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Phase-slip mechanism for dissipation in high-T, superconductors
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The phase-slip theory of Ambegaokar and Halperin (AH) is used to explain measurements of magne-
toresistance versus temperature for a granular high-T, superconducting material, assuming an array of
Josephson weak links. Results of experiments are compared to dynamical calculations of the critical
current versus magnetic field in a Josephson-junction array at non-zero temperatures. The AH theory is
able to account for the observed dissipation, give physical insight into the role played by the sample mi-

crostructure, and also quantitatively explain the kink in the magnetoresistance curve seen to occur in
both granular and single-crystal materials. Furthermore, within this framework, the critical current for
a particular sample is determined from magnetoresistance measurements, and then used to calculate the
temperature dependence of the ac magnetic susceptibility. Comparison of the calculated real and imagi-

nary components is made to direct measurements.

I. INTRODUCTION

Understanding of the dissipation mechanism in high-
T, superconductors is extremely important for its
scientific and technological implications. Whether all of
the seemingly different types of dissipation mechanisms
in superconductors can be explained by using a single
formalism remains to be seen. Tinkham' demonstrated
semiquantitatively the plausibility of equating thermally
activated Aux motion with the 2~ phase-slip dynamics of
a single Josephson junction, as worked out by Ambegao-
kar and Halperin (AH) for a heavily damped, current-
driven junction. In a previous paper, we extended the
ideas of Tinkham by pointing out that in AH theory, the
phase-slip barrier is proportional to the critical current of
the junction, and, when applied to an array of Josephson
weak links, the field dependence of the phase-slip barrier
can be modeled by a suitable averaging of the junction
parameters.

In this paper, we present further evidence supporting
the applicability of AH theory to dissipation in high-T,
superconductors and its potential usefulness as a concep-
tual framework for any superconductor. That is, arrays
of coupled Josephson junctions may serve as a model not
only for weakly coupled grains, but also for a continuum
or "single-crystal" material, corresponding to the limit of
strongly interacting grains. Since the AH equations are
derived for a single junction, their success in describing a
network of Josephson junctions supports an effective-
medium picture, as described by Tinkham and Lobb.

The format of the paper is as follows: In Sec. II we re-
view the results found in Ref. 3 for fitting R-T and I-V
data to AH equations, and present magnetoresistance
data which, when fitted to AH expressions, yield further
insights. Dynamical calculations of the critical current of
an array of Josephson junctions under different
magnetic-field values at different temperatures are also
shown; in Sec. III the field and temperature dependences
of the phase-slip barrier energy and its relationship to the

measured critical current are discussed. Furthermore,
the usefulness of AH theory for explaining the kink in the
resistivity curve seen in both granular and single-crystal
materials is demonstrated. Finally, within the context of
AH theory, the ac magnetic susceptibility is calculated by
using a critical-state model which is unique to the
sample's microstructure. This is then compared to ac
susceptibility measurements on our samples. Section IV
gives our summary and conclusions. Experimental de-
tails were given in Ref. 3. Sample preparation and char-
acterization are planned to be presented elsewhere.

II. RESULTS

A. Magnetoresistance data

Results of measurements of resistance versus tempera-
ture in various applied magnetic fields were shown in Ref.
3, fitted to the small current limit of AH theory, namely,

R =R„[Io(—,
'
y ) ]

where R„ is the normal resistance of the Josephson junc-
tion, Io is the modified Bessel function, and

y =%I, /ektt T, with I, the maximum supercurrent of the
junction in the absence of thermal fluctuations. y is the
normalized barrier height of the sinusoidal potential en-
countered by the phase difference as it evolves in time.
We can assume y = Uo/kz T, where Uo is the activation
energy for the phase slip. I& was chosen to have an expli-
cit temperature dependence, but an unspecified field
dependence, given by I& = A (H )(1—t ),where t =T/T,
and m =

