensional (2D) to three-dimensional crossover close to T., gives a measure of the effective
anisotropy of the various superlattices. The data is remarkably well explained by the 2D Ginzburg-
Landau Coulomb-gas model and the fine structure can be attributed to the coupling between the

superconducting YBa;Cu3zO7_; layers

The high-T, superconducting materials can be thought
of as consisting of superconducting parallel planes asso-
ciated with the CuO2 planes in the material. A large
anisotropy between the directions parallel and perpen-
dicular to the planes indicate that these superconduct-
ing planes are weakly coupled. Quasi-two-dimensional
(2D) effects are expected to show up in the experiments
provided the interplane coupling is small enough. The
resistance for 2D superconductors is close to the transi-
tion dominated by thermally created vortices and vortex-
antivortex unbinding.!™® Consequently effects related to
vortex unbinding may also be expected to show up in
the high-T, materials provided the anisotropy is large
enough. Several claims of observing such vortex un-
binding effects in high-7, materials have recently been
made.*® In particular it has been shown that the re-
sistance data from Ref. 5 for a Bi;SryCaCu,0Og crystal
closely obeys the same resistance scaling function as the
ideal 2D superconductors.® This suggests that the super-
conducting planes for this particular material are effec-
tively decoupled above the critical temperature 7,. The
possibility of such an effective decoupling above T, has
recently been established through Monte Carlo simula-
tions on the level of a 3D anistropic XY model.”

The effect of the coupling between superconduct-
ing planes can be systematically studied in the re-
cently epitaxially grown YBayCuzO7_,/PrBasCuzO7_;
superlattices.®® The resistance data analyzed in the
present paper are for superlattices consisting of
alternating layers of Ny unit-cell-thick layers of
YBayCuzO7_-(YBCO) alternating with Np unit-cell-
thick layers of PrBa;Cu3O7_,(PBCO) (see Ref. 8 for de-
tails on experiments and samples). For fixed Np the in-
terplane coupling increases with increasing Ny since the
anisotropy decreases. Likewise, for fixed Ny the inter-
plane coupling decreases with increasing Np. The exper-
imental data for these materials have already generated
lively discussions and several tentative explanations have
been proposed.!0714

A major object with this Brief Report is to demon-
strate that more information can be extracted from an
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analysis based on a phenomenological description of vor-
tex fluctuations. This additional information is directly
related to the interplane coupling. It thus adds to the un-
derstanding of these materials and may provide possible
ways of distinguishing between various models, based on
more microscopic considerations, which have been pro-
posed as explanations for some aspects of the data.!!™14

The method we use to analyze the data is based on
the 2D Coulomb-gas scaling concept and the Ginzburg-
Landau Coulomb-gas model.! The Ginzburg-Landau
Coulomb-gas description of vortex fluctuations for 2D su-
perconductors leads to the existence of an effective tem-
perature scaling variable X .1%! This means that the re-
sistance ratio R/Ry, where R is the flux flow resistance
caused by vortices and Ry is the normal state resistance,
is a universal function of X.!® In other words the resis-
tance data R/Ry for all realizations of a 2D supercon-
ductor which are well described by the Ginzburg-Landau
Coulomb-gas model should fall on a single curve when
plotted versus the scaling variable X.! The functional
form of this scaling curve has been well established from
data for type-II superconducting films in the interval
—14 < In(R/RN) < —1.5. Furthermore the established
functional form has been tied directly to the Ginzburg-
Landau Coulomb-gas model through extensive Monte
Carlo simulations.!® We want to stress very strongly that
the functional form of this scaling curve, within the re-
gion for which it has been established, describes non-
critical properties of vortex fluctuations. It does not re-
flect any critical phase transition properties; the scaling
curve relates to a region outside the critical region for the
Kosterlitz-Thouless transition.}!? The scaling variable
X is given by X = [T/n?P(T))/[Tkt/n*°(Txr)] where
n?P is the (areal) density of superconducting electrons
for the 2D superconductors unrenormalized with respect
to vortex fluctuations and Tk is the Kosterlitz-Thouless
temperature.! We assume that a standard Ginzburg-
Landau description applies to the temperature varia-
tion of n2P in the absence of vortex fluctuations, i.e.,
nzD(T) o« Too—T where T, is the Ginzburg-Landau tem-
perature. This phenomenological assumption has turned
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out to be a good approximation for type-II superconduct-
ing films.! We conclude from our analysis below that it
is a very good approximation also for YBCO films. Tk
and T, are used as two fitting parameters in our analysis
and X reduces to

x =L _Teo—Tkr (1)
Too—T Tkt

For 2D superconductors the significance of these two pa-
rameters are the following: T, is the temperature where
the phase transition would have been if the superconduc-
tor was well described by a phenomenological Ginzburg-
Landau theory and if there were no vortex fluctuations.
Tkt is the temperature where a phase transition caused
by the vortex fluctuations takes place.!®! For the layered
materials the interpretation is somewhat modified. These
materials have a 3D phase transition caused by the inter-
plane coupling at a critical temperature T, below which
there is true long-range order. Thus we will characterize
YBCO/PBCO superlattices in terms of three tempera-
tures Tkt < T. < Teo where T is the Ginzburg-Landau
temperature relating to the temperature dependence of
n?P | T is the critical temperature for the 3D phase tran-
sition caused by the interplane coupling, and Tkt is the
temperature where the vortex fluctuations would have
caused a Kosterlitz-Thouless transition to take place in
the absence of the interplane coupling.

