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Crossover phenomena in disordered two-dimensional Ising systems: A Monte Carlo study
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We performed extensive Monte Carlo simulations of site-disordered two-dimensional Ising systems

along the critical line T, (p) in the concentration range of magnetic sites between p =0.6 and p =1.0
(p, =0.59). Magnetic and caloric properties were studied as well as the cumulants of the magnetization
distribution. We found that the disorder induces a crossover phenomenon in the experimental tempera-
ture range which leads to a strong, concentration-dependent increase of y,& (y,„=2.16 for p =0.7) in

the temperature range 10 '&(T —T, )/T, &10'. Near T„y,z asymptotically approaches y=1.75, in-

dependent of the concentration. We propose a model of weakly coupled compact clusters of spins to de-

scribe this crossover phenomenon.

There is a long-standing research interest in critical
phenomena in disordered spin systems. The main ques-
tion is how the disorder changes the nature of the phase
transition and thereby the universality class. ' The
asymptotic critical behavior may be changed in three
different ways: (i) The disorder may be an irrelevant per-
turbation so that the critical behavior is asymptotically
unchanged; (ii) the disorder may be relevant and lead to a
different universality class; and (ii) in rare cases, the dis-
order may lead to critical exponents which depend con-
tinuously on the concentration. Heisenberg systems be-
long to the first category; their crossover exponent P„
with respect to disorder is equal to the critical exponent
of the specific heat of the pure system aI, = —0.09; thus
the disorder is asymptotically irrelevant. In three-
dimensional Ising systems, the disorder is a relevant per-
turbation leading to a different universality class: The set
critical exponents change from (a =0.11, P=0.325,
y= 1.24 v=0. 63) to (a= —0.01, P=0.34, y= 1.32,
v=0. 67). These results confirm the heuristic Harris
criterion: Disorder is relevant, if vt, (2/d, which is
equivalent to a& &0 if hyperscaling is valid. The two-
dimensional Ising system is marginal in this respect since
its correlation length diverges with vI, =1 and the specific
heat with a&=0, respectively. Recent work based on
conformal invariance ' methods have led to predic-
tions for the bond-diluted two-dimensional Ising system:
The critical exponents (a=O, P= —,', y= —,', v= 1) remain
unchanged —disorder leads to logarithmic corrections
only; e.g. , the susceptibility diverges as y-t ~ ~lnt

~

~,
the magnetization becomes M —t'~ ~lnt~ ~', and the
specific heat gets a double-logarithmic form.

It must be stated clearly that the validity of all re-
sults' ' is restricted in two ways: (i) All approaches are
restricted to weak disorder since disorder is treated as a
perturbation of the pure system —it is not clear what
weak disorder means; (ii) all results are valid asymptoti-
cally near the critical point —there is no measure where
this asymptotic regime is reached on experimentally ac-
cessible concentration and temperature scales.

Complementary approaches to critical phenomena in
disordered spin systems have started from the opposite

limit, i.e., from the percolation fixed point, ' ' where
long-range order breaks down. Exploiting the scale in-
variance at p„ the critical behavior has been studied on
fractal models having similar fractal dimensions as the
percolating cluster. ' ' In the framework of the links-
nodes-blobs model, it has been shown that percolation ex-
ponents (e.g. , a = ——23, P= —,'„y=—'„', v= —', in d =2) deter-
mine the critical behavior of the spin system at p, with a
crossover exponent P, = 1 with respect to thermal fiuctua-
tions valid in all dimensions for discrete spin models. '

However, the assumption of one-dimensional thermal
correlations restricts this result to the vicinity of the per-
colation point.

Summarizing, the theoretical predictions are valid only
asymptotically near T, and in two opposite extreme
cases —a theoretical link between them does not exist.
On general grounds one expects a crossover between the
fixed point calculated for weak disorder and the percola-
tion fixed point. This crossover must show up in
concentration- and temperature-dependent effective ex-
ponents. In addition, experiments and simulations may
not be performed in the asymptotic regime, so that an ad-
ditional crossover due to scaling corrections or unstable
(non asymptotic) fixed points may arise. These aspects
are relevant if one tries a comparison of experiments and
simulations with the asymptotic theories.

The increasing computational power and refined algo-
rithms have led to a number of simulations of disordered
spin systems. ' In three dimensions simulations have
been performed systematically down to p =0.5
(p, =0.31). It has been shown that the critical behavior
changes continuously with concentration: y increases up
to y = 1.49+0.02, whereas P increases up to
P=0.34+0.01. ' These exponents describe the suscep-
tibility and magnetization in the temperature range
5X10 ~t ~10 ' by a fit to the usual power law.
Effective exponents, obtained for p =0.8, show a tern-
perature dependence. Thus simulations are not in the
asymptotic temperature range —a quantitative compar-
ison with asymptotic theoretical results is hardly possible.
In two dimensions finite-size simulations of the weakly
bond-diluted Ising system ' have been performed re-
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TABLE I. Critical-size study ig»L); y is the averaged exponent determined in the critical region
10 ' & r & 10' ((«L ).