—,'. Thus, y=A'(H}(1 t) ~ for T near T, .'—
The fits are shown in Fig. 1 of Ref. 3 for which 3', R„,
and T, were varied as parameters. As can be seen in Fig.
1 of Ref. 3, Eq. (1}has in it the qualitative behavior of
both the "flux creep" and "flux flow" regimes. The flux
creep regime is the exponential-like curvature at near-
zero resistances, while the flux flow regime is seen at
resistances near the onset of the field-induced broadening.
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Since y, the normalized energy barrier, is proportional
to the Josephson critical current in AH theory, one
would expect the field dependence of y to vary as a
Fraunhofer diffraction function. This expectation is
justified since A,J, the Josephson penetration distance, is
much larger than the typical grain-boundary junction di-
mension at all temperatures. However, for granular ma-
terial, in which an array of Josephson weak links exists,
one must average the Fraunhofer function over the sizes
of the junctions and their orientations relative to the ap-
plied field. Thus, in Ref. 3, y versus magnetic field was
extracted from R-T data and fitted to such an averaged
Fraunhofer function, given by

y(H ) C &
«~ sin(xy sin8)=C p xdx d 8+yo,

y(H =0) o e xy sin8

Lorentzian, have some temperature dependence, as can
be seen in Fig. 1(b). Though the fitted values of the pa-
rameters are in the expected range, the curves in Fig. 1(b)
suggest tha y does not scale with a simple (1 t) —fac-
tor. This nonscaling behavior is expected for a single
Josephson junction, since the penetration depth changes
with temperature. We will show in the next section that
this behavior is also expected for a coupled Josephson-
junction array.

B. Dynamical calculation of critical current

The y-H curves at various temperatures shown in Fig.
1(b) are for a granular high-T, superconductor, which
can be modeled as an ensemble o" weakly coupled super-
conducting grains. The explanation of the behavior of

(2)

where p(x) is a log-normal distribution (of junction sizes)
and C is a constant. x=L/L is the junction length
normalized to a mean length L andy =H/Ho is the ap-
plied field, normalized to a quasiperiod Hp=@o/pdL
with 4O the Aux quantum and d the mean junction thick-
ness perpendicular to the field. yo is a field-independent
constant. d is actually an effective thickness, equal to
2A, +5, where A, is the Ginzburg-Landau penetration
depth and 5 is the thickness of the barrier layer.

Also in Ref. 3, voltage versus current at various tem-
peratures in zero applied field was measured and fitted to
the simplified analytic AH expression. y versus temper-
ature was then extracted from these data, yet the correct
power-law exponent of the temperature dependence was
ambiguous. A further investigation of the correct tem-
perature dependence of y is possible, however, by
measuring the resistance as a function of applied magnet-
ic field for various temperatures. Such data are presented
here in Fig. 1(a). For these measurements, a dc current
of 0.43 mA was applied perpendicular to the external
magnetic field. This was the smallest current we were
able to use and still obtain good signal-to-noise ratio. A
small transport current is desirable in order to approxi-
mate the conditions for which Eq. (1) holds. The solid
lines in Fig. 1(a) are fits to Eq. (1), but with

y = A, (H + A 2 ) '+ A 3. In this way, the averaged
Fraunhofer field dependence of y was approximated for
computational convenience by a Lorentzian line shape
plus a constant offset, thus retaining the characteristic
zero slope and rounding at zero field. We in fact attempt-
ed other similar forms, including a Gaussian and a hyper-
bolic secant, yet the Lorentzian produced the best fit to
y(H). For each temperature, A, , A2, and A3 were
varied while R„was held constant at 10 mO, the same
value used in fitting to R-T and I-V data.

The results from fitting to Eq. (1) at each temperature
are plotted in Fig. 1(b) as y versus magnetic field. They
exhibit a trend similar to that typically reported for mea-
sured critical currents as a function of magnetic field at
nonzero temperatures. It should be noted that the pa-
rameters A, , A2, and A3, corresponding to the ampli-
tude, width, and zero offset, respectively, of each
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FIG. 1. (a) Resistance vs magnetic field at various tempera-
tures, fitted (solid lines) by using Eq. (1) with

y = A I(H +
A 2) '+ 33. (b) y vs magnetic field obtained from

the fittings shown in (a) for various temperatures.
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these curves therefore requires one to consider the
dynamical effect of thermally fluctuating currents, espe-
cially when T is close to T„on a Josephson-junction ar-

ray rather than on a single junction. Thus we go beyond
the AH model to calculate the critical current of a super-
conducting array as a function of temperature in the
presence of magnetic field.

