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By an exact real-space renormalization-group approach, we investigate ultradiffusion with a hierarchi-
cal pattern of hopping rates defined on the regular Vicsek fractal. Anomalous long-time behavior of the
autocorrelation function of ultradiffusion is observed. It is found that the transition from anomalous to
normal diffusion occurs in the general n-dimensional case, and the transition point is independent of di-

mension. In the presence of bias, we find another unusual transition that leaves hopping particles
trapped in some areas in contrast to the diffusive state for which the average square distance
(R~(t)) —oo for t~ co. This transition is essentially different from the one for biased ultradiffusion of
the one-dimensional multiple-furcation hierarchical system.

It is known that hierarchical structures occur in
several physical systems from molecular diffusion on
complex macromolecules' to spin glasses and computing
structures. Therefore, considerable interest has been re-
cently focused on hierarchical systems to study diffusion
dynamics, ' the Schrodinger equation, ' and the Ising
problem, etc. Huberman and Kerszberg proposed an
ultradiffusion model in hierarchical structures to explain
the anomalous relaxation that has been observed in wide
range of physical phenomena such as spin glasses and
random-field Ising magnets. They found an anomalous
decay process, i.e., the transition in dynamics from nor-
mal to anomalous diffusion. This is termed the one-
dimensional ultradiffusion model because of the charac-
teristic ultrametric topology and its anomalous decay
process. ' Normally, the ultradiffusion model consists
of the hopping of a particle in a hierarchical array of bar-
riers. For this system the time-dependent probability dis-
tribution satisfies a master equation of the form

P„(t)= g—w „[P (t) —P„(t)],
m I NNI

where P„(t) is the probability of finding the particle in
the nth cell at time t, w „ is the probability per unit of
time that the particle hops from the nth cell to the mth,
and w „=w„=w, The sum is taken over nearest
neighbors (NN's).

Here we present the study of the ultradiffusion problem
defined on the regular Vicsek fractal. "' Its hierarchical
barriers are same as those of Riera's study' of relaxation
on Sierpinski gaskets. This fractal was introduced by
Vicsek as a model embodying the essential feature of
diffusion-limited aggregation (DLA). ' Subsequent stud-
ies concerning this fractal structure have been made of
the Ising problem, ' percolation, ' and the random-
walk' ' problem. In our ultradiffusion model, the

hierarchical structure of the barriers could be determined
from its fractal nature. When the particle hops between
two cells at points connecting first-stage generators, we
denote its hopping rate wo. When the particle crosses the
points connecting second-stage generators, its hopping
rate is wz and so on. So energy barriers are labeled corre-
sponding to the connecting points of the two cells (see
Fig. 1). The diffusion process we consider is that where
the particle hops from a cell n to its nearest neighbors m
through the barrier i with a hopping probability w;
defined above. As shown in Fig. 1(a), the hopping rate
per unit time between two cells connecting two i-stage
generators is denoted by w;, and the arrangement of w; is
hierarchical. Note we have three types of cells, for exam-
ple, A, B,C, with different neighbors or different diffusion
circumstances. %'hen we perform a Laplace transforma-
tion on master equation (1) of this system, we should treat
the three types of cells separately with different transform
frequencies A, „A,2, 13. The following equations are the
Laplace-transformed equations for the three different
types of cells:

I iPc =5co+ wo(Pc, Pc )+wo(Pc, Pc )

+wo(Pc, Pc)+wo(Pc, Pc)—
A2Ptt =wo(P& Pjt )+w, (Pr P—z ), . —

3P~ =wo(PA —PA

where P is the Laplace transform of P(t). The term 5
specifies the initial condition that the particle is supposed
to start its random walk at cell 0.

The equations for all cells are listed in Eq. (2). Those
transformed equations will be treated with the real-space
renormalization-group (RSRG) technique to determine
the long-time behavior of the autocorrelation function
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Po(t). The RG approach amounts to a dynamics decima-
tion of (2) carried out in such a way as to leave its basic
structure invariant. The hierarchical structure of bar-
riers still exists, but the system is spatially scaled to Fig.
1(b) by a factor b =3. The RG procedure will decimate
(referring to Fig. 1) all cells except A, B,C,D,E, . . . and
change the set of equations. For example, for cell B,
A,zP&=wo(P c Pz—}+w i(P'r Pz—). So the surviv-
ing P„still satisfy a similar equation with respect to the
original one, but with rescaled parameters: frequencies
k; and hopping probability w, . The rescaled parameters
are given by the following recursion relations:

x =2dflnb/lng, „. df is fractal dimension. y,„ is the
maximum eigenvalue of the transform matrix of charac-
teristic frequencies A, , From (3c) it is easy to find