T,(p)/T, (1)

1.00
0.95
0.90
0.85
0.80
0.75
0.70

1.0000
0.9203
0.8375
0.7523
0.6645
0.5694
0.4738

0.613(3)
0.626(3)
0.630(5)
0.628(4)
0.620(8)
0.625(10)

1.75(1)
1.75(2)
1.76(2)
1.76(2)
1.78(2)
1.80(3)

1.74
1.79
1.88
1.96
2.07
2.11
2.16

0.125(5)
0.125(5)
0.125(5)
0.12(1)
0.11(1)
0.10(2)

cently, confirming that y/v= —,
' and P/v= —,'. ' " A

verification of the double-logarithmic specific heat has
also been stated. ' However, the crossover from a lnL
to a ln lnL behavior is difficult to detect in view of finite-
size corrections which should be included for the small
lattice sizes.

In the present Monte Carlo study, we investigate a
two-dimensional Ising model with site disorder on a
square lattice (p, =0.59) of size L (72&L &250) with
concentrations p between p =0.6 and 1.0. We used the
canonical Monte Carlo method, i.e., single spin-Aip dy-
namics in a heat bath with fixed temperature, to obtain
data from the Gibbs ensemble. We implemented a fast
code on the Cray Research, Inc, Y-MP vector computer
which runs at 450 X 10 spin updates per second on a sin-
gle CPU. In preliminary runs we tested the initial relax-
ation of two-dimensional diluted systems and estimated
the approximate location of the critical points T, (p).
Simulations of lattices with size 72, 100, 124, and 250
were then performed for a finite-size analysis. The typi-
cal run length was (2—5)X10 lattice updates for the
250 lattice. The first 50000 to 300000 lattice updates
were discarded to reach thermodynamic equilibrium. In
order to avoid sampling highly correlated data, we made
measurements only every 50—200 updates of the lattices.
We sampled data of the magnetization, susceptibility, and
specific heat defined in the usual way via fluctuations of
energy and magnetization. For the fixed-point analysis
and the determination of T„we calculated the cumulants

U =1—(M )/3(M )

and

V =1—(M )/2(M ) +(M ) /30(M )

of the magnetization. Our finite-size simulations were
performed at about 15 temperatures in the immediate vi-
cinity of the critical point (g»L ); the critical tempera-
ture T, was finally determined by the intersection of the
curnulants for different lattice sizes. The corresponding
sixth-order curnulants did not give additional information
on T, . For each concentration we collected data from
30—40 configurations, even for L =250. Similarly, we
studied the other system sizes L =100 and 124 to derive
T, from the intersection with a relative statistical error of
0.0005—0.001. We found that even for these large lattices
there is still a small finite-size shift of 10 in the values
of T, . The magnetization and susceptibility have been
averaged over independent configurations; the errors of
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FIG. 1. Raw data of the susceptibility y on a semilogarithm-
ic plot and of the specific heat C in a linear plot for samples

p =0.6, 0.8, and 1.0 as a function of temperature. Note that the
specific-heat singularity is more and more suppressed with in-

creasing dilution, whereas the susceptibility diverges strongly.
For p 0.7 the singularity of c is vanishingly small; only a regu-
lar contribution remains.

these quantities have also been derived from this
configurational average. The data have a relative error of
5 X 10 —2X 10,which is larger than the statistical er-
ror of the data for each configuration determined from
the variance of subaverages. The values of y/v and P/v
(Table I) were obtained via the usual finite-size scaling
of the magnetization and susceptibility. We have found

agreement calculating exponents with different lattice
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sizes within the statistical errors of our exponent esti-
mates. Both exponents show a slight but systematic
dependence on the concentration which is almost within
the error bounds. This is a residual effect of the cross-
over as will be explained below. It should be mentioned
that U' increases abruptly from the pure system value
U*(p = 1)=0.613+0.003 to U'(p@1)=0.625+0.005.
However, this splitting is not large enough compared
with our errors for U* to draw a conclusion about a split-
ting of the fixed points.