Two-dimensional arrays of Josephson junctions have
been studied numerically by solving a set of coupled
differential equations representing the dynamics of the
junctions. These have been studied as functions of tern-

perature, and also of the applied magnetic field or the
frustration. The frustration is defined as the magnetic
flux per plaquette of the junction array, normalized to the
fiux quantum: f =sH/Cpo, where s is the area of a pla-

quette and H is the applied field perpendicular to the ar-
ray. We use the method of Falo, Bishop, and Lomdahl to
solve a set of coupled nonlinear differential equations. '"
The time dependence appears in the phases P; of the or-
der parameters of N superconducting grains. These
grains are Josephson coupled and resistively as well as
capacitively shunted. The N coupled differential equa-
tions are given by '"'

d A' d

+I, ;1sin(p; i'.j —
A;1

—) (3)

In this expression, t is time; I, ," is the junction critical
current between grains i and j; I,'"' is the external current
fed into grain i; C; is the coupling capacitance between
grains i and j while C;,. is the capacitance of graini to the
ground; R;. is the shunt resistance between grains i and j;
and A; is the gauge-invariant phase factor

A,"= f A.dl,
0 i

where x,. is the center of grain i and A is the vector po-
tential. The A; obey the constraint that the sum around
any unit cell of the array is constant

A,J+ Ajk+ Aki+ Ait=2~f,

where f is the frustration defined above. The voltage
drop across the junction is related to the phase difference
by the Josephson relation

—(p —p )= (v —&)2e
di

I,o and Ro, according to the assumption of identical junc-
tions with nearest-neighbor interaction only.

For nonzero temperatures, we assume a fluctuating
noise current in each shunt resistance, similar to that as-
sumed by AH. The noise currents in the shunt resis-
tances of different junctions are uncorrelated. These
equations thus can be viewed as a generalization of the
AH single-junction model. ' ' Furthermore, in the over-
damped limit (C,~

—+0), they describe the extensively
studied resistively shunted junction (RSJ) model of a
resistively shunted Josephson-junction array. "' The nu-
merical solution of Eq. (3) directly yields the I-V curve,
from which the macroscopic critical current can be ob-
tained as the point at which a certain jurnp in the voltage
occurs. Chung, Lee, and Stroud solved the RSJ equa-
tions of motion at zero temperature for various array
sizes and values of frustration and plotted the critical
current as a function of frustration values. " The data
resemble averaged Fraunhofer functions with magnetic
Geld. We extended these calculations to nonzero temper-
atures, choosing a I. XI. array with I.„=11 and

Ey 10 In the simulations, we used periodic boundary
conditions in the y direction and free boundary condi-
tions in the x direction, where the x direction is that of
the external current. The overdamped limit was assumed

by taking PC;; =0.04 and PC;.=0. The details of the cal-
culating algorithm can be found in Ref. 9(b).

Figure 2 shows the calculated reduced critical current

I, /I, o, where I,o is the critical current at zero field, plot-

ted as a function of frustration for three different reduced
temperatures T', where T'=ektiT/fiI, o. T'=0, 0 05, .
and 0.5 corresponds to 0 K, 94.6 K, and 107.7 K, respec-
tively, if we assume m =—'„as used in Gtting our R-T
data. The magnetic-Geld dependence in Fig. 2 is qualita-
tively similar to that shown in Fig. 1(b). We note that for
the T'=0 case in Fig. 2, significant falloff of the critical
current already occurs at a frustration value f=0.05. In
real granular superconductors, as in the samples we used,
superconducting loops or arrays certainly would have a
distribution of areas and orientations, as well as a variety
of topological shapes. A more detailed comparison with
experiment hence would require averaging over these
quantities.
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Equation (3) can be rewritten for computational conveni-
ence by defining a reduced time ~= t /to, with
to=A'/2eR; I, , , as follows:"