The actual procedure of analyzing the data is very
simple.!® We start from the R(T) data for a given sam-
ple. The normal state resistance Ry is extracted from the
nearly T-independent part of the data somewhat above
the transition. To be definite we have used Ry = R(T =
100 K) for all the samples analyzed. Thus for a given
sample we have R(T)/Rn and want to know to what
extent the data is described by the known 2D scaling
function R(X)/Rn. The data falls on the scaling curve
provided R(T)/Rn = R(X)/Rn and this condition gives
a corresponding function X(T') for each sample. Now if
the description applies then T/ X (T') x Teg — T [compare
Eq. (1)]. In Fig. 1 we have illustrated this procedure for
the four samples (Ny, Np) = (1,16}, (2,16), (3,16), and
(3,4). As seen in Fig. 1, the data fall on su-aight lines for
each sample to a very good approximation. The straight
lines in Fig. 1 are least squares fits to the linear part of
the data. For the (1,16) and the (2, 16) data this means
all the measured data, whereas the data points for (3, 16)
and (3,4) at the very lowest temperatures deviate from
the linear part and are exluded from the least-squares
fits. From the fitted straight lines we get the correspond-
ing values of Tp and Tkr. In Fig. 2 we have plotted the
R/Rn data versus the scaling variable X obtained from
Eq. (1) using the determined values of T,y and TkT. The
solid drawn curve in Fig. 2 is the 2D resistance scaling
function. As seen in Fig. 2 the data for (1, 16) and (2, 16)
data falls on the 2D scaling curve to a remarkable degree,
whereas the (3,16) and (3,4) data deviate slightly for
lower resistances. We interpret the agreement between
the data and the 2D scaling curve in Fig. 2 as strong
evidence that the resistance close to the transition for
these YBCO/PBCO superlattices is caused by quasi-2D
vortex-fluctuations and, furthermore, that these vortex
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FIG. 1. YBCO/PBCO superlattice data plotted as T/X

vs T. Circles, diamonds, triangles, and asterisks correspond
to (Ny, Np) =(1, 16), (2, 16), (3, 16), and (3,4) superlattices,
respectively. The straight lines are least-squares fits to the
linear parts of the data and give the values of the parameters
Teo and Txr. [(Teo,Tir) =(72.2, 14.3), (82.5, 43.2), (83.5,
66.6), (85.6, 76.4) (K) for (Ny, Np) =(1, 16), (2, 16), (3, 16),
and (3, 4), respectively.]

fluctuations are very well described by the 2D Ginzburg-
Landau Coulomb-gas model.

How is this at all possible given the existence of the in-
terplane coupling between the YBCO layers? The answer
we suggest is based on recent Monte Carlo simulations
for the 3D anistropic XY model which can be taken as a
simple model of coupled superconducting planes.” These
simulations show that the vortex density per supercon-
ducting plane for a given small interplane coupling as a
function of the scaling variable X collapses onto the same
scaling curve as the 2D XY model immediately above T.
At and below T, the Monte Carlo simulations show that
the interplane coupling takes over and the vortex density
drops below the scaling curve for the 2D XY model—the
more so the stronger the interplane coupling.”

Figure 3 is a blowup of Fig. 2 focusing on the devia-
tions from the 2D resistance scaling curve. The order of

ln(R/Rx)

FIG. 2. Comparison between the YBCO/PBCO superlat-
tice data and the 2D universal resistance function (solid curve
in the figure). The data symbols are the same as in Fig. 1.
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FIG. 3. Blowup of Fig. 2 showing the deviations from the

2D universal resistance function. Also shown is the data for
a Bi;Sr,CaCu2Os crystal (Ref. 5) (crosses in the figure).