5(3wi +wo)
+max

WJ

The exponent x is as follows:

(5)

X= 2 ln5

in[5(wo+3w', )/ui i ]

Referring to the calculation of density of states by
Teitel and Domany, ' one may derive how the diffusion
constant D (R ) goes to zero and how the anomalous
diffusion region approaches to normal diffusion as R ~ 3.
Note that x =21n5/ln15 is the case of normal diffusion
on this fractal structure. So R, =

—,
' is the critical point

where the transition from normal (R ~
—,') to anomalous

diffusion (R (—,') takes place.
The above results can be generalized to arbitrary di-

mensions. One may consider a similar diffusion problem
by taking into account the geometrical symmetries of n-
dimensional Vicsek fractal. The recursion relations simi-
lar to Eqs. (3) can be obtained. We find that the trans-
form matrix of frequencies is related to dimension n, and
the corresponding exponent x may be derived easily as

WJ WJ WJ

(3c)
2 ln(2" + 1)

ln[(2"+ 1)(wo+ 3w ", ) /w i ]

In deriving relations of Eqs. (3), we have used the con-
dition wp =wp to fix the time scale. The above relations
have been written by abandoning the terms of O(A, ) in
the limit A, ~O in order to study the leading behavior at
long time (t ~ ao). It is also assumed that cell c =0, at
which diffusion starts, survives decimation in such a way
that the inhomogeneous equation for P p remains of the
same form as the one for Pp.

The solution for the fixed points leads to a whole line
of fixed points [ w ]:

W

W; =N 1

1

Wp +3WJ

NpR
1

1 3R

Equation (4b) is derived from (4a):

(4a)

(4b}

Wi +1
w.

WJ (=R) .
wp +3wp

The value of w*, can range from 0~ ~. The fixed point
w1 =0 describes the situation of trapping due to the
infinite barriers. The fixed point w*, —~ corresponds to
the case of zero-height barriers, where we expect normal
diffusion to take place. One may expect that the auto-
correlation function, which has a probability Po(t) of
coming back to cell 0 at time t, has a scaling behavior of
the form Po(t) —t ~ when t ~~. The exponent x can
be obtained by the inverse Laplace transformation' and
scaling argument. It is straightforward to derive:

In the limit w*, ~ ao, it is reduced to

X—2 ln(2" + 1)
in[3(2"+ 1)]

which should be the case of normal diffusion on the n-
dimensional Vicsek fractal. When d =1 its hierarchical
structure reduces to the one-dimensional (1D) bifurcate
hierarchical barriers in Zheng, Lin, and Tao, ' and our
results coincide exactly with theirs. For the general n-

dimensional case, the recursion relation still gives
w; =Rwo/(1 —3R), which breaks down at R, =

—,'. So
we may conclude that the transition from ultradiffusion
to normal diffusion occurs at R, =

—,'. This shows that the
anomalous decay process which was indicated to occur
on 1D hierarchical structure by Huberman and
Kerszberg still exists in the general n-dimensional Vicsek
fractal. An interesting result is that the transition point
R, is independent of dimension. We have also found that
the scaling behaviors of w; and P remain the same for
different dimensions.

We turn to the ultradiffusion in the presence of exter-
nal field since previous studies' ' had found a transition
at ri=wo from a power-law to (hierarchy-dependent) ex-
ponential decay of P (t) 0for biased ultradiffusion. Now
we apply an external field denoted by g to this system
that biases the diffusion in a specific direction. We wi11

find that biased ultradiffusion on this fractal may have
more attractive behavior than we had expected. Its mas-
ter equation in the presence of external force with the
same hierarchical barriers is as follows:
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A, ,P„= g w „(P P—„)+ g o „rt(P~ P—„}.
m I NN I m I NNI

(8) C1

QA, gA

Ap

Ag JA4
1F

Cp
RG

One may find that this model seems reasonable only when
g~min[w; j from the above equation, and the case of
g )min [ w; j may be considered afterwards.
o „E[

—1,0 or 1 j depend on the positions of m, n and
the direction of bias. The direction of bias g is important
to our result. We chose a bias in the x direction which is
identical to y because of the symmetry of the fractal.
Performing the Laplace transform on the master equa-
tion also with the three types of characteristic frequencies
A, „A2, 4(,