PC;, (4;—4', )+
d (4; PJ)—

0.2

'0
Frustration f
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+sin(P, . —P . —A,")

where p=2eRol, o/R Here, I, ;, .and R," are set equa. l. to

FIG. 2. Calculated reduced critical current (I, /I, o) as a
function of frustration f at various reduced temperatures T* for
a 11X10Josephson-junction array. The calculations are done
in the overdamped limit with PC;; =0.04 aud PC;, =0, where

p = (2eR (~(l,alai)
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III. DISCUSSION

A. Interference eft'ects

As mentioned in Sec. II A above, we modeled the field
dependence of y as a Fraunhofer function which was
averaged over the size distribution of the Josephson weak
links connecting the grains of the material [Eq. (2)]. The
Fraunhofer interference function is known to arise in a
single junction due to the spatial dependence of the phase
difference P along the length of the junction, analogous to
the single slit diffraction of light. Yet a spatially depen-
dent phase difference can also be defined for an array of
junctions in a magnetic field, as was done in Sec. II B. In
that case, a gradient in the phase difference existed over
the length of the array, so that the individual junction
phase differences interfered as in a single slit. The calcu-
lated field dependence of the critical current thus
displayed a smooth, Fraunhofer-like behavior similar to
Eq. (2). However, the smoothing eff'ect is inherent to this
calculation, which is for an array of identical junctions,
rather than arising from averaging over a distribution of
junction sizes.

Another phenomenon which has been shown to
smooth out the Fraunhofer pattern of single junctions is
the existence of fluctuations in the thickness of the junc-
tion barrier layer. The results of Secs. IIA and IIB
above therefore suggest a model for our granular material
as an effective junction, with effective structural disorder
in the barrier layer corresponding to the junction array.

thermal fluctuations, whereas I '" includes the smearing
due to thermal phase slippage.

We conclude that I, rather than I "' is the correct
quantity to fit to a Fraunhofer function that is averaged
over junction sizes. However, the measured I '" can be
used to calculate I, via the AH full integral expression,
thus removing the thermal fluctuation effects. For in-
stance, Dubson et al. ' point out the similarity of I,
versus field, when averaged over ten junctions of different
sizes, to the field dependence of the temperature "T„"at
which the sample voltage falls below 5 nV with a sample
current of 1 mA. This "T," could be converted into I,
by employing the AH integral relation for a proper com-
parison.
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B. Measured critical current and I
&

A few words should be said about the relationship be-
tween the measured critical current I "', defined with a
voltage criterion, and the junction critical current I„to
which y is proportional. I, and I "' have clearly
different field dependences. We measured the field depen-
dence at 98 K of the macroscopic critical current I '",
which is the applied transport current at which the mea-
sured voltage drop is O.S pV. The data resemble a
smoothed Fraunhofer function and decay asymptotically
to zero. In a manner identical to that of Peterson and
Ekin, we were than able to fit these data to Eq. (2)
without the need of an added constant yo. In doing so,
the same value of the quasiperiod Ho was obtained as
from the fitting to I, vs 0 in Fig. 2 of Ref. 3, which may
be expected from a common microstructure. However,
this field dependence is different from that of the parame-
ter I, , which was found to resemble a smoothed
Fraunhofer function decaying to a nonzero asymptote
(y, ).

It has been demonstrated for a single Josephson junc-
tion that both thermal fluctuations and structural fluctua-
tions within the barrier have a smoothing effect on the
Fraunhofer interference function of the critical current
versus field. The difference between these two effects is
seen most clearly at higher fields, at which the former
quenches superconductivity, while the latter leads to a
nonzero, field-independent supercurrent. This is con-
sistent with what we observe, since I, is free from
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FIG. 3. Resistivity vs temperatures in a 10-T applied magnet-
ic field, showing the kink (circles show the data from Ref. 11).
(a) Fit to Eq. (4) shown in linear scale (solid line); also shown

separately are the two contributions in Eq. (4) (dashed lines). (b)

Fit to Eq. {4) shown in Arrhenius plot to emphasize the flux

creep regime.
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C. Magnetoresistance kink