increasing coupling is (1, 16), (2,16), (3,16), and (3,4);
the first three corresponding to an increase in Ny for con-
stant Np and the last to a decrease in Np for constant
Ny. As seen in Fig. 3 the (1,16) and (2,16) data do not
deviate from the 2D scaling curve over the range of data
taken. This indicates a very weak interplane coupling.
The (3,16) data on the other hand deviates and the (3,4)
data even more, indicating a successive increase of the in-
terplane coupling. This is perfectly consistent with the
expectations from the Monte Carlo simulations.” All the
(Ny, Np) superlattices we have been able to analyze in
the same way confirm that the stronger the interplane
coupling the larger the deviation from the 2D resistance
scaling curve. Thus this analysis correlates the size of
the effective interplane coupling with the deviation of the
resistance data from the 2D scaling curve. We have il-
lustrated this in Fig. 3 by analyzing the Bi;SroCaCu0s-
crystal data from Ref. 5 in the same way. Asseen in Fig. 3
this suggests that a Bi;Sr,CaCu30g crystal has the same
effective anisotropy as the (3,16) YBCO/PBCO super-
lattice (although better BizSr,CaCu;0g data would be
needed to make this estimate firm). Or in other words
the Bi;Sr,CaCu;y0g crystal is intrinsically as two dimen-
sional as the (3,16) YBCO/PBCO superlattice.

Our analysis is completely consistent with a resis-
tive behavior caused by free quasi-2D vortices. These
vortices are produced by breaking thermally created
vortex-antivortex pairs.! Below the critical temperature
T. the interplane coupling causes the effective vortex-
antivortex interaction to be linear with separation for
larger distances.?? This means that there are no free vor-
tices below T, and hence no resistance. Above T, the
linear term in the effective vortex-antivortex interaction
vanishes.?’ This means that free vortices are produced,
since T, is larger than Tkt and Tk is the temperature at
which the production of free vortices becomes possible if
it were not prohibited by the linear term in the effective
vortex-antivortex interaction.

Figure 4 displays information from our analysis of the
YBCO/PBCO superlattices plotted as TktTe0/[Tco —
TxT] versus Ny for three different constant values of Np,
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FIG. 4. The quantity Tk1Tco/[Tco — TkT] plotted vs the
YBCO thickness Ny for three different values of PBCO thick-
ness Np, i.e., Np = 16 (circles), 4 (squares), and 2 (triangles).
Solid lines are guides to the eye.

1.e., Np = 2, 4, 16. The idea behind this figure is as fol-
lows. The criterion for Tkt is given by!:18

2

mh 2D
8kgm*e n™ (Tkr)

~ =T D (0)(1 — Tier/Teo) (2)

~ 8k3m"€ KT/4c0))
where m* is the effective electron mass (for the direction
parallel to the YBCO layer), kp is the Boltzmann con-
stant, and ¢ is the Columb-gas dielectric constant.! The
value of ¢ has been determined to be ¢ ~ 1.65 for the
Ginzburg-Landau Coulomb gas.}'6 Provided that Ny is
large enough so that the intrinsic properties of the ma-
terial does not change by adding another unit-cell-layer
material, then a change of the thickness, Ad, is directly
related to the change in the areal superfluid density of
the layer An?P = n3P Ad where n3P is the 3D superfluid
density of the material. This density is related to A, the
London penetration depth (for the direction parallel to
the YBCO layer), by

b _ () m L
T\ 27 Th2 A2’
where ¢@g is the flux quantum. Consequently we expect
that

A (TxrTe ) _ ! S _L g
Teo — TkT 8 x 1.65kp \ 27 A2(0)
Furthermore Ad ~ 12ANy A for YBCO and putting

everything together gives

TxTTeo
Teo — TkT

Tk =

1
= const + 7.1 x IOSZ\TO)NY (3)
provided T is in units of K and A in A. Thus we ex-
pect that, for large enough Ny, the data points in Fig. 4
should fall on straight lines and the slopes of these
straight lines should give an estimate of A(0). By letting
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the straight lines be defined by the two last data points
for each Np sequence we obtain A(0) = 1540, 1270, 1230
A for Np = 16, 4, 2, respectively. Furthermore a direct
extrapolation of the slopes in Fig. 4 to Np = 0 comes
close to A(0) ~ 1200 A for the pure YBCO material.
A typical value quoted in the literature for this value is
A(0) = 1400 A.2! The value we get is very close to this
value considering the fact that it has been extracted by
fitting the YBCO/PBCO superlattice data to the 2D re-
sistance scaling function followed by an extrapolation to
the 3D YBCO crystal. This success of the analysis is an
additional argument in favor of our interpretation. Fig-
ure 4 also suggests that the condition An?P = n3PAd is
reached to a good approximation already for Ny = 2.
In short the present analysis suggests that
YBCO/PBCO superlattices, on a phenomenological
level, are very good realizations of coupled supercon-
ducting planes. The analysis supports the prediction” of
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an effective 3D to 2D decoupling of vortex fluctuations
above T,. The information on the interplane coupling,
obtained from the phenomenological analysis, also may
provide restrictions on possible microscopic mechanisms
responsible for the interplane coupling. It further sug-
gests that fundamental aspects of the layered structure
can be systematically probed by investigating sequences
of YBCO/PBCO superlattices and that these aspects will
be of direct relevance for our understanding of high-T,
materials with large anisotropy.
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