&
and following the same renormalization pro-

cedure, the recursion relations of w;, P, rt, and [A,; j can
be obtained. The RG decimation (referring to Fig. 1)
yields to a series of equations of the same form as the
original one (8), but with rescaled parameters with fol-
lowing recursion relations:

C3 C4

gE

FIG. 1. (a) Hierarchical barriers on the Uicsek fractal. Hop-
ping rates w; over energy barriers between cells are marked with
connecting points. The cells denoted by subscripts are decimat-
ed. (b) Fractal structure after RG decimation.

w =Qw;+i (i 1),
P '=P/0,
g'=Qg,

=[M]

where

(9a)

(9b)

(9c)

(9d}

q = —wp, which is merely the negative direction of bias.
So the phase diagram is very simple. Indeed, it is
straightforward to check that, starting at any value of g
except 71=0, the system scales, according to (9c), into the
fixed points g*=+wp. We write down the leading item
of the maximum eigenvalue g,„ofthe transform matrix
of [I,; j near the fixed point rid —+wp:

0 4wp(wp+ w i )

w', (wp —rt')

Therefore, the exponent x is computed as

with

w p ( w p +3w pw i +3w p rt +w i 'g )

wow& +3wpg +3wpw]g +
Wp+'g

a P
Wp

2(top+rt )
8

Wp

2(w + )
8 5 0+ 8

wp 'g

[M]= 8 5+0

=a(w p+w7pw i+11 wrpi+5wpwig )/4,
P=4(wt+4wpw, +3wpil )/b, ,

y=8(wpw, +wpw&rt +2wpg )/5,
5=(Wp+2WpWi+3Wp7) +2wpWi7) )/5,
8=wp(wp+2wpw, +g )/5,
6=wpw, +3wpg +3wpw~ g +'g

The scaling relation of g has three fixed points
g* =0,+wp. The first fixed point g& =0 corresponds to
the case of unbiased ultradiffusion, and the second one
gz =wp leads a strange long-time behavior of the auto-
correlation function. g& =0 is the unstable fixed point,
but gz =wp is a stable one. Another solution is

2dflnb "
X= :0.

ln&max
(10)

With the autocorrelation function Pp(t)-t ", we
find that Pp(t) tends to a finite value, not infinity. This
indicates that, in the presence of bias, the particle will be
trapped in some cells. We also observe that the average
square distance R (t), which has the asymptotic behavior
R (t)=g;P;(t)i -t" for t +Do, wi—ll become finite near
gz. When g& wp we may expect that the system will be
in a frozen trapping state according to the flow diagram
near fixed points. We conclude that a phase transition
from an ultradiffusion to a trapping state has taken place
when the bias is applied. Also, this transition has the fol-
lowing properties: (1) The transition is related to the
direction of the bias g. The directions of x and y are
symmetrical. Our calculation shows that there is no such
transition when il is in the direction of n=x+y. (2) Only
when the bias direction is diagonal, n =x+y, could one
observe the transition from power-law to exponential de-
cay of Pp(t) for this hierarchical structure. In other
directions, it could not be found because it is erased en-
tirely by the existence of the trapping transition. (3) The
system enters into a trapping state irrespective of the pa-
rameter R. The trapping state is different from the one of
wp =0 in which the particle is trapped by infinite barriers.

In deducing these conclusions, one may make some re-
marks on the supposition of the three different charac-
teristic frequencies A,;. The RG decimation procedure il-
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lustrates that the maximum eigenvalue does not depend
on the supposition that the A. ,- overlap. Conversely, the
different neighbors of each site, for example, at the qua-
drafurcate points and bifurcate points, must be con-
sidered because of their different scaling behaviors. This
is the same as the scaling argument of lattice vibration
dynamics. We could suppose different lattice masses in-
stead of the monatomic case, but the maximum eigenval-
ue still remains the same at low frequencies A, ~O.

In summary, we have used the RSRG technique to
demonstrate that the transition from anomalous to nor-
mal diffusion occurs on the ultradiffusion model of the
general n-dimensional Vicsek fractal. The anomalous-
diffusion exponents for the autocorrelation function Po(t)

are obtained. Referring to results for other ultradiffusion
structures, we conclude that the exponent x is nonuniver-
sal, but depends on system parameters, the arrangement
of barriers, and dimensionality. We find that a phase
transition, which results from the bias, takes place from
an ultradiffusion to a trapping state. Our research is
directly motivated by recent Monte Carlo studies ' of re-
laxation on diffusion-limited aggregation. We hope that
such a transition of a particle subject to a force falling
into a trapping state could be expected to occur in some
structures of DLA.
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ence Foundation.
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