Next, we show that the phase-slip picture developed
above can explain the dissipation observed in single-
crystal superconductors. Figure 3 (circles) shows the
resistivity-temperature data of Palstra et al. ,

" for a
Bi2 &Sr&Cap 8Cup08 d single crystal in a field of 10 T, just
below the transition onset. This data is representative of
a kink often seen in high fields in both granular and
single-crystal high-T, compounds. The shape of the
magnetoresistance kink has been shown to be directly re-
lated to various sample properties, such as oxygen occu-
pancy, ' impurity concentration, ' crystalline anisotro-

py,
' and the particular rare-earth substitution used. '

This behavior can be understood using a variation of the
AH Eq. (1), given by

D. ac susceptibility and the critical state

The screening currents induced by an applied magnetic
field can be assumed to be initially above the critical lev-

el, followed by Aux motion until the Lorentz force just
equals the pinning force. After such transients, the mag-
netic flux penetrating a sample is in a stable configuration
at each value of applied magnetic field, and the flux densi-

ty gradient is uniquely determined by the pinning force
density in the microstructure. This fie1d gradient is pro-
portional to the critical current, in the limit that B ~H
inside the material. Thus, an experimentally determined,
nonanalytic critical-state model would be possible by
measuring the critical current as a function of the applied
field. Such data could be used in a numerical solution of
the critical-state equation to obtain the flux density

p =p. i[Io( 2)'i)J ' +p.z[Io( -,')'z)] '
0-

where y;=A (H)(1 —T/T„) ~ /T. Figure 3 shows the
data of Palstra et al. fitted to Eq. (4) (solid line), on a
linear scale [Fig. 3(a)] and in an Arrhenius plot [Fig.
3(b)]. As can be seen, the fit to the experimental data is
remarkably good. Figure 3(a) also shows the contribu-
tions of the two terms in Eq. (4}separately (dashed lines).

The fitting gave values for p„& and p„z equal to the
resistivities at the onset of each step, and for T, j and T,2

somewhat greater than the visible onset temperatures of
each transition step. The fitted values of y& and y2, if as-
sociated with junction critical currents, correspond to
zero-temperature critical currents (I, ) of 8.6 pA and 13.0
pA, respectively, in a 10-T applied field. The junctions
with the stronger coupling (larger I&) are related to the
upper resistivity step, which, in experiments, generally
exhibits less field-induced broadening than the lower step.
The coupling energy of a junction is inversely related to
the amount of flux threading its area and thus also to the
length and the thickness of the junction. The success of
Eq. (4) therefore suggests an interpretation of the kink as
the superposition of dissipative voltage contributions
from junctions of two separate mean sizes within the ma-
terial. Each type of junction would be averaged over its
own distribution of sizes and orientations and thus have a
unique field dependence of its phase-slip energy y(H),
characterized by the rate of falloff in applied field (Ho ).

In fitting, the temperature dependence used for y& and

yz in Eq. (4) differed slightly from that used for y in Eq.
(1). Our R Tdata were fitte-d with the approximation
1 /T =1jT„for T close to T, . However, the use of the
1/T factor was found necessary in order to fit the low
levels of p ( & l%%uo p„) in Fig. 3(b), where linear Arrhenius
behavior dominates (Uo))k&T}. This regime is com-
monly termed the flux creep regime, but can be fitted
with the AH expression just as well as the upper level p
( & 1% p„) near T, in Fig. 3(a), which is usually dis-
tinguished as the flux flow regime. Reports that show
thermal1y activated magnetoresistance at low tempera-
tures"' are therefore consistent with the AH theory.
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FIG. 4. Complex ac susceptibility vs temperature for various

peak-to-peak values of applied ac magnetic fields at 4 kHz.
Solid lines are calculated using Eqs. (5) and (6). (a) Real part
g'(T). (b) Imaginary part y"(T).
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profile interior to the sample, and ultimately in the calcu-
lation of susceptibility versus temperature g(T). Al-
though this solution would be nonanalytic, it would nev-
ertheless be an exact solution for the sample. ' The y(H )

data of Fig. 2, Ref. 3, can be used for this purpose, since
they represent the field dependence of the critical current
without thermal fluctuations, averaged over the micro-
structure of the sample. Of course, an analytic approxi-
mation to the averaged Fraunhofer function can be used
also.