Our second set of simulations was performed with the
I.=250 lattice in the usual critical temperature region
10 & ~t~ &10 (g&L) excluding the finite-size region
(Fig. 2) (t =(T T, )/—T, ). We typically simulated 6
configurations at each concentration with a dense se-
quence of about 60 temperatures above and below T, col-
lecting all relevant magnetic and caloric data. The length
of each simulation was (2—6) X 10 updates after reaching
equilibrium. As can be seen from our raw data (Fig. 1),
strong critical magnetization fluctuations are accom-
panied by weak energy fluctuations when disorder is in-
creased. Note that below p=0.7 the singularity of the
specific heat even vanishes, whereas the susceptibility
diverges as strong as in the pure system. %e restricted
the main part of the analysis to the concentrations
p=0.7—1.0 since the lower concentrations p=0. 6 and
0.65 need such a large amount of computing time that we
were not able to produce statistically acceptable data for
the determination of critical exponents. Some typical
data of the susceptibility above T, after averaging over
configurations are shown in Fig. 2. The magnetization
and susceptibility were fitted to their power-law behavior
M = A ~t~~ and y=Ct r using the critical temperatures
T, (p) determined previously (Table I). As Fig. 2 shows,
one has to avoid carefully the crossover to finite-size-
affected data. The critical exponents y and P determined
in that way grossly characterize the critical behavior in
the temperature range 10 & t & 10 . P does not change
notably with dilution within the errors and is in accord
with the values of our finite-size analysis assuming
v= 1

" However, y increases drastically with dilution
up to y=2. 16 at @=0.7 (Table I, Fig. 2). We conclude
that the critical behavior in the region g «L is different
from the critical behavior at T, where g))L. We ana-
lyzed this crossover from the outer (transient) critical re-
gion to the inner (asymptotic) critical region by calculat-
ing the effective exponent y, ttt, t) (Ref. 25) as the local
logarithmic derivative of the susceptibility by means of a
least-squares fit of our data in small temperature inter-
vals. The results are shown in Fig. 3. In the pure system
there is a slight increase of y,s(t) until the critical ex-
ponent reaches its asymptotic behavior y,&=1.75, con-
sistent with the value obtained by the finite-size analysis
(Table I). In diluted systems ydr behaves in a different
way. The samples with p =0.95 and 0.90 show that y, ff
increases up to a concentration-dependent maximum
value when approaching T, and finally y,z decreases to
reach the values determined by the finite-size scaling
analysis. The temperature t,„where y,z reaches its
maximum value increases with dilution. In fact, below
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FIG. 2. Log-log plot of the susceptibility of a pure and of a
diluted (p =0.80) system above T,(p). At a reduced tempera-
ture t =10, the data begin to approach a finite-size-dependent
maximum value y,„(L=250).
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FIG. 3. Effective critical exponent y,tt(t) as a function of the
reduced temperature t=(T—T, )/T, on a logarithmic scale.
The data points displayed at about loglp(t) 2.5 are those of
our finite-size study at T, (p) assuming the correctness of v=1
(Refs. 7—11).

p =0.90 the increasing part of y,tt(t) is outside the tem-
perature range of our simulation. The width of the
asymptotic regime depends on concentration in the way
that more strongly diluted systems approach the asymp-
totic regime more closely to T„this explains the fact that
the values of y/v (Table I) obtained from our finite-size
analysis have a slight but systematic dependence on the
concentration.

Summarizing, our simulations show a pronounced
crossover, with a concentration- and temperature-
dependent effective exponent y,z in a transient regime
10 ~ t ~ 10, which is the temperature range usually ac-
cessible for experimental investigations. This crossover
masquerades as a concentration- and temperature-
dependent exponent. Asymptotically, we find the ex-
ponents of the pure and weakly disordered two-
dimensional spin system. The validity of our results ex-
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tends down to considerable site disorder at p =0.75. The
physical origin of the crossover phenomenon found in
this work and presumably in three dimensions' may
be explained heuristically by the following argument.
The study of configurations of disordered systems sup-
ports the idea that disordered systems are composed of
compact clusters of spins of irregular shape with average
size I, . Inside these clusters the spins have almost the full

connectivity of the pure system, apart from small isolated
sites or group of sites which are not occupied. The clus-
ters are loosely coupled to each other by few bonds so
that a flip of an almost ordered cluster gives a large con-
tribution to the susceptibility but a minor contribution to
the specific heat (Fig. 1). On approaching the critical
point T, (p ) from above, critical spin ordering first

proceeds within the clusters ( g « l, ) for T & T, (p = 1 )

(Griffiths phase); when the critical temperature T, (p) of

the system is approached more closely, the clusters are
nearly ordered (g=l, ) and act as superspins coupled to
each other by few surface spins of the clusters. The criti-
cally fluctuating clusters lead to a large susceptibility de-
pending on the average volume U„but to a small specific
heat depending on the surface s, of the clusters. In the
asymptotic regime (g)) l, ), the concept of translationally
invariant system applies again and the results of weak
disorder are found. The links-nodes-blobs model, '

which describes critical phenomena at the percolation
point, is a natural limiting case of one-dimensionally cou-
pled clusters in our model.
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