An explicit derivation of y(T) from the critical-state
equation has been published by Muller' for a granular
high-T, superconductor, and also by Sun et al. ' for a
thin film. Miiller' found good agreement with experi-
mental y(T) data by assuming a Kim-type critical state
for the intergranular contribution and a Bean-type model
for the flux density profiles within the grains. Such an as-
sumption is in agreement with the results we obtained
from fitting y(H ) by means of a smoothed-out
Fraunhofer function plus a constant. The constant term
would correspond to a Bean-type contribution, in which

I

the critical current is assumed independent of field. Like-
wise, the field range in which the y(H} curve decays rap-
idly can be approximated by a H ' dependence on field,
which is equivalent to the Kim model ~ However, as we
pointed out previously, the H ' approximation, or any
H " field dependence, does not have a zero slope at
H =0, yet our y(H ) data points for H close to zero do ex-
hibit this rounding. '

In Fig. 4, we show the measured ac magnetic suscepti-
bilities for different peak-to-peak levels of applied ac
magnetic field. These were measured on a Model 102 AC
susceptometer, made by Phasetrack Instruments, using
an ac magnetic-field frequency of 4 kHz in zero dc ap-
plied magnetic field. The amplitude of the ac field was
varied from 0.04 to 4 Oe (peak-to-peak). These are com-
pared with the calculated ac susceptibilities (solid lines),
following the method of Sun et al. ,

' except that the criti-
cal current was input as a function of both temperature
and field. Sun et al. assume an applied ac field
H =H„sincot, where t in this case is time, and then derive
a time-dependent magnetic moment given by

1—+g —exp
2

H„
(1—sincot ), (m. /2 cot ( 3m. /2)

m(t}=

mo exp
H„

( I+sincot ) — —+rt, ( vr/2 ~ c—ot (m/2)
H 2

(5)

HJ, =Jo 0714 +1
46. 8

+0.273 (1—T/T, )

(6)
The solid lines in Fig. 4 were made by first determining
the best fit values of H* and mo for the 0.4-0e g" data,
and then maintaining these parameters constant while
varying only H„ for the other data sets at different ap-
plied fields. The corresponding value for J,o was roughly

0
10 A/cm, in agreement with the previous results. A
temperature dependence having m =2.38 best fitted the
0.4-0e y" data. Though different from that used in R-T
fitting, this temperature scaling factor is once again only
an approximation to a more complicated temperature
dependence. Nevertheless, this form for J, was used to fit
all other y' and y" data in Fig. 4(a) and Fig. 4(b), respec-
tively. Increased deviation of the calculated curve from

Here, mo=2nJ, la /3c. , rl= —,'exp( 2H„/H*—), and
H*=4 Ji,rl /3c is the field at which the critical state has
penetrated to the center of the sample. l is the thickness
and a is the radius of the sample, and J, is the critical-
current density. The ac voltage induced in the pickup
coil is proportional to the time rate of change of m (t}.
The real and imaginary parts of the susceptibility are
then calculated from the first Fourier components of this
ac signal.

The field and temperature dependences of J, can be in-

put into Eq. (5) as either fitted analytic functions or as a
set of points. For the calculated curves in Fig. 4, we used
a field dependence obtained by fitting the y(H) in Fig. 2,
Ref. 3, to a Lorentzian, as follows:

I

the data for 2H„=4 Oe is likely due to the nonscaling
temperature behavior. In Eq. (6), T, was fixed at 101.29
K. This number was obtained from a quadratic fit to the
values of H„plotted versus the temperature at which the
peak in y" occurs.

IV. CONCLUSIONS

The AH model has been used to explain quantitatively
magnetoresistance in our granular materials and in single
crystals. The low-frequency dynamical response of
granular materials via ac susceptibility can also be pre-
dicted. The microstructure is understood to give rise to
the detailed shape of these dissipative phenomena (due to
phase slips through weak links) and can be probed by this
model in a quantitative manner.
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